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Abstract :

When Bingham fluid is in motion, plugged flow often occurs at places far from the
boundary walls. As there is not a decisive formula of constitutive relation for plugged flow,.
in some problems the solutions obtained may be indefinite. In this paper, annular flow and
pipe flow are discussed, and unique solution is obtained in each case by utilizing the analytic
property of shear stress. The solutions are identical in form with the commonly used
JSformula for the pressure drop of mud flow in petroleum engineering.

I. Introduction

Mud is a necessary medium in petroleum engineering. Sometimes such mud can be treated as
Bingham fluid. When Bingham fluid is in motion, plugged flow often occurs at places far from the
boundary walls. The problem of linking-up between Bingham fluid and plugged flow arises then. As
there is no decisive formula of constitutive relation for plugged flow, the solution may be indefinite.
In this paper, unique solution is obtained for the case of annular flow and of pipe flow by utilizing
the condition that at the interface between Bingham fluid and plugged flow the two stresses should
be equal and the two velocities of flow should be equal. From the unique solution, the formula of the
pressure drop in mud flow éan be found under the approximate condition that the yielding stress
and the annular radii difference are small. The formula obtained is identical in form with the
commonly used formula in petroleum engineering.

II. Several Kinds of the Problem of Linking up between Bingham Fluid and Plugged
Flow

(a) Annular flow
The equation of motion in this case is
p 1 3
—z T or {roe)=0 (2.1)
where p is the pressure, 0,4 is the shear stress, and( r,0, z ) are cylindrical coordinates. After
integration we have

1 9 c
an"‘? _a—g‘r"' T (2.2)
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Where c is the constant of integration.
For Bingham fluid, let 7, be the yielding stress, 7 be the rigidity modulus, v,be the axial
velocity, then

- To dvl
Tre=\ T, /dr] +n) (2.3)
At the inner cylindrical boundary surface,
r=R,, v.=0

At the outer cylindrical boundary surface,
r=R, v,=0
At the inner linking point of plugged flow and Bingham fluid,
r=R! v,=v!, dv./dr=0, o,f=0,}
At the outer linking point of plugged flow and Bingham fluid,
dvu,

r=R2°v vl—vo dr =01 U:z'_—'oez

Where v: isthe velocity of plugged flow, o7, isthe shear stress of plugged flow at the interface,
08 is the shear stress of Bingham fluid at the interface. As the pressure gradient in Bingham fluid is
the same as that in plugged flow, and the radii are the same at the interface, from the equality of
shear stress at the interface we can conclude that the constants of integration c in the three regions
are the same, Thus we have

0
R =% 3L (Riyt= v RI—3 2L (RY):

Simplifying, we get
R —R}=27,/(—0p/29) (2.4)
Solving equations (2.2) and (2.3), we have, in the Bingham fluid region adjacent to the inner

cylinder,

_ =1 @ 1 0dp r
=t o (Ri=r)+(Riz— G 9 (RY)*)lagm—r(r—R) (2.5)

and in the Bingham fluid region adjacent to the outer cylinder,

— 1 2 0 14 -
==y e (B=r)+(=Rir= SL (R nfmr(Bimr) (2.6)

The positions of the two linking points R and R; are unknown yet, but there is another
relation between them other than (2.4), viz,
nui=—47'8p/02(R} — (R3)*—2(R;)*In[ Ry/R;]) ~7(R,—~R{— R} 1n [ R,/R}7)
=—47'9p/82(R} — (R})*+2(R})*1al R} /R, 1) —7,(R}— R, —R{ In[R! /R, ])
(2.7)

From (2.4) and (2.7), the two unknown R! and R! can be solved. Then the quantity of flow Q
and the average velocity o, are given by

QE(:{RQ—#R{)U,=L§? 2nrdroy+# [(R})*— (R")’Jv +j‘ 2ardro,  (2.8)
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Simplifying, we get

1Q=—F 2L [ (Ri—(R:)*)*~ ((R)*~R)"]

T,

+ [—2R;—2R{—(R})*—(R})*+3R{R} +3R{R:] (2.9)

(b) Pipe flow
The equation of motion in this case is still (2.1), namely

3 .1 @
T8z T g (rom) =0

After integration 'we have (2.2) again, i.e.'
1 3p

Tps=—1"

[4
2 9z 't 7

The expression for o,; is still

Ty \ dv,
a.,=( Tdu,7dr] 71 )ar

The boundary conditions are
r=R, uy,=0
At the linking point of Bingham fluid and plugged flow,
r=R°, v,=v;, dv,/dr=0, o,f=0,3

Therefore the constants of integration in the two regions are the same. But in the plugged flow
region, o,; must be finite, hence ¢ must be zero, That is,

r= L O oy € 1 8P 5
W=y ez Rt Ry B R (2.10)
Thus, we get
Ry=2t,/—(8p/02) (2.10)’
In the Bingham fluid region,
=L 9P (2 -
W=7 5 (r*—=R*)+7,(r—R). (2.11)
The quantity of flow Qand the average velocity ©, are given by
—_[R 1 8p
— 25 — 1 9P v .2 2 _
1Q=nnR*s JRo z:zr[4 35 (r*—R*)+7,(r—R) ]dr

