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Abstract
Using singularly perturbation theory is constructed the boundary layer scheme for a
Dirichlet problem for the second order singularly perturbed equation of elliptic type in the

rectangle. The error estimate is given.

[. Introduction

In the rectangle G4 F: (0<<x<<a, 0<Cy<Cb) we consider the following Dirichlet problem
for the second order elliptic equation:

. 0<x<a

Lametu—g—u=f(x,y)  ((x,4)€6=( ) (1.1)
Y

0<ly<<b

ﬂl r'='0 (1 .2)
where &>>0 is a small parameter. As g=0 the corresponding reduced problem is
o= ay .ry

W|yuo=0 (1.4)

Therefore, when perturbed problems (1.1), (1.2) are degenerated to problems (1.3), (1.4) boundary
conditions will be lost at the boundaries x=0, x=aand Y=b. Nearby them the boundary layer will
arise. It is known that x = const. are the characteristics of reduced equation (1.3). So problems (1.1),
(1.2) belong to the problems with characteristic boundaries. Following the singular perturbation
theory nearby the boundaries x =0 and x = a will occur parabolic boundary layers. Emelyanov/?- B,
Miller investigated the difference methods for solving this problem. But they excluded
subdomains, in which occur parabolic boundary layers, and ¢onsidered only the case of non-
characteristic boundary. It seems that construction of exponentially fitting difference schemes is
&ery difficult. Following Hsio and Jordan® in this paper we consider the general boundary layer,
parabolic boundary layers and corner boundary layers at points (0, ) and (a,b), and construct the
boundary layer scheme for problems (1.1), (1.2).
Assume, function f{x,Y) is sufficiently smooth in G+ " and satisfies

f(0,0)=0, f(s,0)=0 (1.5)
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II. Construction of the Asymptotic Solutions

We construct the asymptotic expansion of the solution #(x,y,e) of problems (1.1),(1.2)in
the following:

i(x,y,8)=w(x,y) +v (&, y) +vP(&,y) v (%,1)
+o® (&1,1) +vP(£;,7) +0(e) (2.1)
where 1) &=x/e, &=(a—x)/e, n=(b—y)/e" (2.2)
2) w(x,y) is the solution of reduced problems (1.3}, (1.4)
3) »® (§,,y) —boundary layer function which is constructed nearby boundary
( x=0, 0<<y<<b ), and satisfies

Mp®= 8;2(20) aza;m Yt (0<§1<°° ) (2.3)
' y 0<y<b

v (£,0)=0, v (0,4)==w(0,y) (2.9

vO(£,,y) >0 (£>00) } '

This is the first boundary value problem for parabolic equation in the semi-infinite region. The exact
solution of this problem is

v (&,y)= eng/—“’é‘!)J (y_.r)a/z IP[—%]‘P(T)O’T

p(r)=—exp(—7)w(0,7) (2.5)
Expression (2. 5) can be rewritten as
) 2exp(— y)
v (&, y)‘——J I £ exp(—s‘)qa(y—~—,~)ds (2.6)
Ny
From condition (1.5) straightforward analysis shows that 8v(®’ /8y, 8%v‘®)/dy* are bounded in the
neighborhood of corner point (0,0).
4) v (&,,y) —boundary layer function constructed nearby boundary (x=g, 0<

y<b) :
(1 _ Zexp(_y) « e _ lf:
v >(§z:y)-—-————,_.“ I_é;exp( s )tp(y | T )ds (2.7)

p(7)=—exp(—7)w(a,7)
From condition (1.5) the derivatives 9v» /3y, 9%v"/8y* arc bounded in the neighborhood of
corner point (a,0).
Since for -arbitrary constant k>0 hold exp(—s*) <Cexp (k*/4)exp(—ks)=c
exp(—ks)and |@(7)|<c, from (2.6), 2.7)
We obtain

v (&,y) | <cexp(—aif) (a,>0) 7 (2.8)
|y (&y,y) | <cexp(—a.fy) (2.>0) (2.9)

5) v®(x,7) —boundary ‘layer function constructed nearby boundary
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(y=b, 0<<x<Ca), which satisfies

No®(x,q)= a;‘:;:) + a;:’ =0 (2.10)
v (x,0)=—w(x,b), v¥(x,n)>0 (n>o0), (2.11)
Its analytic expression is
v (x,n)=—w(x,b)exp(—n) (2.12)
and it has the estimate
v®(x,1) [<cexp(—n) (2.13)

6) v™(£,7) —boundary layer function defind in the neighborhood of a corner point
(0,b), which satisfies

3™ ) ' 0, <o
Rp® = az;z + ag = ( ) (2.14)
" 0<n<eo
0(3)(£110)=7_;v(0)(§l;b), U(s)(guﬂ)—’o (17-—)00) (2-15)
It can be explicitly represented as
U(s’(ﬁuﬂ)="'v‘u’(ﬁx.b)exp("ﬂ) (2 16)
and has the estimete
|u®(&,n) |<cexp(—as(8,+n)) (2.17)

Weconstruct 3y (£, ) forthereasonthat »¢®(&,,y) doesnotsatisfy the boundary condition
at y=>5.

