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A b s t r a c t  
When Bingham fluid is in motion: plugged flow often occurs at places far from the 

bowutary walls. As there is not a decisive formula of constitutive relation for plugged flow,. 

in some problems the solutions obtained may be indefinite. In this paper, annular flow and 

pipe flow are discussed, and unique solution is obtained in each case by utilizing the analytic 

property of shear stress. The solutions are identical in form with the commonly used 

formula for the pressure drop of mud flow in petroleum engineering. 

I. I n t r o d u c t i o n  

Mud is a necessary medium in petroleum engineering. Sometimes such mud can be treated as 
Bingham fluid. When Bingham fluid is in motion, plugged flow often occurs at places far from the 
boundary walls. The problem of linking-up between Bingham fuid  and plugged flow arises then. As 
there is no decisive formula of constitutive relation for plugged flow, the solution may be indefinite. 
In this paper, unique solution is obtained for the case of annular flow and of pipe flow by utilizing 
the conditi~)n that at the interface between Bingham fluid and plugged flow the two stresses should 
be equal and the two velocities of flow should be equal. From the unique solution, the formOa of the 
pressure drop in mud flow can be found under the approximate condition that the yielding stress 
and the annular radii difference are small. The formula obtained is identical in form with the 
commonly used formula in petroleum engineering. 

H. Seve ra l  Kinds  o f  t h e  P r o b l e m  o f  L ink lng  up b e t w e e n  BinghRm Fluid  a n d  P lugged  
F l o w  

(a) A n n u l a r  f low 
The equation of motion in this case is 

where p is the pressure, or,, 
integration we have 

1 8_O_ (rcr,.)_.0 (2.1) 
r 8r 

is the shear stress, and.( r,O,z ) are cylindrical coordinates. After 

1 ~)P r +  c -7 (2.2) 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Where c is the constant of integration. 
For Bingham fluid, let r0 be the yielding stress, r/ be the rigidity modulus, v~be the axial 

velocity, then 

a . . = (  ro + r T l d v .  
I dv~/drl dr (2.3) 

At the inner cylindrical boundary surface, 

r = R l ,  vz=0 

At the outer cylindrical boundary surface, 

r----Rz, vz=O 

At the inner linking point of plugged flow and Bingham fluid, 

r=R~,  v~--v.-- 0, dr./dr----O, tr.rf=cr.~ 

At the outer linking point of plugged flow and Bingham fluid, 

' ~ O'P r = R  ~ v~----v ~ ----0, ,,~-~,~--~m 

Where v ~ is the velocity of plugged flow, o'.r~ is the shear stress of plugged flow at the interface, 
cr,az is the shear stress of Bingham fluid at the interface As the pressure gradient in Bingham fluid is 
the same as that in plugged flow, and the radii are the same at the interface, from the equality of 
shear stress at the interface we can conclude that the constants of integration c in the three regions 
are the same, Thus we have 

1 Op (RO)Z = o 1 Op (RO) 2 
roR~ 2 Oz - - roR~--~-  Oz 

Simplifying, we get 

R~ --R~ ----- 2r0/(--Op/zO) (2.4) 

Solving equations (2.2) and (2.3), we have, in the Bingham fluid region adjacent to the inner 
cylinder, 

( 1 0 ,  ) 
--1 Op ( R l _ r 2 ) +  R~.  ~ 2 Oz (R~ r 17Vz= 4 aZ ln'-~-, - r o ( r - R l )  (2.5) 

and in the Bingham fluid region adjacent to the outer cylinder, 

- -  ( 1 Op 1 Op l n ~ _ r 0 ( R ~ _ r )  TIv,---- 4 -0-~w ( R l - r 2 ) +  --R~~176 2 Oz (2 .6 )  

The positions of the two linking points R, ~ and R~ ~ are unknown yet, but there is another 
relation between them other than (2.4), viz, 

flu o. ~ --4-~Op/Oz(R] -- (R~) ~-- 2 (R~)~ln[R~/R ~ ]) -- ro (R~--R, ~ - -R  o In [R~/R ~ ]) 