+a(R)| 5 S (Ri—R) +7(R—R) |

=—3 % (R*— (R")*)*+Eva(—2R'— (R°)*+ 3R*R") (2.12)

(c) Plane pipe flow
The equation of motion is now
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— g 0n=0 (2.13)
Integrating, we get

o)
ruy=22

(2,14)

In the Bingham fluid region, the expression for sy is

To dv:
Tor= [dv,/dy| ) (2.15)

The boundary conditions are

At the walls, y=+h, v,=0
At the interface with plugged flow,

y=1b, v.=v?, dv,/dy=0, o%,=0?

xV

Therefore in the two Bingham fluid regions and the plugged flow region, the constants of
integration ¢ are the same. Thus,

—rn=~a—p b+c, r,,;—-——aib-r-c

Ox 9x
Thereby
—_ = o
=0 b= 5/ex (2.16)

The velocity distributions in the Bingham fluid regions are

a a
y=b, == - (W—y?) +-3Eb(h—y)

y<—b, me=—7 & (—y*) +SLb(h+y)

The quantity of flow Q and the average velocity are given by
1Q= 2nhvs=2 I: —% —g—f-[h‘—y‘-ﬁb(h—-y)]dy
+2b(—2 z—ﬁ-)[hZ—bz—zb(.h—b)]
- gf: 2 o4 2bo—bh | (2.17)

III. Approximate Solutions in Several Special Cases
Let

>
i

To ( To
—apjaz \™' -ap/aT) (3.1)
(a) Annular flow
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The equations determining R} and HR; now become

R:—(R3)2—2(R® )21n —4/1(12 —R—RSIn. g,,)
=R —(R?)*+2(R? )211:1 —4/1( R} —R,— R (3.2)
R —R:=21 (3.3)

Before solving (3.2) and (3.3), Let us consider the case of Newtonian fluid. In this case R, coincides
with R, and equals the radius for maximum velocity, Rw. The equation satisfied by Ruis

R Ry
R:—R:— R:, = 24+2R: ln——Rl (3.4)'
Solving R, ,we get
R:—R:
_ 5
| Ba = sicR 70 (3.5
Let
R}=Rn+kA, R{=Rn—ki (3.6)
Thus
kit k=2 (3.7
When A is very small, we may neglect higher order terms in 4 . Solving (3.2) and (3.3)
= _4—_R1+RZ — RZ" 2
( Ra —2tlg ) R,

(3.8)

by=(1n Rf + o — Bt R )/ 1a% 7

In order to compare with the commonly used formula in petroleﬁm engineering, we have for
the Cé.se thn Rz_Rl ((Rl ’

nQ=na(Ri~Ri)v.~ iR = (Ri—-R1)1]

4
3
+%r.,[—zR:—zR:— 2(2— 3k, —3k,)

+3RuR(1—k,) +3RuR? (1—£,) ] (3.9)

And we have

. [B=R_ . [R&+R) 1 R—R\]
R’“"‘/zln(Rz/Rl)N‘/ 2 (1+3 '-'R,—)
~ 1 R—R\_1
~R(1+ 3 z Va3 RitRy)
’ (3.10)
2Ri~H(RAR,), bkl

R} +Ri—2Ri~A(Ry—R))*
Simplifying (3.9) by means of (3.10), we get
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a_p __ lsflvz 41,

~ % = R,—-R) ' R-R, (3.11)
Replacing R by diameter D, '
3_p _ 647]0: 870
~ %z = (D,—D* " D,=D, (3.11)"
(b) Pipe flow
Neglecting higher order terms in | , we have now
= x 4 T p
ﬂQ=TlﬂR"0z~——8* ‘FR‘— 3-1'.,1?% (3.12)
After simplification we get
_ 9 816, 8 7 .
22 R T3 R (3:18)
Replacing R by diameter D, '
9 3276, , 16 7
="t 5 (3.13)"
(c) Plane pipe flow
Neglecting higher order terms in 1 , we have
oher o OPT2 45 :]=_£aaﬁ_ 2
NQ=2hnG, = — | = KAk 5 B —eh (3.14)
Simplifying, we get
_8p _ 310s + 31,
ax K 2k (3.15)

IV. Comparison with the Commonly Used Formula

In the petroleum industry, the rigidity modulus and the yielding stress are often denoted by the
readings of viscosimeter, ¢ . 045, means the viscosimeter reading at 600 rpm, 0500 means the
viscosimeter reading at 300 rpm. The rigidity modulus (pv)=6,,,—0,,, , the yielding stress

y=04,— (pv) . For annular flow, the commonly used formula for pressure drop!!! is

- (pv)l yl
P="55000(Ds—Dn)* T 200(Dv=Dy) (4.1)
where D, is th_e diameter of the outer tu_be, D, the diameter of the inner tube, © is the average
velocity, { is the well depth, Pis the pressure drop. Formula (4.1) is identical in form with (3.11)".
For the case of pipe flow, the common formula for pressure drop is

__ (pv)sl yl
2=—30000D* T 225D (4.2)

Formula (4.2) is also identical in form with (3.13)".
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