| [1] | Nielsen T D, Cruickshank C, Foged S, et al. Business, market and intellectual property analysis of polymer solar cells[J]. Solar Energy Materials and Solar Cells, 2010,94(10):1553-1571. | 
																													
																						| [2] | Lu L, Zheng T, Wu Q, et al. Recent advances in bulk heterojunction polymer solar cells[J]. Chemical Reviews, 2015,115(23):12666-12731. pmid: 26252903
 | 
																													
																						| [3] | 唐健敏, 史伟民, 王林军, 等. CuPc/CuPc:C$_{60}$/Alq/Al 结构的有机太阳能电池[J]. 上海大学学报(自然科学版), 2010,16(1):38-42. | 
																													
																						| [4] | Zhao J, Li Y, Yang G, et al. Efficient organic solar cells processed from hydrocarbonsolvents[J]. Nature Energy, 2016,1(2):15027. | 
																													
																						| [5] | Zhang F, Xu X, Tang W, et al. Recent development of the inverted configuration organic solar cells[J]. Solar Energy Materials and Solar Cells, 2011,95(7):1785-1799. | 
																													
																						| [6] | Hau S K, Yip H L, Baek N S, et al. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer[J]. Applied Physics Letters, 2008,92(25):253301. | 
																													
																						| [7] | Hau S K, Yip H L, Jen A K Y. A review on the development of the inverted polymer solar cell architecture[J]. Polymer Reviews, 2010,50(4):474-510. | 
																													
																						| [8] | Duan C, Zhang K, Zhong C, et al. Recent advances in water/alcohol-soluble pi-conjugated materials: new materials and growing applications in solar cells[J]. Chemical Society Reviews, 2013,42(23):9071-9104. doi: 10.1039/c3cs60200a
																																					pmid: 23995779
 | 
																													
																						| [9] | Lu H, Lin J, Wu N, et al. Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices[J]. Applied Physics Letters, 2015,106(9):093302. | 
																													
																						| [10] | Lim F J, Ananthanarayanan K, Luther J, et al. Influence of a novel fluorosurfactant modified PEDOT:PSS hole transport layer on the performance of inverted organic solar cells[J]. Journal of Materials Chemistry, 2012,22(48):25057-25064. | 
																													
																						| [11] | Meng Y, Hu Z, Ai N, et al. Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT:PSS as the hole transport layer[J]. ACS Applied Materials Interfaces, 2014,6(7):5122-5129. doi: 10.1021/am500336s
																																					pmid: 24611433
 | 
																													
																						| [12] | Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007,317(5835):222-225. doi: 10.1126/science.1141711
																																					pmid: 17626879
 | 
																													
																						| [13] | Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010,4(6):3169-3174. doi: 10.1021/nn100551j
																																					pmid: 20481512
 | 
																													
																						| [14] | Manders J R, Tsang S W, Hartel M J, et al. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells[J]. Advanced Functional Materials, 2013,23(23):2993-3001. doi: 10.1002/adfm.201202269
 | 
																													
																						| [15] | Xie F, Choy W C H, Wang C, et al. Low-temperature solution-processed hydrogen moly-bdenum and vanadium bronzes for an efficient hole transport layer in organic electronics[J]. Advanced Materials, 2013,25(14):2051-2055. doi: 10.1002/adma.201204425
																																					pmid: 23386363
 | 
																													
																						| [16] | 叶森云, 刘志伟, 卞祖强, 等. 有机无机杂化太阳能电池中常见无机缓冲材料的研究进展[J]. 化学学报, 2015,73(3):193-201. doi: 10.6023/A14100703
 | 
																													
																						| [17] | Cheng F, Fang G, Fan X, et al. Enhancing the short-circuit current and efficiency of organic solar cells using MoO$_{3}$ and CuPc as buffer layers[J]. Solar Energy Materials and Solar Cells, 2011,95(10):2914-2919. doi: 10.1016/j.solmat.2011.06.027
 | 
																													
																						| [18] | Li G, Chu C W, Shrotriya V, et al. Efficient inverted polymer solar cells[J]. Applied Physics Letters, 2006,88(25):253503. doi: 10.1063/1.2212270
 | 
																													
																						| [19] | Tan Z A, Li L, Cui C, et al. Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells[J]. The Journal of Physical Chemistry C, 2012,116(35):18626-18632. doi: 10.1021/jp304878u
 | 
																													
																						| [20] | Irfan I, James T A, Bao Z, et al. Work function recovery of air exposed molybdenum oxide thin films[J]. Applied Physics Letters, 2012,101(9):093305. doi: 10.1063/1.4748978
 | 
																													