�9 = --4-*Sp/az(R] -- (R~ 2(R~ )~ln[R~ --ro(R~ ~ --R~--R~ ln[R~/R ,] )  

(2.7) 
From (2.4) and (2.7), the two unknown R~ and R ~ can be solved. Then the quantity of flow Q 
and the average velocity v ffi are given by 

I ?' 0--(uRI--~R;)~,---- R, ~ 2urdrv~+u['(R~)z--(R~)*]v~ + R~. 2urdro, (2.8) 
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Simplifying, we get 

r/Q= :r #p I_(R]_(RO)2)z_((RO)Z R])2.1 
8 0z 

0 $ 0 2 0 2 + ~--~~ + 3 R , R ,  +3R aR 1]  

(b) Pipe f low 
The equation of motion in this case is still (2.1), namely 

Op 1 0 ( rG , , )  ----- 0 
Oz t r O--~ 

After integration 'we have (2.2) again, i.e.' 

( 2 . 9 )  

1 0p c o'r,= - -  r +  
2 • r 

The expression for o',, is still 

Jrhe boundary conditions are 

G,= = ( v~ dr, 
[ dv=/dr [ + n ) dr" 

r=R,  v . = 0  

At the linking point of Bingham fluid and plugged flow, 

r = R  ~ v,--v,-- o, dv, /dr=o,  a / , = a ,  m, 

Therefore the-constants of integration in the two regions are the same. But in the plugged flow 
region, cr,,~ must be finite, hence c must be zero, That is, 

Thus, we get 

In the Bingham fluid region, 

1 Op lOo �9 c 1 Op RO 
"" az  - - r 0 : 2  az (2.10) 

R o =  2 o/- (op/o=) (2.10)' 

. 1 Op (rZ RZ)+ro(r_R),  ~ v , = T  Oz 

The quantity of flow Q and the average velocity o= are given by 

z R 1 Op ( r Z _ R = ) + r o ( r _ R )  ]dr 

(8.11) 

1 op (R~--R 2 ) + r o ( R ~  + u ( R ~  Oz 

8 #z (RZ--(R~176176 

(e) Plane pipe flow 
The equation of motion is now 
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OxOP {._ 8.~_o. =0  (2.13) 

Integrating, we get 

• or,, r =---~--y + c 12.1.4) 

In the Bingham fluid region, the expression for o',~ is 

a , , =  (- v0 (2.15) [ dv ,`/dy I + ~7 ) dO,,dy 

The boundary conditions are 
At the walls, y =  +h,  v ,=0  
At the interface with plugged flow, 

y=+t,; o.-v.- o, av,/ay=o, ~,=~,. , ,  ; 

Therefore in the two Bingham fluid regions and the plugged flow region, the constants of 
integration c are the same. Thus, 

Thereby 

- r o = - ~ -  b+c, r0 

c=O, b =  r0 
--Oq/Ox 

The velocity distributions in the Bingham fluid regions are 

1 0p 
(h~--y ~) + -~xb(h--Y) y~b, ~v,`= 2 0x 

(2.16) 

I ap (p_y~) + ~_~_pxb(h+y ) y<~--b, ~ , = -  2 ax 
The quantity of flow O and the average velocity are given by 

A _ 1 ap [ h , _ y Z _ ~ b ( h _ y ) ] d y  

1 ap.)EkZ_b2_2b(h_b) ] + 2 b (  2 .Sx 

0p F2 s,  1Ls LL~l 
= - ~ - L T  h ~-T" " ~  J (2.17) 

I l l .  Approximate Solutions m~ Several Special Cases 

Let 

1"~ (or ~'o = -op/o~ -op/o~ ) (3.1) 
(a) Annular f low 
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The equations determining R] and R~ now become 

"R~]  

_ , o ~ o ~ R~ o R o, --R,--(R,) +2(R,) In RL --4A( --R~--Ri R~ ] R., in (3 .2)  

