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Abstract  
The author defines a concept of  fixed point index of ultimately compact set- 

valued mappings in Hausdorff locally convex spaces. Using this concept, the author 

establishes several nonzero fixed point theorems of set-valued ~ -condensing mappings. 

These theorems extend some known results in [1,2,7,8,9]. 

I. I n t r o d u c t i o n  

Fitzpatrick and petryshyn0] defined the concept of fLxed point index of condensing set-valued 
mappings in Frechet spaces. Using the concept, they proved some existence theorems of nonzero 
fixed point of the mappings. Petryshyn and Fitzpatrick t2] established the theory of topological 

degree of ultimately compact set-vahied mappings in a locally convex space in which each convex 
subset is supposed to be a retract. As a generalization of the above mentioned concept, Duc, Thanh 
and AnglSJ defined the concept of topological degree of ultimately compact set-valued vector fields 

in not necessarily metrizable topological vector spaces. 
In this paper, first we establish a concept of fixed point index of ultimately compact set-valued 

mappings on closed and convex subset in general Hausdorff locally convex spaces. Then using the 
concept, we prove several existence theorems of nonzero fixed point of set-valued t~ -condensing 
mappings in general Hausdorff locally convex spaces, our theorems generalize and improve many 

known results in [1,2,7,8,9]. 

II. Fixed Point  Index of  Set-valued Ult imately  Compact Mappings 

Let X be a Hausdorfflocally convex space and the topology on Xis determined by the family of 
seminorms {po. a E A }  . K(X) denotes the family of all nonempty closed convex subsets of X. 

A mapping T: D ~ X o K  ( X ) .  is called upper semi-continuous (u.s.c.) if for each x E D  

and open set V c X  with T ( x )  ~ V ,  there exists an open set W c X  with xEW ~ such that 

. I " ( W N D ) ~ V  �9 
Now let F be a closed convex subset of X and . Q ~ X  be an open subset withI'~,----QN 

F4=~ . We denote by ~j,  and 0(D~,) the closure and the boundary, respectively, of ~)j, 
with respect to F. 

Suppose T: ~p- ->K(F)  be a u.s.c, mapping. We define a transfinite sequence {Ko]. by 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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induction. Let K o = ~  T ( ~ p )  �9 Suppose a is an ordinal such that Kp has been defined for 

ailordinals fl<a .Then, if a is an ordinal of first kind, welet K.=e--oT (K,_ ,N~)P)  , 
while if a is an ordinal of the second kind we let K ~  fl Kp.  Then, as in [2], we can show that 

p < ~  

each K ,  is closed and convex with K,~_Kp for a>/fl ; T(Ko[q~p)~_Ko for each 
ordinal a . Since the transfinite sequence {K~ is nonincreasing, there is an ordinal 3' such 

that K~=Kr for r7>/3, , {x lxE~r ,  xET(x)}~K~ and c-oT(Kyfl~D=K~ . W e  
write .K=Kr----K (T , Dr) �9 

Defin i t ion .1  A u.s.c, mapping T: ~ p ~ K ( F )  is called ultimately compact if either 

K f l ~ j , = r  where K = K ( T ,  ~F) , or if K[q~,g=q~ , then ' T ( K [ q ~ )  is a relatively 

compact set. 
Def in i t ion  2 Let T: ~ o K ( F )  be an ultimately compact mapping such that 

xq~T(x), VxEO(19~,) .Bythedefini t ionof  K = K ( T ,  ~ )  ,Khasa l lp roper t i e sof theKin  
the Definition 1 of [3]. Hence, from the argument in [3], it follows that the relatively topological 
degree degr( / ' -T,  19,0) is well defined where I is the identity mapping. Define 

iF (T ,  19) = degx ( I -T ,  19, O) 

it,(T,19) is said to be the fixed point index of T over 19 with respect to F. 
From the results in [3], we see that the index i~(T,f2) has the following properties. 

~ , ~ K  (F )  be an ultimately compact mapping such that x ~ T (x) Theorem 1 Let T: 
for xEi}(Dp) . Then 

(P~) if iz,(T,O)~O 
(P2) if x06..~, , then 

{x,}. 

