Applied Mathematics and Mechanics Published by SUT,
(English Edition, Vol.6, No.3, Mar. 1985) Shanghai, China

THEOREM OF THE UNIQUENESS OF DISPLACEMENT AND
STRESS FIELDS OF LINE-LOADED INTEGRAL
EQUATION METHOD

Yun Tian-quan (= X£)
( Huazhong University of Science and Technology, Wuhan)

(Received Apr. 12, 1984)

Abstract
According to Fredholm’s theorem, this paper proves that due to the virtual
fundaemental loads which satisfy the boundary conditions and being distributed outside the
elastic body occupied region the displacement and stress fields in the elastic body occupied
region are unique. This theorem forms a theoretical basis of the applications of the

line—loaded integral equation method.

The line-loaded integral equation method is one of the integral equation methods in which the
virtual fundamental loads are distributed in an elastic space (or half space) along a line segment
outside the occupied region of an elastic solid and make the boundary conditions to be satisfied (the
fundamental elastostatic equations are trivially satisfied), thus, the problem is reduced to an one-
dimensional, non-singular integral equation. This method was used for many problems* ~* with the -
advantage of simple calculation due to the one-dimensioness and non-singularity. However, the
method itself is flexible for the virtual fundamental loads can be distributed in any region within the
elastic space {or half-space) outside the solid. Consequently, a question arises are these displacement
(or stress) fields due to two different distritions of a virtual load in which both cases the boundary
conditions are satisfied the same? In the following, we answer this important question.

Let R be the closure of the occupied region of a solid in an elastic space. Let S be the boundary
of R. For clearness, a displacement %1is given over S. Suppose that there exists a virtual load with
unknown intensity x{ Q) be so distributed on outside R that the boundary conditions are satisfied

w(P)=[ U(P,Qx(QdQ=u:  (PES, Q6Q) (1)

are satisfied. Where U (P, Q) is a known influence function which represents the displacement
component (i=1, 2, 3.) at point P due to unit virtual fundamental load at point Q;
R=RUS, RNQ=¢ . Then, the displacement and stress fields due to total virtual loads are:

w(P)=[ UdP,Qx(Q)dQ  (PER.QeN) (2)
ou(Py=( Su(P,Q)x(@dQ  (PER,QER) (3)

Where Si;(P,Q) is a stress influence function; i, j=1, 2, 3.
Remark: One of the characteristicSof our line-loaded integral equation method is that the
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virtual loads are distributed outsids the elastic solid. That is, QeQ, 2[R =¢ . According to this
characteristic we prove the following lemraa.
Lemma: If there exists a non-zero function )/ Q) orthogonal to a real non-symmetric kernel

A(P,Q) (PESCR, Q€2, RNO=¢) . e,

[ AP.Qu@de=0 (PGSR, Qe Rnn=¢) (1)
then, ¥(Q) orthogonal to the extension kernel (1,0} (PER, QJC(r, FQ=g) de.
[ AP Qu@)d0=0 (PR 060, RN 02=9) (5)

Proof:

In the classical theory of Fredhoim's integral equation of the second kind, the domains of two
variables of a kernel need to be the same. Now, the domain of the first variable P of kernel A( P, Q)
is . the domain of the second variable is ©Q , and [P () Q=¢ . In order to make use of the
Fredholm’s theory, we rewrite the domains of the two variables to the same Af— 7 U Q. and (4}

JM A(u,v)y(v)dv=0 (u,v€M)

{“J(P,Q); when  u€S, v€&2 (6)
0, when ug§ Sorvg 02

where A (4 v) =

i.e., when any one of the variables does not lie in its domain, the kernel functicn does not exist (i.e.,
zero value). Similarly we can rewrite (5).
According to the following theorem!*:
JM A(u,v)y(v)dv=0 (u,v€M)Ye— <y, pa>=0 (¥n) (7))

i.e. . the necessary and sufficient condition for a function y orthogonal to kernei 4 is v ortho-
gonal to all characteristic functions of kernel A*4. Where ¢, satisfies the following homo-

geneous integral equation:

e @=21| [ AP QA g diep (s)

M)
Where 43 is the characteristic value; A*( P, Q) =A(Q, P) is the adjoint kernel of 4. Let
K(Q,0)={, AQ,PYAP 1)dP (9)
Then, (8) becomes:
#n(@) =23, K(Qpatt)d (10)

Whatever y¢R or u€ &2 by (9), we have:

K(u,u)=LA(u,P)A(P,u)dP=o (11)
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Because that if A(u, P )is defined for the first variable ¢ R , then u¢ R islocated outside
the domain of the second variable of A (P, ) and hence A (P, u) =0, similarly, if A(P, u)
is defined for u€£2 | then A(u, P)=0.

Stmilarly, we can prove that if K (Q, 1) of (9) exists. then K (¢, Q) =0;1f K(1,()) exists,
then K (Q, +)=0. Because A(P, t) of (9) is defined for t€&J , then A (s, P) =0 (for 1€
outside the domain of the first variable). thus

K(1,Q)={, AtPYAP,Q)dP (12)

K1, Q)=0. Similarly, if K(¢, Q) exists, then K(Q, t)y=0. Consequently,
K(t, Q),K(t.Q)=0 (13)
By (11), {13), the Fredhoim determinant equals zero. i.e.,

K(s,,s)) K(s,,s,)

Sy N !
K = =0 s;,8,6M
(oo )= ks Klonon (o€ (14)
Similarly, we have:
Sy, S5, .S
E(0T Y =00 (p=1.20 0,6 M) (15)
Sy, 8oL, Sy
Hence, the Fredholm’s first series:
--,S,

=) _ $1.8,,"
d(2)=1+ S_j(——”—’jﬂ L‘ K(l )(131(152--1!3,;:1:\;0 (16)

= p S1.5 05

According to Fredholm’s first theorem!”, the homogeneous Fredholm integral
equation (10) possesses only zero solutions in the domain M. ie.,

va(Q)Y=0 (17)
However, ¢,(0)=0 implies that
¢n(Q)=A:L L{ A*(P.QYA(P Dypa(t)dtdP  (PER) (18)

what (18) holds 1s equivalent to:

L ACu, ) y(v)do=0  (4,0eM=F Q)

A(P,Q) (u€ R ,0€0) (19)
A(u,v) ={ L
0 (ug Rorvg Q)
(19) can be rewritten as:
[ AP Qu@da=0  (P¢R,QeQ RN2=9) (5)
(Q.E.D))

Theorem: The displacement field (2) and stress field (3), due to virtual fundamental
load distributions such that the boundary conditions (1) is satisfied, are unique.
Proof: Suppose that there are two different distributions of a virtual fundamental
load with intensities X, and X both such that the boundary conditions (1) is satisfied. The
corresponding displacement and stress fields by (2) and (3), are denoted by #%;¢, C11s and
Uyi, Ty respectively.

Let y=x,—X, , by (2) and (3), we have:
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4 P) = w(PY = | [, UAP, Qu(@)40]
A (P¢R,Q€2)  (20)
(0w P) = 0us(P) | = || Su(P, Q)y(Q)d0)

Because the boundary condition (1) is satisfied both by X; and X., we have:
[udP.w@da=0  (Pes,en) (21)

According to the lemma, we have:

LU.(P,Q)y(Q)dQ=0 (PCR,Q¢0) (22)

So that (20) gives:

u(P)=u,(P)  (PCR) (23)

That is the displacement field is unique. According to the theory of elasticity, uniqueness of
displacement field means the uniqueness of the stress field. (Q. E.D)

If a stress boundary condition is given instead of the displacement boundary condition (1), we

can prove the theorem by similar method.
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