LR] --R, ~ =2;t (3.3) 

Before solving (3.2) and (3.3), Let us consider the case of Newtonian fluid. In this case R t coincides 
with R2 and equals the radius for maximum velocity, Rm. The equation satisfied by Rm is 

Solving R., ,we get 

Let 

Rm 
R'2 --R-' -- 2R'~ l n ~  = R I  - R ' -  + 2R'~ln 

R, ~ t m  ( 3 . 4 )  

-R,,,=,,[I RI--R~ (3 .5 )  
u 21n(Rz/Rt) 

R ~ =Rm+kzA,. R~ =R-- -h i2  (3.6)  

Thus 

ki+kz=2 (3 .7)  

When A is very small, we may neglect higher order terms in 2 �9 Solving (3.2) and (3.3) 

R,- i, R, } 
R .  - 2 + 1 " - E [ ) / ' " - ~ 7  

k,=(in R_~_+ 2 R,+R~)/In R, 
Rm 

(3 .8 )  

In order to compare with the commonly used formula in petroleum engineering, we have for 
the case when R~--Rt((R~ , 

r lQ--~r(RIr- -RI)o~ ~r Op [ ( R { _ R , ~  ~ (Rm--Rl) '-l '  ' 8 0 z  m; - -  

+ 6 r o [  -- 2R; -- 2R; - - R ~ ( 2 - -  3k2 "-- 3kt ) 

+ 3R.,R; (l--k2) + 3R,,,RI (1--k~) -I (3.9.) 

And we have 
�9 f R ' - - R  a ) Rt(.R.~+R~) 1 Rz--R, 

4 - ) 

1 Rz--Rt 
~.Rl(  1+  -~- Ri ) ~ ' i ( R l + R z )  

2 R ~ I  (Rt+ Rz) z, k, '~kz~ l 

R~ + R ] - - 2 R ~ . ~ ( R , - - R , )  z 

Simplifying (3.9) by means of (3.10), we get 

(3.10) 
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Replacing R by diameter D, 

Op 16r/~�9 4% 
- - - ~ , =  (Rz__R,)~ t R , - -R,  

8p 64~10 �9 8ro 
- -  a---Z = ( D f - - D , )  ~ + D ~ - - D ,  

(b) Pipe flow 
Neglecting higher order terms .in A , we have now 

(3.11) 

(3.11)' 

~Q--~zR*o,~ or Op R' - -  z 
8 0-7 T r~ (3.12) 

After simplification we get 

Op 8~, . 8 ro ( 3 ' 1 3 )  
az = ~  3 .R 

Replacing R by diameter D, 

8p 32~= 16 ~. 
Oz : ~  3 D" (3.13)" 

(c) Plane pipe flow 
Neglecting higher order terms in A , we have 

Simplifying, we get 

~Q---2hr/~,= ap -1 2 -, 0p " - " " '  J=-T 

- 3% 0p aj~h~. + _ _  
0x 2h (3.15) 

IV. Comparison with the Commonly Used Formula 

In the petroleum industry, the rigidity modulus and the yielding~tress are often denoted by the 
readings ofviscosimeter, 0. 0e0o means the viscosimeter reading at 600 rpm, 080o means the 
viscosimeter reading at 300 rpm. The rigidity modulus (Pv)=0600--08oo , the yielding stress 
y----03~0--(Pv) . For annular flow, the commonly used formula for pressure dropiU is 

(pv)~l yl 
P= 60000(D~--D,) z + 200(D~--D,) (4.1) 

where D~ is the diameter of the outer tube, D, the diameter of the inner tube, ~ is the average 
velocity, I is the well depth, Pis the pressure drop. Formula (4.1) is identical in form with (3.11): 

For the case of pipe flow, the common formula for pressure drop is 

P= 90000D' 22-2-2-5~ (4.2) 

Formula (4.2) is also identical in form with (3.13)'. 
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