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Abstrac t  
We build up immediate connection between the nonlinear Boltzmann transport 

equation and the linear AKNS equation, wut classify the Boitzmann equation as the Dirac 

equation by a new method for solving the Boltzmann equation out of  keeping with the 

Chapman, Enskog and Grad's way in this paper. Without the effect of other external fields, 

the exact solution of the Boltzmann equation can be obtained by the inverse scattering 

method. 

L I n t r o d u c t i o n  

.The AKNS equationl]-21 (i.e. Ablowitz-Kaup-NeweU-Segur equation) is a basic equ.ation in 
the theory of inverse scattering transformation[3-51. The eigenvalue of AKNS equation in original 
sense is a dual spinor, and this AKNS equation is a dual Dirac equationl6- ~0j. This AKNS equation 
in original sense unites or induces some nonlinear dispersion problems in classical hydrodynamics, 
plasma dynamics, physics of elementary particles, nonlinear optics, physics of solid body, lattice 
mechanics and engineering. In ref. [11] we extend from this AKNS equation in original sense to the 
equation for four-spinor, and so as to solve the large deflection problem in nonlinear elastic 
mechanics. This AKNS equation for four-spinor is a four-Dirac equation in fact.We extend the 
application range for four-Dirac equation to the viscidity, the heat conduction and the diffusion of 
non-uniform gases, and build up immediate connection between the Boltzmann equation for non- 
uniform gases and the AKNS equation for four-spinor or the four Dirac equation, then turn the 
problem for exact solution of nonlinear Boltzmann equation into the problem for inverse scattering 
(general solution) of linear Dirac equation (or AKNS equation) in this paper. 

L. Boltzmann is one of the "two great men that appeared in the previous century" by H. 
Haken[~21 (another man is biologist C. Darwin). The nonlinear Boltzmann transport equation or the 
Boltzmann differential-integral equation (L, Boltzmann, 1872),[m3J occupies a decisive position in 
hydrodynamics [~41. It can even provide the theoretic basic of hydrodynamics equations (such as the 
Navier-Stokes equation or its extension [~sl. As early as 1879, d.C. Maxwell proved that [~1 some 
other stresses exist in very rarefied static gases with non-uniform temperature and are not calculated 
in the Navier-stokes equation. From this, in many classical books of hydrodynamics ~q, the authors 
must tell the Boltzmann equation and its solution before the text of the books. The Boltzmann 
equation also has the first important role inthe molecular kinetic theory of gases [~7-22] classical non- 
equilibrium statistical thermodynamics~-2q, plasma physics and physics of solid body [25]. To solve 
the Boltzmann equation is at all times a mechanical theorizer's own job. 

The basic thinking for the Boltzmann equation was put forward first by Maxwell (1866)[ 16j, and 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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was formulated by Boltzmann/26-2a. For the sake of emphasis on. the first work by Maxwell, this 
equation is called the Maxwell-Boltzmann equation by D. HillbertVS~. The Boltzmann equation is 
fairly exact in application to rarefied gasest23J. This explains that the Boltzmann equation mirrors 
the objective truth in some degree. But the application range for the Boltzmann equation is only in 
this condition. Up to now, any non-suiOblr extension to the Boitzmann equation has ended in 
failure I23~. In addition, on standard standpoint of statistical mechanics, by the Boltzmann equation 
we cannot describe "the fluctuations"I~oJ and the Boltzmann equation is excluded from classical 
theory of statistical mechanics in fact. In modern statistical mechanics, the leading equation is the 
Liouville equationV 7-24.291 and the Boltzmann equation only plays a small inconspicuous part in it. 

This unjust attitude to the Boltzmann equation makes some indignant authorsO~l firmly support the 
Boltzmann equation with the aim of"uprising", and of independence of  the kingdom of statistical 
mechanics to a style of its own, and think that "this need not be explained any more". 

The first solution of the Boltzmann equation was obtained independently by S. Chapman and 
by D. Enskog fltl in about a year (1 9 1 6 ~ 1 91 7). The methodt20J of Chapman and Enskog does not 

immediately solve the Boltzmann equation, but looks upon the probability-distributed function as 
the function of observable macroscopic number density of moleucles, observable macroscopic 
mean velocity and observable macroscopic temperature: the observable macroscopic number 
density of molecules, the observable macroscopic mean velocity and the observable macroscopic 
temperature are obtained from the hydrodynamics equations. The hydrodynamics equations as the 
differential equations in three-dimensional coordinate space, by contrast to the Boltzmann 
differential-integral equation in s ix-  dimensional /z-space, are simple. In it, the theoretical 
system for Chapman slants to direct perception through the senses, and does not lay stress on the 
systematicness and the deduction; oppositely, the discussion for Enskog lays more stress on the 
form and the style of mathematics. Their methods are irrelevalnt on the thinking or on the details, 
but their results are absolutely identical. 