, then there exists an xEf2r such that xET (x) ,  
iP(~0, 19) ----- 1 , where x0 denotes the map whose constant value is 

(P3) if 191, 192 is a pair of disjoint open subsets of 19 such that x ~ T ( x ) , V x E  

(~\(19~ U 192)),=F N ( ~ \ ( D t  O 19z)) ,  then i,(T,19) ----ir(T,19~) +i,(T,192), . 
(P4)i f H.[O,1]• is an ultimately compact set-valued map such that 

x ~ H(t,~t), V (t,x)6.[O, 13 • ~(f2r) , then i , ( H ( 1 ,  �9 ), D) = i~ , (H(0 , - )19)  
P r o o f  SinceK=~(T, ~ p ) ~ F ,  Klq 1 9 ~ F  ['] 19=19~andK [q #19__.F [7 #O=#(19~),from the 

argument of Theorems 6 and 7 of [3], it follows that the conclusions (Pl), (P3) and (P4) hold. Noting 

that ~o(x)----{x0}, VxE,~i, and x0E19P , from the definition of K-----'K(~o, ~ )  it 
follows that x0EK [7 19 �9 Hence (P:) holds easily. 

HI. Nonzero Fixed Points o f  Set-valued Condensing Mappings 

In this section, using the fixed point index of ultimately compact set-valued mappings, we shall 
consider the nonzero fixed point problem of set-valued condensing mappings. 

Let X be a Hausdorff locally convex space and its topology is determined by the family of 
seminorms {po. aEA} . Given aEA and f2___X , we define 

X, (O)  ---- inf {e>0[  there exists x~EX , i=1, . . . ,  n such that 19___ UBo(x~,e)} 
t l l l l  

B.(x, ,8)  ~ '{yEX I p.(x,--y)<e}. ,  
and 

has 

with 

3,,(19) = in f{d>0119  can be contained in the union of a finite number of sets, each of which 
po-diameter less that d }. 

Now we let C = { ~ .  A~R+=[O,oo)} �9 For r ~bEC and A>0 , we define 

r162162162 (VaEA)j 
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(4r (a) =,re (a) ( VaEA)~ 
0(a)=0 (Va EA) 
( 'max{r162 ( a ) = m a x { r  ~b(a)}, ( V a E ) .  

We now define the mappings X: 2 x'->C and 1,~ 2x-->C as follows: 

X(S2) (a) =Xo(~), (VaEA),  
1,(~Q) (a) =1,o(~), (VaEA) .  

The mappings X and 1' are called the X -measure and 1, -measure of non-compactness. 
The X -measure of noncompactness was first introduced by Sadovskii [4] and the 1,-measure 
of noncompactness was introduced by Petryshyn, Fitzpatrick [2]. For the properties of X and 
~,  the reader may consult [2]. 

We recall that a closed convex subset Wof  Hausdorfflocally convex space Xis called a wedge if 
txEWfor each xEg2 and tER + . If the wedge Wsatisfies W N { - W }  = {0} , then we say that 
W is a cone in X. In the following, we denote the cone by P. 

In the following we always assume r or 1, 

Def in i t ion  3 A u.s.c, mapping T: D~_X-->K(X) is called ~-condensing if for each 
~__.D which is not relatively compact there exists aEA such that ~ ( T  (59)) (a) ~ t ~  (~ )  (a) 

Now we denote the family of all compact convex subsets of X by CK(X). 
L e m m a  1 Let T: ~y~CK'(X)  be a tP -condensing mapping. Then Tis  ultimately 

compact and hence the fixed point index of T has the properties in Theorem 1. 

P r o o f  By the construction of  K----.K(T, ~y) , c--oT(K N ~ , ) = K  �9 If K N ~ p - - r  
then the Lemma holds. Suppose K N ~ 1 4 : r  �9 We have that 

eP(T ( K N ~i,) ) (a) _.- cp (~--~ T (K fl ~p) ) ( a) = r  (a) 
>r n ~,)  (a) (VaEA) 

Since Tis condensing, it follows from the above inequality that K N ~ is compact. Since Tis a 
u.s.c, mapping with compact value, therefore T ( K  n ~ ' )  is compact and so T is ultimately 
compact. 

