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A b s t r a c t  

Using singularly perturbation theory is constructed the boundary layer scheme for a 

Dirichlet problem for the second order singularly perturbed equation of elliptic type in the 

rectangle. The error estimate is given. 

[. I n t r o d u c t i o n  

In the rectangle G+F:(O<~x<~a,  
for the second order elliptic equation: 

O ~ y < b )  we consider the following Dirichlet problem 

z ' au Au u=/ (x , y )  
8y 

ul ~ = 0  

( ( x , y ) E G = ( 0 < x < a ) )  (1.1) 
O < y < b  H 

(1.2) 

where e>O is a small parameter. As e = 0  the corresponding reduced problem is 

aw (1.s) Y":=- au -w- l(x,u) 

wl,.o=O (1.4) 

Therefore, when perturbed problems (1.1), (1.2)are degenerated to problems (1.3), (1.4) boundary 
conditions will be lost at the boundaries x = 0, x = a and Y= b. Nearby them the boundary layer will 
arise. It is known that x = const, are the characteristics of reduced equation (1.3). So problems (1.1), 
(1.2) belong'to the problems with characteristic boundaries. Fo!lowing the singular perturbation 
theory nearby the boundaries x = 0 and x = a will occur parabolic boundary layers. Emelyanovm. [sj. 
MillerE4] investigated the difference methods for solving this problem. But they excluded 
subdomains, in wl;ich occur parabolic boundary layers, and considered only the case of non- 
characteristic boundary. It seems that construction of exponentially fitting difference schemes is 
,very difficult. Following Hsio and Jordan [5] in this paper we consider the general boundary layer, 
parabolic boundary layers and comer boundary layers at points (0, b) and (a,b), and construct the 
boundary layer scheme for problems (1.1), (1.2). 

Assum~ function f(x,y) is sufficiently smooth in (7+ / "  and satisfies 

/(o,o)=o, /(a,o)=o (1.5) 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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II. C o n s t r u c t i o n  of  the  A s y m p t o t i c  S o l u t i o n s  

We construct the asymptotic expansion of the solution 
the following: 

u(x,y,e) of problems (1.1), (1.2) in 

vr176 'Y) = 2 ~/-k" (y - - r )  sz* 

~(r) = - e ~ p (  - ~)w(0, O 

exp I -  ~ 4 ( y - - r )  Jq~(r)dr 

Expression (2.5) can be rewritten as 

2exp( - -y )  - ~, 
vO"("'Y)"~ ~/.'-~" I*~ exp(--s=)cP(Y--~'g-~ ) ds (2 .6)  

zv"dy 

From condition (1.5) straightforward analysis shows that av(a)/ay, O~vO.~/#y z are bounded in the 
neighborhood of comer point (0,0). 

4) v~ - -boundary  layer function constructed nearby boundary (x=a, O~ 
y~b ) : 

! '  
2exp( - -y)  exp(_s~)qa(y_~s)d~ (2 .7)  

~( r )  = - -exp(  - - r )w(a ,  r)  

From condition (1.5) the derivatives 8vo)/~y, Ozvo)/#y= are bounded in the neighborhood of 
comer point (a,0). 

Since for arbitrary constant k ~ 0  hold exp ( - - s  =) ~ e x p  (hz/4)exp(--ks)=c 
exp( - -ks )and  I ~ ( r ) [ ~ c ,  from (2.6), (2.7) 
We obtain 

I vco)(~, ,y)l~c exp(-axE,) 
I vr y) I ~ c  exp( - a~=) 

5) v ~ ~) (x, r/) - -  boundary "layer function 

(=,>0) (2.8) 
(rt=~>O) (2.9) 

constructed nearby boundary 

(2.5) 

r,(x,y,e) =w(x,y) +vr176 + vr +vr 
+ v  (8) (~,,r/) + v  c') (~2,~/) + O ( e )  (2 .1 )  

where 1 ) ~ , = x / e ,  ~=(a--x)/e,  rj=(b--y)/e ~ (2.2)  
2) w(x,y) is the solution of reduced problems (1.3), (1.4) 
3) v~ ~ (~t, y) - -boundary  layer function which is constructed nearby boundary 

( x~O, O~y~b ), and satisfies 

v~~176176 v '~176176  Y) } ~2.4) 

This is the first boundary value problem for parabolic equation in the semi-infinite region. The exact 
solution of this problem is 
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(y=b, O~x~a), which satisfies 

OzffC z) Og(z) 
Nv(~'(x'rl)="-~'z--n On =0 (2.10) 

vCZ~(x,O)=_w(x,b), v~Z~(x,~l).oO (r/->oo), (2.11) 

Its analytic expression is 

and it has the estimate 

vr ( x,,~ ) = - - w (  x , b ) e x p ( - , 7  ) (2.12) 

6) 
(O,b), which satisfies 

R o v < " - - ~  OvO, 0<~,<oo) 
= �9 + ~ - - - - 0  ( 0 < , 7 < o o -  

It can be explicitly represented as 

v ~s~ (~,, rl) = - - v  r (~ , ,  b )  exp ( --  r/) 

and has the estimete 

We construct vcs~ (s 
at y=b. 