An up-and-coming youngster H. Grad (1949)t301 discovered a new method for solving the 
Boltzmann ~uation. His result can be applied to condition such as within the shock wave, i.e. to 
condition of prompt change for probability-distributed function along with space .and time. In the 
theory of Grad the thermal flux - vector and the stress tensor find themselves in an equal position 
with other unknown quantity, such as pressure, density, velocity and so on. The method of Grad 

approaches the method of Enskog, and the principal difference between them rests with the 
discussion on time-derivative. The solution of Gr:a.4. ~a: :t:'!! more general form over the solution of  
Enskog. Tsient~4J Hsue-shen thinks that, the theory of Grad has special important applieatiofl in 
dynamics of rarefied gases. 

In addition, GradVX-321, Kiharat33J, Waldmannt~l, Balescu[351, Hirsclffelder-Curtiss,Bird[~! and 
Cercignani137-4oJ et alI4J-o~, also make many works on solving the Boltzmann equation. But these 
papers and monographs are not so good as refs.tlt. 3oj in reputation, because the methods are 
outmoded. 

All the abOve-mentioned solution methods are the approximate methods for solving the 
Boltzmann equation. Owing to difficulty in mathematics, as early as the preceding c~ntury, L. 

Boltzmann explained that0e people should abandon the hopes on the general solution for solving 
this equation. 

Now we are aware that by available strength the general solution of only a few equations in 
nonlinear equations (such as the Burgers equation and its extensionf4J) can be obtained from 
mathematical transformation. For the nonlinear equations of-large number we can only obtain their 
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exact special solution up to now. The Boltzmann equation is a nonlinear differential-integral 
equation; we ponder a trifle, and can find that it is also rather ordered. For this reason, we can 

completely obtain its exact solution from advanced mathematical method. This advanced 

mathematical method is the theory of inverse scattering transformation at the beginning of the 

paper. 

For the sake of solving the exact solution of the Boltzmann equation by the theory of inverse 
scattering transformation, we must first build up connection between the nonlinear Boltzmann 

equation and the linear Dirac equation. The AKNS equation for four-spinor, just as is said, is the 

four-Dirac equation. The major work and objective in this paper lies in building up connection 

between them. 
The Dirac equation is an important equation with extensive applicable range, and it is one basic 

equation in nature. In this paper we bring the nonlinear Boltzmann equation into the category of 

Dirac equation, thus not only for the sake of making the solution of nonlinear problems easy, but 

also for enabling nature to become even more harmonious and synergetict~l, and furthermore for 

enabling the language of describing the natural phenomenon to become even simpler and more 

normalizable. For this reason, the method in this paper has sense not only in methodology, but also 

in philosophy. 

Before solving the Boltzmann equation by the theory of inverse scattering transformation, we 

also pay attention to prerequisite condition for application of this theory, that the probability- 

distributed function must suddenly drop in distant place or satisfy the periodic boundary 

conditiont3-sI. The former is very obvious in our problem, and can after all be satisfied. 

(Incidentally, in solving the von Karman equation for nonlinear elastic large deflection problem by 

the theory of inverse scattering transformation[",45-471, we also have the same problem. At this time 

the prerequisite condition for application of this theory can also be satisfied, or try to be satisfied. 

It must be pointed out that the obtainable solution from solving the Boltzmann equation by the 

theory of inverse scattering transformation is the exact solution and is not the general solution, then 

in building up connection between the nonlinear Boltzmann equation and the linear Dirac equation 

(AKNS equation) we need not claim that every step of the advance must satisfy the ample-essential 

condition, but only claim that the later obtainable equation is ample condition for the above 

equation. Naturally, the exact solutions .have difference on the "exact" degree. For tiffs reason 

people must seize the sense of propriety for ample condition in deduction process. For the sake of 

improving on exactitude of solution'we must omit as few factors as possible and must slow down the 

full substitution of the initial-boundary conditions into the equations. But, for convenience sake we 

still omit some factors. In this paper for convenience sake we apply the so-called "Maxwell 

hypothesis", i.e. the scattering cross-section has nothing to do with the relative momentumt2O]. On 

this hypothesis, some of the secondary factors are omitted. In calculation for the probability- 

distributed function with the molecular action force depend directly on r s (where r is the distance 

between two molecules), Maxwell applied this hypothesist~-501. The Maxwell hypothesis is a still 

simpler additional condition of the Boltzmann equation in fact, If there is not one additional 

condition or another, then we are unable to solve the Boltzmann equation. 