7)  v®(£,,7) —boundary layer function defined in the neighborhood of corner point
(a,b):

vV (&, 1) =—vD (&, byexp(—n) (2.18)
(v (&, 1) [<cexp(—a,(£,+1)) (2.19)

Analogously, we construct v<‘>(£z,17):'. for the reason that gy (£, y) does not satisfy the
boundary condition at y =b.

If we expect that the accuracy of the asymptotic solution can be extended to the order O(e**!)
(n>>2) , it is necessary to consider the cases that the sums v®(x,n)+v®(&,n) and
‘v (x,n) +v*(&,,7) do not satisfy the boundary conditions at x=0 and x=a respectively.
However, as n=0,1 these boundary conditions are satisfied (cf. Butuzovi®) Butuzov proves that
expansion (2.1) uniformly holds in G+I" . Let

(x%,y,8) =w(x,y) +v(&,Y) 0D (&, ¥) v (x,7) (2.20)
+o® (&, 1) +v(&,1)
then
u(x,y,e)—i(x,y,8)=0(e) ((%,9)€EG+T) (2.21)

II1. The Construction of Difference Schemes and the Error Estimates
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1. The difference scheme of the reduced problem

We use the modified Euler’s method to solve reduced problems (1.3), (1.4). Let 4 and k& denote
the mesh spacings in the x-direction and y-direction respectively, x = x,=ih, Y=Y ;= jk,i=0,1,....N,
j=0,1,.... J, Nh=a, Jk=b.
Now we construct the following scheme:

L b (4 )~ (x,) [+ 5100 (2, 548) + 000 (2,9)]

=_Tl[f(x,y).+f(x.y+k)] (3.1)

Wt (x,0)=0 (3.2)

This is a scheme of second order:

lw(x,y) —w™= (x,y) |=0(F)  (0<HsSes 0Sy,<<b) (3.3)

2. The difference schemes of the boundary layer equations

In our problem the boundary layer equations are always solved in semi-infinite regions. If we
directly solve them by difference methods, then this requires considerable computational effort,
because of the presence of ¢ . But from the singular perturbation theory we know that the
boundary layer functions are significant only in the boundary layer regions. Following the work[5]
we numerically solve these equations by the standard difference methods only in the finite regions.
For this it is necessary to modify the problems for the boundary layer equations.

1) The modification of problems (2.3), (2.4).
Find 3“(&,y) :

an . 0 E<<m
M= aa (10) _ a;w) so—g ( 1 1) (3.4)
&l Y 0<y<h
5(£:,0)=0 (0<bism) } (3.5)
5©(0,y)=—w(0,y), 5 (m,y)=0 (0<y<<h) .

where m,>( is a constant to be determined.
It is known that the solution (2.5) of problems (2.3), (2.4) are a boundary layer function, and
holds estimete (2.8). We choose m, so that exp(—a,m,)< e » and obtain

m1>—-a+llne (3.6)

It is easily shown that this choice of m, will not cause an error higher order Q(e) , i.€

[v®(&,y)—5(&,y) | =0(e) (3.7)

Problems (3.4), (3.5) are the first boundary value problem for parabolic equation in the finite
region. For it we can construct Crank-Nicolson scheme:

7ik)~ k) 1 [3
Mu(hl )v(O)(In B _ 2 2[ (0)(lu k)(£ JY+R)Y+ véu)(’” k)(gl,y)]

=5, FrR)g ) —[5@FR (g gy k) 450G LR (E,y)]/2=0 (3.8)
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pOELR)(£,,0)=0, TVF1R)(0,y)=—wM(0,y)
GOFLR) (my,y) =0 (3.9)

where £ =g, i=ik,, y=y,=jk, by=m/N,, k=b/], vgl“(‘“ +k) — the centered second

difference, Uy( OBk - %[w“)(i;.k)(x,y-i-k) —FO(Fk)(x,y)].