T h e o r e m  2 Let X be a Hausdorff locally convex space and ~ X be an open set 
containing 0 Suppose T: ~ , - > C K ( W )  is a e-condensing mapping such that 

AxST(x) ,  VxE0(Dw) (A~>I) (3.1)  

Then i w ( T , ~ ) = l  and Thas a fixed point in ~w �9 
P r o o f  Define the mapping H: [ 0 , 1 ]  x Qw-->CK(B z) by 

H ( t , x ) = t T ( x ) ,  V (t,x)Er0,1]x~i* 
If Q c ~ =  is not relatively compact, then there exists aEA such that 

O(T (Q) ) (a) < O ( Q )  (a) 

Since H ( [ 0 , 1 ]  • Q) C::c'-o(T(Q) U {0}) , we have 

r t]x 0)) (a)<r  U COD) (a) 
<r  (a) < r  (,,) 
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Thus H is �9 -condensing. From Lemma 1 it follows that T is ultimately compact. Since (3.1) 

implies x ~ H ( t , x ) ,  V ( t , x )E  E 0 , 1 " l x 0 ( ~ , )  �9 By (P,) and (PA) of Theorem 1 we have 

By (P~) of Theorem l, T has a fixed point in Qw �9 
R e m a r k  1 Note that Xis general Hausdorfflocally convex space without the retraction 

condition in [1,2]. Putting ~ ' =  X, we obtain the improvement of Theorem 3.2 of [2]. Theorem 3.1 of 
[1] is also a special case of our Theorem 2. 

L e m m a  $ Let ~ be a bounded open subset of a Hausdorff locally convex space X. T: 

~w ~CK (W) is a O -condensing set-valued mapping and B: D w ~CK (W) is a compact 
set-valued mapping. If tlae following conditions are satisfied: 

(i) for each aEA , the set ( I -  7") (Dw) is P . -bounded and 
inf inf p , ( y ) > 0  

xE ~,w vE B x 
(ii) xq~ T(x) +tB(x),  ' v ' ( t ,x )Ef 'O,~)  •  

Then iw(T,D)=O 
P r o o f  Suppose 

->CK (W) by 

M 

iw(T,D)4~O. For any 9l>0 , define the mapping H: r 0 , 1 l x D ~  

H(t ,x)  = T ( x )  +t91B(x) 

By (ii), we have xq~H(t,x),  V(t,x)EEO,1]xO(D~) 
Now if Q~_Q~, is not relatively compact, there exists a•A such that 

O(T(Q) ) (a) <o(Q)  (a) 

Sine, H ( [ 0 , 1 3  x Q)~T(Q) +eo(AB(x)  U {0})andO(91B(Q) [J {0}) (a )=91O(B(Q))  (a)=0, 
we have 

O ( H ( [ 0 , 1 ] x  Q))  ( a ) < c P  (T(Q)) (a) +cP(c-o(91B(Q) U {O})) (a) 

<~,O(T( Q) ) (a)<r  (a) 

It follows from Lemma 1 that H is ultimately compact. By (P4) of Theorem 1, iw(T+91B, 
1"2) = iw (T, ~) 4:0 . From (P~) of Theorem 1 it follows that for each 91> 0 there exists x~E~w 

suchthat x~ET(xa)+91B(x~) Since inf inf P . ( Y ) > 0  , it follows that ( l -  T) ( ~ w ) i s a  " a> 0 yEB(x~) 
unbounded set. This is in contradiction with the condition (i). Hence iw (T,~.)= 0 

L e m m a  II Let P be a cone of a locally convex metrizable space Xand ~ ~ X be a bounded 
openset. SupposeT: K$e-->CK(P) is O-condensing and B: O(~e)->CK(P) isacompact 
set-valued mapping such that 