The similar method of inverse scattering transformation can be applied to solve the Vlasov 

equationt201 in plasma physics. This Vlasov equation is a special case of BBGKY equation 

(BogolinbovtS01 -Born-GreentStl, -KirkwoodtS0,521 -YvontUl equation) for the theory of dense gases in 

fact. The discussion of this problem is largely identical but with minor differences in this paper. It is 

unnecessary to go into details. 

The dummy index is the summation depending on the Einstein convention in this paper. 
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H. Relation Between the Boltzmann Equation and the Nonl inear Schr6dinger  
Equation 

The physical event that is described by the Boltzmann equation finds itself in six-dimensional 
p -space, The general six-dimensional # -space is a direct sum for the three-dimensional 
coordinate space and the three-dimensional oVetoc!ty spaceZ20~. But more convenient is the six- 
dimensional canonical # -space, which is a direct shin for three-dimensional coordinate space 
and the three-dimensional momentum space. From ref. [19] for the Boltzrnann equation we write 

where 

a /  ( o f  ~ ( 2 . z )  
dt .... ~,-OT'/cott. 

a /  o f  . . ,  a f  . .~, o /  
-d-i-=--Ti- + x -Tfc  t e o p',, 

Of + 1 =k Of , =k Of ( k = l  2 3) (2 .2 )  
= - 5 / -  ~-~, -Sk-r,-, '  op~ �9 , 

g is the relative momentum 

g----'P--Pt , Igl=,,/(P~--P=')z ( 2 . 4 )  

and cr =or( I g l, 0) is the scattering cross-section, 0 is the angle of refraction for g, dO is the unit 
of solid angle, m is the molecular mass, pk is the component of momentum,/~ is the component of 
external field force. That the external field force has incorporated not only the binding force of 
external world, but  also the molecular mutual action forcer61. At this time f is a probaility- 
distributed function, and 

f= . f (P~)  , f f  = f ( P ' )  \ 
( 2 . s )  

f,=f(P~ ) , ff =f(P~ ) J 

where pk and p~ are the components of momentum prior to scattering, and p~ andp~.are 
components of momentum after scattering (.k= 1,2,3). 

The Boltzmann equation (2. I) is the irreversible equation. In operation on t-->- t, we have 

p~_~ _ pk, .F k__>Fk. At this time the sign of the left side of equal-sign for equation (2. I) changes, 
and the sign of the right side does not change. 

The original expression of the scattering term (2.3) form Jacobian -O(PJ' "P~ ~ = i can be 
written as~l O(P ~, O~ ) 

i.e. 

(_~.__tI)Coll. =Re~ O~ _(f_if,)~Gd~(ft_iftz)lgldaps] 
where Re is expressed as the real part of formula. 

We let 

( 2 . 6 )  

(2.~) 
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1 �9 I r  z) , ~ ~  (2 .8 )  

wheretheindependentvariablesin f ,  / ,  ], , [ f  exceptfor t, x ~ arealso p*, p~, p~ , 
p [  respectively and the independent variables in r , r except for t, x ~ are also p* , p [  
respectively. The transformation relation between independent variables in (2.8) follows the old 
routine of original lbrmula for the Boltzmann equation. At this time, equation (2.1) can be written 
a s  

Re dd-dd-~tt = 2 R e [  - r  f a d O I r  191 dSPt] (2 .9 )  

The sufficient condition (we can prove that it is the sufficiently essential condition) for equation 
(2.9) to be valid is 

i.e. 

or 

dlO 

at +ic~ +~* =--2~P a d o  q, tlgJdSp, 

Look out, the integral operator J~ 
(2.11) or (2.12) in simplified form 

and 

where 

(2.10) 

(k=l, 2, 3) (2.11) 

0r 1 t~dt 0r r r 

We introduce the integral operator 3 

dsp, lgl (2.13) 

is complex. From (2.13) we can write the Boltzmann equation 

In addition, we record 

atp . a~ at +-x" ~Cx~ + P ~ - r = - 2 i r 1 6 2  (2.14) 

ar 1 ~ F* 0Tp 
at + p* + -5~  = - 2 / ~ ( ; r  (2.i5) 

;r162 (z.16) 

L=_i ic~  ~.~._i~j , o - ~ + 2 v  (z.i~) 

v=/r 
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then for the Boltzmann equation (2.14) we can write the form of the Schr6dinger equation 

