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Abstract 
According to Fredholm's theorem, this paper proves that due to the virtual 

fundaemental loads which satisfy the boundary conditions and being distributed outside the 
elastic body occupied region the displacement and stress fields in the elastic body occupied 
region are unique. This theorem forms a theoretical basis of the applications of the 
line-loaded integral equation method. 

The line-loaded integral equation method is one of the integral equation methods in which the 

virtual fundamental loads are distributed in an elastic space (or half space) along a line segment 

outside the occupied region of an elastic solid and make the boundary conditions to be satisfied (the 

fundamental elastostatic equations are trivially satisfied), thus, the problem is reduced to an one- 

dimensional, non singular integral equation This method was used formany problems 4t-53 . . . . . . .  - . W I L U  L l l l i ~  

advantage of simple calculation due to the one-dimensioness and non-singularity. However, the 

method itself is flexible for the virtual fundamental loads can be distributed in any region within the 

elastic space (or half-space) outside the solid. Consequently, a question arises are these displacement 

(or stress) fields due to two different distritions of a virtual load in which both cases the boundary 

conditions are satisfied the same? In the following, we answer this important question. 

Let R be the closure of the occupied region of a solid in an elastic space. Let S be the boundary 

of R, For clearness, a displacement u ~ is given over S. Suppose that there exists a virtual load with 

unknown intensity x(Q) be so distributed on outside R that the boundary conditions are satisfiec:l 

u , ( P ) = I Q U , ( P , Q ) x ( Q ) d Q = u ,  ( P ( S ,  O(O) ( 1 ) 

are satisfied. Where U~ (P, Q) is a known influence function which represents the displacement 

component (i= 1, 2, 3.) at point P due to unit virtual fundamental load at point Q; 

R = R  U S, K' n ~---~ �9 Then, the displacement and stress fields due to total virtual loads are: 

u ,(P)  = I  U , ( P , Q ) x ( Q ) d Q  

o',j(P) = I  S I j (P ,  Q)g(Q)dQ 

Where SIs(P,Q)  is a stress influence function; i , j= l, 2, 3. 

Remark: 

( p ( ~ , Q ( . Q )  ( 2 ) 

(P ( .~ ,Q( t3 )  ( 3 ) 

One of the characteristic:Sof our line-loaded integral equation method is that the 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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virtual loads are distributed outside the elastic solid. That  is, QGQ, ~ il R = ~ .  According to this 

characteristic we prove the following lemma. 

Lemma: If  there exists a non-zero function y ( Q )  orthogonal to a real non-symmetric kernel 

A ( P , Q )  (.P(ScR., Q(~, / ? n ~ = r  

j A(P,Q)g(Q)dQ=o ( P ( S ~ R ,  Q(52, R [ " t ~ 2 = r  ( 4 )  

then, y(Q) orthogonal to the extension kerne! A ( P , Q )  (P(~, 0,(!2, A;[-]i-2=(~ ,i.e., 

j A(P,O)v(O)dO=o ( s ) (P(~,O(D,f  n*=6) 

Proof: 

In the classical theow of Fredholm's  integral equation of the second kind, the domains of  two 

variables of  a kernel need to be the same. Now, the domain of the first variable P of kerne! A ( P. 0) 
is K ) , the domain of the second variable is .Q , and /~ ['1 ~ = q 5 .  In order to make use of  the 

Fredholm's theory, we rewrite the domains of the two variables to the same M = i 7 U 52, and (4): 

where 

I, ,  u,  v v 0 )v( )dr= 

( 

A (u,v) = "{ 
0, 

(u,v(M) } 
~hen .(S, v(.(? 
when uff_ SorvCv ~Q 

(6) 

i.e., when any one of the variables does not lie in its domain, the kernel functien does not exist (i.e., 

zero value). Similarly we can rewrite (5). 