7) 
(a,b): 

I veZ~ (x,r/) [~<c e x p ( - r / )  (2.13) 

vcs' (~,,77)--boundary layer function defind in the neighborhood of a comer point 

(2.14) 

(2.15) 

(2.16) 

i v,~ I~c  exp ( - a s ( ~  +~/)) (2.17) 

for the reason that vr ~ (~1, g) does not satisfy the boundary condition 

vr layer function defined in the neighborhood of comer point 

Analogously, we construct 
boundary condition at y = b. 

vO~ (~z, ~/) -- - -  vr (~2 �9 b) exp ( - -  r/) 

[vO~(~z,r/) I-~c exp(- -a , (~2+r / )  ) 

vc'~(~z,T/); for the reason that vo>(~ ,y )  

(2.187 
(2 .19)  

does not satisfy the 

If we expect that the accuracy of the asymptotic solution can be extended to the order O(e "+l) 
( n ~ 2 )  , it is necessary to consider the cases that the sums vC2)(x,tt)+vcs)(~l,rt) and 
v~Z~(x,rl) +vC~)(~2,tl) do not satisfy the boundacy conditions at x=O and x=a respectively. 
However, as n = 0,1 these boundary conditions are satisfied (cf. Butuzov [6~) Butuzov proves that 
expansion (2.1) uniformly holds in G + / "  . Let 

~(x,y,e)=w(x,y)+v"~(~l,Y)+v"~(~',u)+v~)(x,'7) (2.20) 
+ vO) (&,v) + vr (~,v) 

then 

u(x,y,e)--~(x,y,8)ffiO(e) ( ( x , y ) E G  + F )  (2.21) 

HI. The  C o n s t r u c t i o n  o f  D i ~ e r e n c e  S c h e m e s  and  the  Error  E s t i m a t e s  
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1. The difference scheme of  the reduced problem 

We use the modified Euler's method to solve reduced problems (1.3), (1.4). Let h and k denote 

the mesh spacings in the x-direction and y-direction respectively, x = x = ih, y=y~=jk,i= 0,1 . . . . .  N, 

j=0 ,1  . . . . .  J, Nh=a, Jk=b. 
Now we construct the following scheme: 

1 F ~, k --wc~,~)(x y ) ] +  w , , , ( x , u +  ) , �9 

_ --1 [ - f ( x , y ) . + f ( x , y + k ) ]  (3 .1)  
2 

wCh'~(x,0) = 0  (3 .2)  

This is a scheme of second order: 

]w(x ,y)- -w<h,~. ) (x ,y) l=O(k z) (O~x ,~a~  O~y~-~b) (3 .3)  

2. The difference schemes of  the boundary layer equations 
In our problem the boundary layer equations are always solved in semi-infinite regions. If we 

directly solve them by difference methods, then this requires considerable computational effort, 

because of the presence of e . But from the singular perturbation theory we know that the 

boundary layer functions are significant only in the boundary layer regions. Following the work[5] 

we numerically solve these equations by the standard difference methods only in the finite regions. 

For this it is necessary to modify the problems for the boundary layer equations. 

I) The modification of problems (2.3), (2.4). 

Find 5'~ " 

M~176 O~l aU O < u ~ b  ) (3 .4)  

~ ~o~(~, ,0) = 0  

~~ ~~ = 0  
(0<v~<b) }" (3.5) 

where m ~ O  is a constant to be determined. 

It is known that the solution (2.5) of problems (2.3), (2.4) are a boundary layer function, and 

holds estimete (2.8). We choose m~ so that exp(--a~m~)~e , and obtain 

m , ~ - -  1 lne (3.6) 
a, 

It is easily shown that this choice of m, will not cause an error higher order O(e) , i.e. 

Iv(~ ,y)_~o)(~,  ,y) ] =O(e) (3.7) 
Problems (3.4), (3.5) are the first boundary value problem for parabolic equation in the finite 

region. For it we can construct Crank-Nicolson scheme: 

M (~l,h)~(O)(~'l,h)_ 1 r~.(o)(~-l,h)~ ~(o)(~h,h),,  . 

~(0) --o u (~"k)(~,,Y)--[-o(ol(~"kl(~,,y+k)+~(~ (3.8) 
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~o)(~.h) (m~, y) .= 0 (3.9) 

where ~t=6x,i=i~t,  y==ys=jk, ~=m~/N~ k = b / l ,  ~,o)(i~,h) - - t he  centered second , ~.~ 

difference, ~y( o~ ( ~ , h ) =  -~[ffr --~'~0)(~'~.k)(x,y) ] .  