0~ = L ~  (2.18) i -T/-  

We can prove that not only equation (2.18) has form of the Schrrdinger equation, but also its 
operator f_. is Hermitian operator as the energy operator in the SchrSddinger equation. In this 

connection, we apply the symbol 

t,,,, = ~G,,,( La ,  )@dx (2.19) 

where G,, and G are the arbitrary functions ofp and x, and they are integrable on the phase space; 
(if,, is complex conjugate of G,,. And the condition for hermiticity is 

I=.=7o. (2.20) 
(2.20) means all the diagonal elements /~, are real. This test is straightforward. From 

integration by parts, and associated with G m and G equal to zero on bound, then we can obtain 

1,~,, =J'G=( LG.)dpdx 

- Op~ 

Thus, the Boltzmann equation (2.14) or (2.15) can become the standard nonlinear Schrrdinger 
equation. But look out, the normalizing condition of equation (2.18) is different with the 
normalizing condition of SchrSdinger equation in quantum mechanics. In the Boltzmann equation, 

f fdap=n(x I', t )  (2.22) 

f n(xk, t) dax=N (2.23) 

where n is the number density of molecules in time t and corrdinate xk(k = 1,2,3) and N is total 
number of molecules of gases. Then, the normalizing condition of equation (2.18) becomes 

f(~)+tP )d3pd x =N  (2.24) 

Because the scattering potential is 

v= ]~b (2.25) 

Thus equation (2.18) has the form of the nonlinear Schrrdinger equation. 

HI. Sca t t e r ing  Potent ia l  for  t he  Bo l t zmann  Equation 

Owing to the Maxwell hypothesis, from the scattering potential for the Boltzmann equation 
(2.18) i.e. 

v=]r (3.1) 

we can obtain the equation 
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V~v=A9 
where A is an arbitrary constant, and 

(o o 
VP= 0pZ, 0p2, 

(3.2) 

(3 .3 )  

Equation (3.2) can be obtained by the classical equations for mathematical physicst551. In the 
calssical equations for mathematical physics, from the n-dimensional m-layered harmonic equation 

A,nu=0 (3 .4)  

we can obtain its basic solution as 

2 m . - ~  . cr lnr ( 2 m ~ n ,  n ist ~ven number) 
v(x~, x~)= { (3.5) 

cr zm-~ (othe~ condi.tion ) 

where 

r = ~/  ( x k - - x ~ ) 3  

Then, from the n-dimensional m-layered Poisson equation 

~ m u =  T.O 

we can obtain its special solution on second condition in (3.5) as 

We contrast equation (3.8) with equation (3.1). Now in our problem, 

n = 3  , m = 2  

and 
xk.--~p k 

Thus, we can directly obtain (3.2) from (3.7). 

(3.6) 

(3 .7)  

(3.8) 

(3 .9)  

Thus in the Schr6dinger's coordinate picture we have 

w (4.2a) 

i 0 If the operator ( -- - ~ T )  

same time, we have 

acts on the left side and the right side of equal-sign for (4.1) at the 

VI. Schr6dinger'~ Representation for~ t h e  B o l t z m a n n  E q u a t i o n  

As the Boltzmann equation (2.1) can be written as the form of the Schr6dinger equation (2.18) 
by transformation (2.8), and turned into the eigenvalues problem, the eigenfunction in the 
SchrSdinger's representation can generally be written as 

~ = e x p [ i ( p ~ x ~ - - E t ) ]  ( k = l ,  2, 3) (4 .1 )  

( k = l ,  2, 3) (3 .10)  
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In addition, from the momentum picture in quantum mechanicslS6~ we can know 

0 (4.2b) 

Now we backwardly study equation (2.18) again. We notice that the independent variables of 
equation (2.18) except for time t are conjugate mechanical quantity x k and pk (k -- 1,2,3). Secondly, 
as the f or ~ is the expression of the probability-distributed function and can be applied to 
calculation for other mechanical quantity, we can regard them as the operators. From the two 
above-mentioned grounds we can think that, although equation (2.18) has the form of the 

Sehr6dinger equation, it can be regarded as the operator equation in the Heisenberg representation 
at the same time. 

To turn the operator equation in the Heisenberg representation in to the eigen-equation in the 
Sehr6dinger's representation, we can apply equality (4.2). For the sake of caution, we apply the 
ready-made method [~] in deduction process. 