It is known that schemes (3.8), (3.9) are of second order, i.e.
(5 (F1-k)(§,y) ~5 (&1,y) | =O0(h+ k) (3.10)

However, one does not know a priori the value of-u(0,y) in boundary condition (3.9), and hence one
is acturally using the value —w*(0,y) . This, of course introduces additional error. From (3.3)
lw(0,y)—w™k(0,y) | =0(k?), Note that here £,=£,,+ corresponds toxy, i.e. £,i=%:/¢

2) The modification of differential problem defining vV’ (£,,y)
Find 50(&,y) :

az~(l) 85<1) O<£2<m2
M, 5D, Y)=—a— — —5h=0 3.11
B y) =T - T — (pepes ) G
oM (§,,0)=0 (0<éKmy)
} (3.12)

5 (0,y)=—w(a,y), 5D (m,y)=0 (0<Sy<Pb)
where m,>>0 is a constant to be determined. We know that 5 (g,,y) has the similar estimate
(2.9). Analogously, m, is defined as

1
mZ——o—lne (3.13)

and
v (&,,y) — 5D (£, y) | =0(e) (3.14)

For problems (3.11), (3.12) we also construct Crank-Nicolson scheme:

M (3.5 (E, k)=%[ sFeR (g, y+8) +5 23 P (6,0)]

_5;”“2'")(5:» y) _%[’7(‘)(;"")(£z.y+ B) 4+5 O(F2k)(£,,y)1=0 (3.15)

5(!)(51',;)(52,0):0 } ( )
3.16
FDGERRI(0, y)=—w(a,y), TDG2R)(my,y) =0

where £,=£,,0=ik,, y;=jk, N,l?,=m,_, Jk=b .Inthe boundary condition (3.16) instead of
~w(a,y) we take the value —w®:# (a,y). From (3.3) |w(a,y)—w®» (a,y)|=0(k?). Hence
we obtain

|59 (&2,9) =D (B0 (&,,y) | =O(R; +k*) (3.17)
where £,=£;,=(a—x)/e .
3) The modification of problems (2.10), (2.11).
Find 5 (x,n)
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2502 02y I<x<la
N5(2>(x,ﬂ)-=—_q_2{_.)_+L”-_—_0 ( ) (3.18)
0<m<s

on* an
5™ (x,0)=~w(x,b); F®(x,9)=0 (0<*<a) (3.19)

where s>>0 is a constant to be determined.
It is known that holds the estimate (2.13) for the solution of problems (2.10), (2.11). From this
the constant s can be defined as

s=>—2lns (3,20)
and
53 (x,5) —0® (1) | =0(e?) (3.21)

Problems (3.18), (3.19) are the two-point boundary value problem for ordinary differential
equation. Now is given the following difference scheme:

N(h,z)z';(z)(h,}é)Eggzﬁ)("-f) _ ~'(72)("-5)=0 (3.22)

FOME (x,0)=—wtb(x,b), FOME)N(x,5)=0 (3.23)
where n=n;=jk, Jk=s, x=x,=ih, Nh=a .Instead of—w(x,b)we take —w* (x, y)
From (3.3) |w(x,b) —w®* (x,b) [=0(k?). - Thus

|54 (x,9) —5(x,n) | =0(k*+k*) (3.24)
Here n=n;=(b—y;)/e*
4) The modification of problems (2.14), (2.15).
Find 5 (&,,n) :

~ ~ 0<n<s

Ri5®= az"(:) aa<3> ( ) (3.25).
on n 0<E<my

TO(E,,0)=—vM(&,b), TM(&,8)=0 (0<CESmy) (3.26)

The solution (2.16) of problems (2.14), (2.15) has the estimate (2.17). Constants m, and s defined by
(3.6) and (3.20) are respectively appropriate for this problem, only if constant @s is properly
chosen, and

[0 (£1,7) =5 (&1,7) | =0(e*) (3.27)

For (3.25), (3.26) we give the following difference scheme:
Ry(GG1.B)5® (%1, 5)_5(3)(31.ﬁ)+~(3)(31 ) (3.28)
FOGELEN(E,0) =~ FOFLEN(E,b), BOGLD(E,s)=0 (3.29)

where n=1n,=jk, &=£,=ik,, ns=(b—ys)/e*, E.«=%/e. . In the boundary condition
(.29 wetake 5 (F1,k)(&,b) insteadof —v™(£,,b).. Fromthis |o¢®(£,,b)—5 O (F1-k)
(&r,0)|=0(e)+ O(k? +k*) . Hence

|5 EE)(E,n) =T D(&,n) | =O(R) +O(B1 +5)+0(e)  (3.30)
5) The modification of the differential problem defining »(*)(&,,9) .
Find 8 (&,n) :