It is known that schemes (3.8), (3.9) are of second order, i.e. 

1~r ( '~, .h)(  e~, ,y)_~,0)(~,  ,y) l =O(~i  + k z) (3.10) 

However, one does not know a priori the value of-w(0,y) in boundary condition (3.9), and hence one 
is acturally using the value --. w(~, ~ (0 ,y) . This, of course introduces additional error. From (3.3) 
]w(O,y)--wo,~)(O,y)l=O(k~).Note that here 6 ,=~, , ,  corresponds toxt, i.e. $ , , = x t / e  

2) The modification of differential problem defining vo)(6z, y) 
Find 

Oz~o) 0~o) ~o)__. 0 
M ' ~ ~  O~'] Oy 

~o) ( L ,  0) = 0 (0<L~<m~) 

6o) (O,y )=- -w(a ,y ) ,  ~O)(rn~,y)-----0 
where rn,~0 is a constant to be determinedl We know that 
(2.9). Analogously, m: is defined as 

( 0<$,<rnz 
/ (3.11) 

O ~ y ~ b  

(O~y<.~b) ) (3.12) 

~0) ($~,y) has the similar estimate 

and 

m ~ - -  1.1ne (3 13) 
~$ 

For problems (3.11), (3.12) we also construct Crank-Nicolson scheme: 

(3.14) 

~.L(~2,k)/~ .~'~ 

- ~<'~(i~'h)($ l , v v  y ) -  2As k) +~  o~(~,.k)($z,y) 3 - 0  (3.15) 

~(t>(~.k) ($~, O) •0 l, ( 3 .16 )  
~'o~(is,h)(O ' y ) . - - _ w o , # ( a , y ) ,  ~o~(~,h)(m~,y)=O j. 

where ~z ~ ~z,~ = iha, y~ = jk, N 2 ~ "  mz, Yk ~ b . In the boundary condition (3.16) instead of 

-ui(a ,y)  we take the value --wr From (3.3) ]w(q,y)--w~A,~)(a,y) ] =O(kZ) �9 Hence 
we obtain 

where ~2=$z,, = ( a - x , ) / e  . 
3) The modification of problems (2.10), (2.11). 

F i n d  ~ r  : 

(3.17) 
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O ~ x ~ a  / 

N~a)  (x,,7) =--- ( + 0,7 =0  " ~  ) (3.z8) 0~f 

~(=)(x ,O)=--w(x ,b) ,  ~r = 0  ( O ~ x ~ a )  (3.19) 

where s ~  0 is a constant to be determined. 
It is known that holds the estimate (2.13) for the solution of problems (2.10), (2.11). From this 

the constant s can be defined as 

and 

s~ - -21n  ~ (3,20) 

I ~'a> (x, n) - v r  I =0(e~) (3.21) 

Problems (3.18), (3.19) are the two-point boundary value problem for ordinary differential 
equation. Now is given the following difference scheme: 

NO,~)~(=)(~,~)--__~C2)Ch,~) _ ~!2 ')0,~)_ 0 (3.22) 

~'a~,~) (x, 0)=--WcA,h)(x,b), ~a~a,~(x,s)----0 (3.23) 
where ,7=,73=j~, J~ '=s ,  z = z ~ = i h ,  N h = a  . Instead of -w(x ,b)we take --w Ch,~(x, y) 

From (3.3) i w ( x , b ) _ w o , : > ( x , b ) l = O ( k ~ ) :  . Thus 

I ~ '~,~(x, ,7)-  ~(x,n) I --O(k~+g = ) (3.24) 
Here 17=,7j= (b--Y~),/e ~ 

4) The modification of problems (2.14), (2.15). 
Find ~~ : 

o e  § o,7 (3.23) 

~~176 ~ r  ( 0 < ~ l < m i )  (3.26) 

The solution (2.16) of problems (2.14),. (2.15) has the estimate (2.17). Constants m~ and s defined by 
(3.6) and (3.20) are respectively appropriate for this problem, only if constant as is properly 
chosen, and 

IvtS~(~et,t/)-~ I --O(e~) (3.27) 

For (3.25), (3.26) we give the following difference schemei 

OT~,~)~ o)(~'~ 1D=~ Ca)(~ ~'ID -.L ~ (a)C~'a' E ) " - "  ( 3 .28 )  

~o)(~;,.e)(,e,, 0)_-- --  ~r (~e~,b), ~(s~(~, ,e)(~, ,s)  = 0  (3 .29)  
where 0----~7~----jk, ~----~r,~ffii~'~, ~l~----(b--yl)/e", ~,~=x~/el . In the boundary condition 
(3.29) we take _ ~ (0)(g ~,h) (~ t ,b )  instead of --v O) ( ~ ,  b ) .  From this I vf~ (~a .,b) -- ~ (0)(s ./0 
(~r,b}[ •O(e)  + 0 ( ~  ~- k.*). Hence 