We multiply equation (2.12) at the same time, by the statevector: (bra)<aA[ and 
(ket)lfl~) ;and write r of equation (2.18) as tb A ,write 7)~ as tb~ where index h is the 
expression for the Heisenberg representation, and < ] or I > is the Dirac symboltT]. At this time 
we have the equation for the matrix element: 

x m ox" Op" F 

I cjoanj,,  i gl d p, t (4.3) 

Let 

~0 ~ =exp[ iHt ]r176 - - iHt  ] (4.4)  

l aA>= l a , ( 0 ) > = e x p [ i H t ]  I a , ( t )> (4 .5 )  

where His the total Hamiltonian, and index s is the expression for the Schr6dinger's representation; 
H does not contai/a clear time t, and it is constant on definite 10 

Substitute (4.4) and (4.5) into equation (4.3), and the right side of equal-sign in it becomes 

-z;<aA i Igtasp, 

= --2i(,a~(O)lexp[iHt]r176 - i H t ]  ~crdD 

�9 ~exp[iHlt]~blexp[-iH~t]]gldSP,]fls(O)> (4 .6 )  

where p ~ ( k = l ,  2, 3) only have the meaning of parameter at this time, and 

H = H ( x k '  -iOn) (4 .7 )  

-ion) 
Owing to the law of conservation of energy, we have 

H ~ = H  (4 .8)  
then 
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=--2i(a,(O)) exp[iHt]~b"exp[ --iHt]~,~dt2 

�9 Iexp[iHt]~OIexp[--iHt] Igl d3ptlfl,(O)> 

= -- 2i(a.(O) I (exp[iHt]~O'exp[--iHt]) (exp [ iHtq ladI2  

�9 I~O." [ g[ dap~exp[ --iHt] )Ifl~(O)) 

=--  2i<a.( O ) l exp[ int3E~O'IcrdOI~O; Igl d~p,]expE--iHtJ][3~( O )> 

Thus (4.3) becomes 

0~0" 
(a.( O ) lexp[ iHt] i -~i - -exp[- i t t t  ] [fl,(O)) 

(4 .9)  

From 

1. 1 k 0 iF~_o~)~O%xp[ ii_l-t][fi,(O) 2 + ( ~ ( 0 )  l exp[ iHt] [ z-~p -ff-~ + 

[a,(t)>- exp[-ilit] !a,(O)> ] 
<a,( t ) ! =<a,( O ) l exp[ iHt ] Y 

and attend to (4.2), then for (4.10) we can write 

<a.I ,-0-/-- I/3.>+<a.'0~0~ I (1Vz- -2V ) ~ ' l f l 2  , 

where V is the Clausius Viriai[S7-~sk 

= - - l F e x e  (k---l. 2, 3) V 
Z 

(4.Jl) 

( , .  1.9.) 

(,1.13) 

This is different from quantum mechanics. 
As equality (4.12) is always tenable on all (a . I  and lilt) , we have 

i-~-1~ = (--  1 zmV + 2 1 / )  (o'--2i~b'Icrd~(o: 'gldSP~ (4.14) 

Omit index s, and follow the example of the integral operator (2.13); in integral operator 
p ~ ( k = l ,  2, 3 ) a r e  the parameters only, thus we have 

By now, we have already turned the Boltzmann equation (2.1) into t.". nonlinear SehrSdinger 
equation. All the processes of deduction are sufficiently essential. Our obtainable nonlinear 
Schrtdinger equation (4.15) is different from the nonlinear SchrSdinger equation in quantum 
mechanics only in the following two aspects: the first is that the normalizing condition only satisfies 
equation (2.24) but does not satisfy [~S~0dz-= 1 ; the second is the appearance of the Clausius Virial 

3 
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of external field but not the appearance of the potential function of external field, i.e. the relation 
between energy and momentum for gaseous molecule becomes complex. 

In addition, we must notice that equation (4.15) is still irreversible as a result of the complex 
operator ] . Equation (4.15) corresponds to the Schr6dinger equation with complex energyt561 
This Schr6dinger equation with complex energy is also an irreversible equation. 

In the following, from this we solve the exact solution of the Boltmaaann equation. For 
convenience sake, temporarily we hypothesize that the received external force on molecule is zero, 
and Virial V=0 

V. E x a c t  S o l u t i o n  o f  the  B o l t z m a n n  E q u a t i o n  

Let the molecular mass m = l, and temporarily omit the Virial of external field. At this time the 
Boltzrnann equation (2. I) equal 

i ~-~/--~t + V~f,-- 2~(J~)  = 0 (5 .1)  

where we omit s)~nbol .~. on operator ] 

We act on the left side and the fight side of equal-sign for equation(5.1) by operator J at the 
same time, and have 

. 0 2 ( 1 ~ ) ] ] r  [ ~-g/- J + v.2Y- (5 2) 0 

look out, for the second action of operator J on ~ , [ i l l=-~/ (p~ p ~ ) Z  
We take the complex conjugate for (5.2), and have 

. 0 - -  . 2 - -  : (5.3  

Now we can write equation (5. I) and (5.3) as follows 

Oq 
i--~-- + V.2q-- 2qrq=O (5 .4a)  

. 07 (5.4b) 

where 

q=r ~ r = J  (5 .5 )  

In equations (5.4a) and (5.4b) we can find the following rule: we exchange q and r in equation 
(5.4b) and take the complex conjugate for the whole equation, then immediately we can obtain 
(5.4b ~) And the reverse is also true. 