Boundary Layer Scheme for Elliptic Equation 209

" o 0<<E,<m
Ro®= a=v<:> + AR - ( 2 z) (3.31)

on dn 0<n<s
TO(E,,0)=—vD(E,b), TU(L,s)=0 (0<<ESmy) (3.32)

From (2.19) constants m, and s defined by (3.13) and (3.26) are also respectively appropriate for this
problem in the case of proper choice of constant «, , and

[B9(Ey,m)—v(&2,1) | =0(e?) (3.33)
For (3.31), (3.32) the difference scheme is given by
(3.34)
(3.35)

RG1BBWFEE =pBFrB) 4 5 (0G5 =g

(R (&,0)=—0 D (F1E)(&,b), BTHHE2E)(L,,s)=0
where  p=n,=jk, &=&,=ik,, n,=(b—ys)/e%, Eru=(a—x)
Similarly, in the boundary condition (3.35) the value — (% 2.k)(§,,b) is taken instead of
—u™(&,,b). This causes error v D(E,,0)— T M(F k) (E,,b) | =0O(}? +&*) 4+0O(e) - Hence

|5 (&, m) =8N (F2EX(E,, 1) | =O(E*) +O(h3 + ) +O(e) (3.36)

Solving difference problems (3.1), (3.2); (3.8), (3.9); (3.11). (3.12), (3.22). (3.23); (3.28), (3.29)
and (3.34), (3.35) respectively, we obtain the numerical results for perturbed problems (1.1), (1.2):

( em, < x<e—em, )

(w(h’t)(x;y) O<y<b—823
0<é<m
w™E (x,y)+ 5 O(F LR (£,,y) (02§l<\b lezs ). =gk,
AR VA S S
<&, <m
w(’l,k)(x’y)+ﬁ(1)(iz.k)(§2'y) ( Ozj;\b_zlzs )! x=3§z,i
n”‘”"(x,y,e)=< e\<:<a . >(3.37)
m —em
whB (x,y) +ION0(x,g) (ST ) y=beety,
RIS
_ i 0<<Eim x=ef,,
whe B (%,y)+ 5 OELE(E,7) (ozf):s 1)’ y—bgl,_:m
ASVAS vy
<LE, << X=0—
wAn B (x,y) +TOGELEI(E,,n) (225;\:2) y-—z :fv:,‘
ESYAS —yTeus
here
k=ek, hy=eh,, h,=ef, (3.38)
h, k, E, ki, h,  are defined by h=a/N, k=b/l, k=s/I, k,=m/N,, F,=m/N,
respectively.

From the asymptotic expansion (2.1), estimates (3.3), (3.7), (3.10), (3.14), (3.17), (3.21), (3.24),
(3.27), (3.30), (3.33), (3.36), (3.37) and (3.38) we easily obtain the following error estimate:
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Ok +0(e) ( em<x<Ca—em, )

I<<y<<b—e’s

- <x<em

O +#)+0) (= =™ )
I =

- a~—em, < X< a

O +#)+0(e) (25 )
u(x,y,c)—u"-"(x,y,e)r- A T ?(3-39)

_ em K x<La—em,

O(kz)—l-O(s) ( b——828<y<b )

I<x<cem,
b—e*s<y<h )
a—em, < x<a J
b—ets<Cy<ch )

O(h: +F2) +0(k*) +O(e) (

L O(k: +52)+0(k) +0(e) (

Our main result can be summarized in the following.

Theorem Suppose f{x,y) is a sufficiently smooth fuctionin G+ I" , and satisfies condition
(1.5). Then 1) The asymptotic expansion (2.1) of the solution of 4(x,y,e) for problems (1.1),
(1.2) uniformly hold in G+ I" 2) The numerical solution of (1.1), (1.2) and can be defined by
difference problems (3.1) ,(3.2); (3.8), (3.9); (3.15), (3.16); (3.22), (3.23); (3.28), (3.29) and (3.34),
(3.35), and the error estimate (3.39) holds.

Remark1 The above results can be extended without difficulty to the more general equation:

Lamerbu— A p) g0 ~B(x,0)u=f(x,0)

Where A(x’y)>0, k(xny)>0) f(0'p°)=0’ f(0,0)=0
Remark 2 If A(x,y)<0 , then f(0,6)=0,f(a,b)=0will be required.
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