																						| [21] | Hammond S R, Meyer J, Widjonarko N E, et al. Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics[J]. Journal of MaterialsChemistry, 2012,22(7):3249-3254. | 
																													
																						| [22] | Murase S, Yang Y. Solution processed MoO$_{3}$ interfacial layer for organic photovoltaics prepared by a facile synjournal method[J]. Advanced Materials, 2012,24(18):2459-2462. doi: 10.1002/adma.201104771
																																					pmid: 22488552
 | 
																													
																						| [23] | Jasieniak J J, Seifter J, Jo J, et al. A solution-processed MoO$_x$ anode interlayer for use within organic photovoltaic devices[J]. Advanced Functional Materials, 2012,22(12):2594-2605. doi: 10.1002/adfm.201102622
 | 
																													
																						| [24] | Xie F, Choy W C, Wang C, et al. Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics[J]. Advanced Materials, 2013,25(14):2051-2055. pmid: 23386363
 | 
																													
																						| [25] | Lee Y J, Yi J, Gao G F, et al. Low-temperature solution-processed molybdenum oxide nanoparticle hole transport layers for organic photovoltaic devices[J]. Advanced EnergyMaterials, 2012,2(10):1193-1197. | 
																													
																						| [26] | Wong K H, Ananthanarayanan K, Luther J, et al. Origin of hole selectivity and the role of defects in low-temperature solution-processed molybdenum oxide interfacial layer for organic solar cells[J]. The Journal of Physical Chemistry C, 2012,116(31):16346-16351. doi: 10.1021/jp303679y
 | 
																													
																						| [27] | Bi L H, Kortz U, Dickman M H, et al. Trilacunary heteropolytungstates functionalized by organometallic ruthenium (Ⅱ), [(RuC$_{6}$H$_{6})_{2}XW_{9}$O$_{34}$]$^{6-}$ ($X$=Si, Ge)[J]. Inorganic Chemistry, 2005,44(21):7485-7493. doi: 10.1021/ic0508627
																																					pmid: 16212374
 | 
																													
																						| [28] | Zhu Y, Yuan Z, Cui W, et al. A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells[J]. Journal of Materials Chemistry A, 2014,2(5):1436-1442. doi: 10.1039/c3ta13762g
 | 
																													
																						| [29] | Vasilopoulou M, Douvas A M, Palilis L C, et al. Old metal oxide clusters in newapplications: spontaneous reduction of Keggin and Dawson polyoxometalate layers by a metallic electrode for improving efficiency in organic optoelectronics[J]. Journal of the American Chemical Society, 2015,137(21):6844-6856. doi: 10.1021/jacs.5b01889
																																					pmid: 25951374
 | 
																													
																						| [30] | Alaaeddine M, Zhu Q, Fichou D, et al. Enhancement of photovoltaic efficiency by insertion of a polyoxometalate layer at the anode of an organic solar cell[J]. Inorganic Chemistry Frontiers, 2014,1(9):682-688. | 
																													
																						| [31] | 向怡弦, 董晓雯, 潘庆谊, 等. 新方法制备三氧化钼-聚苯胺插层复合物[J]. 上海大学学报(自然科学版), 2009,15(4):417-420. | 
																													
																						| [32] | Chen L, Wang P, Li F, et al. Efficient bulk heterojunction polymer solar cells usingPEDOT/PSS doped with solution-processed MoO$_{3}$ as anode buffer layer[J]. Solar Energy Materials and Solar Cells, 2012,102:66-70. | 
																													
																						| [33] | Wang Y, Luo Q, Wu N, et al. Solution-processed MoO$_{3}$:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells[J]. ACS Applied Materials and Interfaces, 2015,7(13):7170-7179. doi: 10.1021/am509049t
																																					pmid: 25794176
 | 
																													
																						| [34] | 武娜, 骆群, 吴振武, 等. 电极界面缓冲层对P3HT:PC$_{61}$BM太阳能电池热稳定性的影响[J]. 物理化学学报, 2015,31(7):1413-1420. | 
																													
																						| [35] | Shao S, Liu J, Bergqvist J, et al. In situ formation of MoO$_{3}$ in PEDOT:PSS matrix: a facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojunction solar cells[J]. Advanced Energy Materials, 2013,3(3):349-355. | 
																													
																						| [36] | Liu J, Shao S, Fang G, et al. High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO(3)-Al composite film as cathode buffer layer[J]. Advanced Materials, 2012,24(20):2774-2779. doi: 10.1002/adma.201200238
																																					pmid: 22511394
 | 
																													
																						| [37] | Ma H, Yip H L, Huang F, et al. Interface engineering for organic electronics[J]. Advanced Functional Materials, 2010,20(9):1371-1388. |