Equation (5.4) correspond~ to the integrability condition of the AKNS equation (i.e. the Dirac 
equation). The AKNS equation is linear equation 

i--~f =.~7r (time-evolution eq.) 

~[6 = ~74r (eigen-eg.) 
where 

(5.6) 
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icrkO~ --iu 

ff~=[--iv icrkOk ] ( k = l ,  2, 3) } (5.7)  

,.9.= [ A B 
C - -A ] 

crk(k=l ,  2, 3) are the Pauli matrices, y,=cr3~)cq is the Dirac matrix, ~z, i s2x2un i t  
matrix, ~ is eigenvalues and O~/Ot=O . In (5.7) and in the following, every quantity directly 
involves 2 x 2 unit matrix on convention, and in these quantities there doesn't exist the Pauli 
matrices ~rk . In addition, Q is the symbol for direct product (or Krbnecker product). 

If A, B and C are 

A=2~2+vu 
{ B=2iu~--crkOku 

C = 2iv~ + cr,Okv 
( h - l ,  2, 3) (5 .8)  

then the integrability condition of the AKNS equation (5.6) is 

Ou z i---OF +V u--2uvu=O (5.9a) 

�9 O V  z . .  
, T -  V r (5.9b) 

Under this condition, u and v are the real functions, we exchange u and v in equation (5.9a), and 

take the complex conjugate for the whole equation, then immediately we can obtain (5.9b). And the 
reverse is also true. 

If we analytically continue the related functions in the AKNS equation (5.6) into the complex 
plane, in other words, if we turn the energy in equation (5.6) into a complex one, then (5.9) is the 
same as (5.4). Thus,.the nonlinear Boltzmann differential-integral equation can finally be summed 
up as the solving of the linear Dirac differential-integral equation. 

The meaning for complex energy as the above exposition, shows that the linear Dirac 
differential-integral equation is also irreversible. Look out, in this irreversible equation as equations 
(4.15) and (5.6), the dissipation coefficientt59J always equals one. 

If the external field force exists in our problem, then the Virial for external field force can be 
summarized into equation (5.6) by the classical method., 

Except for orthodox application in quantum eiectrodynamics, the Dirac equation unitesm the 
KdV equation, the nonlinear Schr6dinger equation, the sine-Gordon equation, the Bloch equation, 
the Lamb equation and the mutual action equation for three waves in the theory of nonlinear waves. 
.In addition, the Dirac equation is applied to solve the Navier-Lam6 equationt~0-6u in elastic 
mechanics, the Love-Kirchhoff equationt62. 46j the yon Kfirmfi.n equationI". 45. 471 and the von 

Kfirmfin-Vlasov equationt~lin the theory of elastic plates and shells, and the dispersion problems 
and so on. Now, we introduce the complex energy, and extend the applicable range of the Dirac 
equation into the irreversible problem of this kind of solving the Boltzrnann equation in the gas- 
kinetic theory. The profound intension for the Dirac equation becomes acceptable gradually. 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



�9 !44 Shen Hui-chuan 

References 

[ 1 ] Ab!owitz, M.J., D.J. Kaup, A.C. Neweil and H. Segur, Method for solving the sine-Gordon 
equation, Phys. Rev. Letters., 30 (1973), 1262-1246. 

[ 2 ] Ablowitz, M.J., D.J. Kaup, A.C. Newell and H. Segur, Nonlinear evolution equations of 
physical significance, Phys. Rev. Letters.. 81 (1973), 125-127. 

[ 3 ] Eckhans, W. and A. van Harten, The Inverse Scattering Transformation and the Theory of 
Solitions, North-Holland, Amsterdam (1981). 