I~~ +h')+O(e) (3.30) 
5) The modification of the differential problem defining vo)(~,~ t/) , 

Find ~('>(~z,r?) : 
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O:~c'> + #v(') =0 ( O<~et<mz) 
Rtffo)---- (3,$1) 

O~ ~ Or/ \ 0<~/<:,  " 

~ '~  0) = --v~ fi")(r  = 0  (O~<r (3.32) 

From (2.19) constants rn~ and s defined by (3.13) and (3.26) are also respectively appropriate for this 
problem in the case of proper choice of constant a ,  , and 

I e r -v~'~ (~, ,,~) I=O(e  ') (3.33) 

For (3.31), (3.32) the difference scheme is given by 

( 3 . 3 0  

(3.35) 
- -  ~7~ - -  

~.~C~'..e) (~ .O) - - - - - - -~ (E. .e ) (~ .b) .  ~('~(~'..~)(~.s)=O 

where r/---r/,=j~', ~-- ' -~, ,=i~,  ~l~=(b--y,)/e ~, ~ , , = ( a - - x , )  
Similarly, in the boundary condition (3.35) the value --~o)(E~,tO(~,b) is taken instead of 
- -v~ This causes error [v~Z~(~,b)_~o)(~.~)(~z,b) [=O('~] +k~) +O(e) . Hence 

I e~'~(6,, n) - ~ ~'~c~,. e) (&,,~) I _-. 0 (~  "~ ) +O(El  +E  ~) +O(e)  ( 3 . 3 6 )  

Solving difference problems (3.1), (3.2); (3.8), (3.9); (3.11). (3.12), (3.22). (3.23); (3.28), (3.29) 
and (3.34), (3.35) respectively, we obtain the numerical results for perturbed problems (1.1), (1.2): 

ur 

here 

w~,~(x,v) 

wr x ,v )  + ~ co~(~',, k)(_~ ,y) 

wr x ,v )  + ~ r x,~) 

w ~ , , ~ ( x , v )  + ~ o)(~ ,~)(~ ,~)  

tu~'~,~ (x, y) + ~ ('~(~,, ~) ( ~ ,  r/) 

eml <<.x<-~a--em z 

( ) t 
O<~u~<b_e~s " 

O<~<~ m~) ), x=e~,, 
. O~y~b_e~s  

em~x<.~a--emz ~ 2 t 
( O~,~s ).y==b--e ~7, I 

( /' ] 
o<~<m~,~ x=a-e~,_,, J 

( O<~-rl~s ]" y=b--ezqs " 

(3.37) 

h, k, ~', h,, hz are defined by h----a/N, k - -b / l ,  "~--~s/.T, ~t---mt/Nt, hz=mz/Nz 
respectively. 

From the asymptotic expansion (2.1), estimates (3.3), (3.7), (3.10), (3.14), (3.17), (3.21), (3.24), 
(3.27), (3.30), (3.33), (3.36), (3.37) and (3.38) we easily obtain the following error estimate: 
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eml~x<a--em~ 

o(v)+o(,) ( 0<y<b-e, ) 
O ( ~  +k t )+O(e  ) ( O<x<em, ) 

O<y<b-- e2s ," 

a--em~<x<a 
O(~:+V)+O(e) ( 0<u<b-e', ) 

~(x,y,e)-u~,.~(x,y,e)-- (S.39) 
em~ ~x<.~a--emz ( ) 
O~x4em~ o(~i+~')+o(r)+o(~) (b_~,<~<b ) 
a - e m ~ x ~ a  

o(~i +~'~)+o(k~)+o(e) ( b-es<y<b ) 
Our main result can be summarized in the following. 
T h e o r e m  Supposef(x,y) is a sufficiently smooth fuction in G +  F , and satisfies condition 

(1.5). Then 1) The asymptotic expansion (2.1) of the solution of u (x, y, e) for problems (1.1), 
(1.2) uniformly hold in G + F  2) The numerical solution of(1.1), (1.2) and can be defined by 
difference problems (3.1) ~(3.2); (3.8), (3.9); (3.15), (3.16); (3.22), (3.~3); (3.28), (3.29) and (3.34), 
(3.35), and the error estimate (3.39) holds. 

R e m a r k  1 The above results can be extended without difficulty to the more general equation: 

where A(x,U)>o, 
R e m a r k  2 If 

R e f e r e n c e s  

.~.u=e2Au-A(x,U)--~--kJ(x,U)uffif(x,u) 

h(x,u)>0, f(0,0)----o, f(a,O)=O 
A(x,V)<0 , then f(o,b)=o,f(a,b)--owill be required. 
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