According to the following theoreml'l : 

v)v(v)dv=o (u,v(M)~ ><v,~'.>-o (~f.) A(u ( 7 ) 
M 

i.e., the necessary and sufficient condition for a function g orthogonal to kernei A is y or tho-  

gonal to all characteristic functions of  kernel A*A. Where r  satisfies the 

geneous integral eqt~ation" 

Where 

following h o m o -  

).] is the characteristic value; A*(P, Q)=A(Q, P) is the adjoint kernel of A. Let 

K ( Q , t ) - - t ~  A(O,P)A(P, t )dP ( 9 

Then, (8) becomes" 

~.(0)  =~..'I~ 7_(O,t)r (lo) 

Whatever u(/~ or u ( t g ,  by (9), we have'  

K(u,u)= I~A(u,P)A(P,u)dP=O (11 
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Because that if A (u, P ) is defined for the first variable u(:/~ , then u~ ~ is located outside 

the domain of the second variable of A ( P, u } and hence A ( P, u) = 0; similarly, if A ( P, u I 

is defined for u@Q , then A(u, P) =0. 

Similarly, we can prove that if K (Q, t ) of  (9) exists, then K (t, Q ) = o; if K(t, Q) exists, 

t h e n K ( Q , t ) = 0 .  Because A(P, t ) of(9) is defined for t(z.Q, then A (t, P) =0 (for t~(2 

outside the domain of the first variable), thus 
g, 

K ( t , Q ) = J ~  A(t ,P)A(P,Q)dP (12) 

K(t, Q ) = o. Similarly, if K( t, Q ) exists, then K( Q, t ) = 0. Consequently, 

[C(t, Q),[s (13 

By (1 I), (13), the Fredholm determinant equals zero. i.e., 

K ( S~,s2 ) ~ [ K(s~,s,) Ir I 
s,,~. I K(s~,~,) I((s~,s~) =o (.~,,s~(M) (14 

Similarly, we have" 

r," ( "~'' s z ' " " s '  ) = 0 ( p = ~ , 2 , . . - , ~ , ~ M )  (15) 
S 1 S : ,  , . ' fp 

Hence, the Fredbolm's first series: 

f ~ (s,,s.:,'",s, ) 
d ( 2 ) = l +  g ~ ( - ) ) '  ... /~" ds~dsz...dsv=l~O (16) 

Pl M 

According to Fredholm's first theorem I71, the homogeneous Fredholm integral 

equation (10) possesses only zero solutions in the domain M. i.e., 

r  0 (17) 
However, r  implies that 

r  ~ [ ~  A~(p,Q)A(p,t)r  ( p (R )  (18) 

what (18) holds is equivalent to: 

I M A(u,v)y(v)dv=O 

A(P,Q) 
A(u,v) = 0 

(u,v~m=~uo) } 
( . ~ f f , ~ ' ~ )  (19) 

(19) can be rewritten as: 

I (5) S~I(P,Q)y(Q)JQ=o (P~ ' ,Q~D,R f ]D=r  (Q.E.D.) 

Theorem: The displacement field (2) and stress field (3), due to virtual fundamental 

load distributions such that the boundary conditions (1) is satisfied, are unique. 

Proof: Suppose that there are two different distributions of a virtual fundamental 

load with intensities x~ and .x2 both such that the boundary conditions (1) is satisfied. The 

corresponding displacement and stress fields by (2) and (3), are denoted by u~ ~, cr~j and 

u~, c ~  respectively. 

Let y = x l - - x z  , by (2) and (3), we have: 
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Because the boundary condition (1) is satisfied both by xl and xz, we have: 

I U,(P,Q)u(Q)dQ=o (P(S,Q(~) (21) 

According to the lemma, we have: 

~ QU~(P,Q)g(Q)dQ=O ( P ~ R , Q ~ )  (22) 

So that (20) gives: 
ul,(P)=uz,(P) ( P ( R )  (23) 

That is the displacement field is unique. According to the theory of elasticity, uniqueness of 
displacement field means the uniqueness of the stress field. (Q. E. D.) 

Ifa stress boundary condition is given instead of the displacement boundary condition (1), we 
can prove the theorem by similar method. 
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