[ 4 ] Taniuti, T. and K. Nishihara, Nonlinear Waves, Iwanami, (1977); Pitman (1983). 
[5] Zakharov, V.E., S.V. Manakov, S.P. Novikov and L.P. Pitaevskill, Theory of Solition 

(Method for Inverse Problems), Physico-Math. (1980). (in Russian) 
[6 ] Dirac, P.A.M., The Principles of Quantum Mechanics, Oxford (1958). 
[ 7 ] Dirac, P.A.M., Directions in Physics, John Wiley (1978). 
[ 8 ] Landau, LD_ and E.M. Lifshitz, Course of Theoretical Physics, vol. 4, (2nd ed.) Quantum 

Electrodynamics, (ed. by V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii) Trans. from 
Russian by J_B. Sykes, and J.S. Bell, Pergamon (1982). 
Feynman, R.P., Quamtum electrodynamics, ,4 Lecture Note and Peprint Volume, W.A. 
Benjamin Inc. (1962). 
Bjorken, J.D. and S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill (1964). 
Shen Hui-chuan, Again on the relation of yon Kfirmhn equation for elastic large deflection 
problem and Schr6dinger equation for quantum eigenvalues problem, Appl. Math. and Mech. 
Haken,H., Synergetics-the self-tissue process in physics, chemology and biology in Chinese), 
Trans. from German by Zhu ZH.,  Physics, 14, 10 (1985), 604-613. 
Boltzmann, L., Weitere studien uber das w/irmegleichgewicht unter gasmolekiilen, wien. Ber., 
66 (1972); 81 (1880); 84 (1881). 

Tsien Hsue-shen, Equations of Gas Dynamics, Fundamentals of gas dynamics (ed. by Emmons. 
H.W.) section A, Oxford University Press (1958). 

Ladouzhenskaia, O.A., Mathematical Problems of Dynamics for Viscous Incompressible Fluid, 
Science, Moscow (1970). (in Russian) 

Chapman, S. and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (3rd ed.), 
Cambridge Univ. Press (1970). 

Landu, L.D., and E.M. Lifshitz, Course of Theoretical Physics, vol. 5, Statistical Physics, 
pergamon. Oxford (1969). 

Landau, L.D. and E.M. Lifshitz, Course of Theoretical Physics, vol. 10, Physical Kinematics, 
(ed. by E.M. Lifshitz, and L.P. Pitaevskii), Pergamon (1982); The Japanese ed., trans, from 
Russian by Inoue. K., Inshihashi. Z., and S. Yanagishita, Tokyo (1982). 
Yukawa, Hideki, Basic of Theoretical Physics, (2nd ed.), vol. 5, Statistical Physics (ed. by 
Toda. S., and R. Hisayasu) Iwanami (1978). (in Japanese) 

Wu Da-you, Theoretical Phys&s, vol. 5, Thermodynamics, G a s -  kinetic Theory and 
Statistical Mechanics, Science (1983). (in Chinese) 

ter Haar, D., Elements of Statistical Mechanics, Rinehart, New York (1954). 
Wang Zhu-xi, Introduction to Statistical Physics, People'Education (1956). (in Chinese) 
Prigogine, I., Non-Equilibrmm Statistical ~ %chanics, I nterscience Publishers (1962). 
de Groot, S.R. and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Company- 
Amsterdam (1962). 

[9] 

[lO] 
[11] 

[12] 

[131 

[14] 

[15] 

[~6] 

[17] 

[18] 

[19] 

[20] 

[21] 
[22] 
[23] 
[ 24 ]  

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



Exact Solution of the Boltmann Equation 445 

[25] Cheng Kai-jia, Solid-State Physics, People-Education (1959). (in Chinese) 
[26] Boltzmann, L., Vorlesungen ~ber gastheorie, Leipzig (1896- 1898). 
[27] Boltzmann, L., Lectures on Gas Theory, University of California Press, Berkeley (1964). 
[28] Hilbert, D., Grundzuge einer allgemeinen theorie der Linearen integralgleichungen, Teubner 

(1912), 269. 
[29] Zubarev, D.N., Non-Equilibrium Statistical Thermodynamics, Physco-Math., Moscow 

(1971). (in Russian) 
[30] Grad, H., On the kinetic theory of rarefied gases, Commum. on Pure and Appl. Math., 2 (1949), 

331-407. 
[31 ] Grad, H., Solution of the Bo.ltzmann equation in an unbounded domain, Commum. on Pure 

and Appl. Math., 18 (1965), 345 - 354. 
[32] Grad, H., Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equation, 

proc. Amer, Math. soc. Symp. on Appl. Math., 17, AMS. Providence. RI., (1965), 154- 183. 
[33] Kihara, T., Imperfect Gases, Asakura Bookstore, Tokyo, (1949). English translation by U.S. 

Office of Air Research, Wright-Patterson Air Base. 
[34] Waldmann, L., Proc. Int. Seminar on Transport Properties of Gases, Brown Univ. Providence. 

RI. (1964). 
[35] Balescu, R., Statistical Mechanics of Charged particles, Interscience, New York, to appear 

(1963). 

[36] Hirschfelder, J.O., C.F. Curtiss and R.B. Bird, The Molecular Theory of Gases and Liquids, 
with the assistance of the staff of the univ. of Wisconsin Naval Research Laboratory, Wiley, 
New York (1954). 

[37] Cercignani, C., (ed.) Kinetic Theories and the Boltzmann Equation, Scottish Acad. Press, 
Edinburgh (1975). 

[38] Cercignani, C., Mathematical Methods in Kinetic Theory, Plenum (1969). 
[40] Cercignani, C., Solution of the Boltzmann equation, The Boltzmann Equation, Ch.4, Studies 

in Statistical Mechanics, Vol. 10, (ed. by E.W. M ontroll, and J.L.Lebowitz), North-Holland 
(1983). 

[41] Ernst, M.H., Exact solutions of the nonlinear Boltzmann equation and related kinetic 
equations, The Boltzmann Equation, Ch.3, Studies in Statistical Mechanics, vol. 10 (ed. by 
E.W.Montroll, and J.L. Lebowitz), North-Holland (1983). 

[42] Goodman, F.D. and H.Y. Wachman, Dynamics of Gas-Surface Scattering, Acad. Press 
(1976). 

[43] �9 Lebowitz, J.L. and E.W. Montroll, Nonequilibrium phenomena I. The Boltzmann Equation, 
Studies in Statistical Mechanics, vol. 10, (ed. by E.W. Montroll, and J.L. Lebowitz.), North- 
Holland'(1983). 

[44] haken, H., Synergetics, (2nd ed.),Springer (1979). 

[45] Shen Hui-chuan, The" relation of yon Kfirmfin equation for elastic large deflection problem 
and SchrBdinger equation for quantum eigenvalues problem, AppL Math. and Mech., 6, 8 
(1985), 761 - 775. 

[46] Shen.Hui-chuan, The SchrSdinger equation c~f thin shell theories, Appl. Math. and Mech., 6, 
l0 (1985), 957- 973. 

[47] Shen Hui-chuan, The SchrSdinger Equation in theory of plates and shells with orthorhombic 
anisotr.opy, Appl. Ma~h. and Mech. 

[48] Ehrenfest, 1 ~. and T., Enzyklopadie der mathematischen Wissenschaften, vol. IV, pt. 32, 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



446 Shen Hui-chuan 

Leipzig-Berlin (191 I), 36. 
[49] Jeans, J.H., Dynamical Theory of Gases, Cambridge Univ press, Cambridge (1921). 

[50] Born, M. and H.S. Green, A General Kinetic Theory of Liquids, Cambridge Univ. Press, 
Cambridge (1949). 

[51] Bogoliubov, N.N., problems of a Dynamical Theory in Statistical Physics, state Technical 
press, Moscow, (1946), English translation by E.K. Gora, in Studies in Statistical Mechanics, 
vol. 1, (ed. by de Boer. J., and G.E. Uhlenbeck) (1962). 

[52] Green, H.S., The Molecular Theory of Fluids, North-Holland, Amsterdam (1952). 
[53] Kirkwood, J.G. and J. Ross, proceedings of the International Symposium on Transport 

~rocesses in Statistical Mechanics, Brussels (1965); Inter. Science, New York (1958). 
[54] Yvon, J., La Theorie des Fluids et de l'Equation d'etat, Hermanrr et cie, paris (1935). 
[55] Courant, R. and D.Hilbert, Methoden der Math. Phys., Julius. Springer (1931 - 1937). 
[56] Landau, L.D. and E.M. Lifshitz, Course of Theoretical Physics, vol. 8, Quantum Mechanics 

(non-relativistic theory), 3rd ed., Translated from Russian by Sykes. J.B., and J.S. Bell, 
Pergamon (1977). 

[57] Goldstein, H., Classical Mechanics, Addison-Wesley (1953). 
[58] Greenwood, D.T., Classical Dynamics, Prentice-Hall (1977). 
[59] Shen Hui-chuan, Dissipation mechanics and exact solutions for nonlinear equations of 

dissipative type-Principle and application of dissipation mechanics (I), Appl. Math. andMech. 
7, 12 (1986). 

[60] Shen Hui-chuan, General solution of elastodynamics, Appl. Math. and Mech., 6, 9 (1985), 
853-838. 

[61] Shen Hui-chuan, The fission of spectrum line of monochoromatic elastic wave, Appl. Math. 
and Mech., 5, 4 (1984), 1509- 1619. 

[62] Shen Hui-ehuan, The sohition of deflection of elastic thin plate by thejjoint action of 
dynamical lateral pressure, force in central surface and external field on the elastic base, Appl. 
Math. and Mech., 5, 6 (1984), 1791 - 1801. 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 