(i) mt  inf l y [>O where [ -  [ is  a quasinorm on X and the distance xE0(~s) yEB(x) 
d(x,y)= I x - v [  generates the topology of X. (See. [5], 1.6.1) 

(ii) x $ T ( x ) + t B ( x ) ,  V xEO(~e),  t>~0 

Then i e ( T , ~ )  = 0  

P r o o f  Since 0 ( ~ e ) = P N  0D is a bounded closed set in X, by Theorem 1 of [6], B has a 
u.s.c, compact set-valued extension (still denote it by B) B: ~e --> CK(P) such that 

B( ~ , )  ~_~oB(O( D,) ) (3.2)  

Since B(a'(Dl,) ) is relative compact, the condition (i) implies 0 ~ B(O(g3e) ) . It.follows easily 
that 
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By (3.2) and (3.3), we have 

inf Izl>o 

inf inf IV[>0 
xEDp yEB(x) 

Since ~ ,  is a bounded closed set, it is easy to show that T ( ~ p )  is a bounded set and so ( I -  T) 
(Qp)is a bounded set. The conclusion of Lemma 3 holds from Lemma 2. 

R e m a r k  $ Lemma 3 is the' improvement and generalization of Lemma 1 of [7]. 
L e m m a  4 Let P be a cone of a locally convex metrizable space X and f2 ----- X be a bounded 

open set. Suppose T: Dr->CK(P) is a compact set-valued mapping ,.uch that 

(i) '/ inf inf ly l>o  
xEa(gp) yET(x) 

(~)' #xET(x), xE0( f2p)* /z$  (0,13 

Then ir(T,g-2)=O 
P r o o f  Letting T-- Bin Lemma 3, we show that the conditions ofLemma 3 hold. obviously, T 

is ~ -condensing. We only need to prove (ii) / ~ (ii) of Lemma 3. Ifi t is  not true, then there is an 
XoO.0(f2r) and t0>~0 such that 

XoE(l +to)T(Xo) 

Thus we have 0<( l ~ t a  •lJ and l+t01 XoET(Xo) . This is in contradition iction with (ii) r. 

By Lemma 3, this lemma holds. 
R e m a r k  3 Lemma 4 extends Lemma 2 of [7]. 
T h e o r e m  3 Let f2t and 22 be bounded open subset of a Hausdorff locally convex 

space X with 0 E ~ c Q ~ f 2 2  , and T: ~z,w ->CK(W) is O-condensing. If one of the 
followifig conditions holds: 

t for each aEA , the set ( I -  T) (Dr ,  w). is 
(Hi) valued map B: ~2,w._>CK(W) such that 

'r xEa(f22,~), t>0; 

lx$T(x),  VxEO(~t ,w) ' ,  t > l .  

Po-bounded and there exists compact set-- 
inf  inf po(V)~O, xq~T(x)+tB(x), 

xED~.w yEB(x) 

l for each aEA , the set ( I -  T) ( ~ ,  w) is P~ -bounded and there is a compact set-valued 

(Ht), mapB:  Q-.I,w-~CK(W) suchthat  inf inf po(V)~Oixq~T(x)+tB(x), VxE8 
xE~l. W yEB(x) 

(f2~,w), t>0 ; 

Xx~T(x), VxE0(~ ,w) ,  a > l .  

Then T has a fixed point in ~z ,  w\f2t, w �9 
P r o o f  Suppose that (Hi) holds (when (He) holds the proof is similar). If Thas a fLxed point in 

0((22,~r) U0(f2~,w), then this theorem holds. Now assume that xST(x~,VxE a(f22, w) 
U 8 (f2[ ,w) . It follows from Theorem 2 and Lemma 2 that 

iw(T,f20_~l and iw(T,f2z)----O 
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Since xET(x )  for xEWF] [~2z\((O~\D~) UO~]--O(Dz,rv) U0(D~,, ,) ,  by (P3) of 
Theorem 1. we have 

iw(T,122) ~- irv (T,g-d2\~)  +iw(T,g~) 

and so i w ( T , ~ z \ ~ t ) = - - I  . By (P0 of Theorem 1, Thas a fixed point in WN ( ~  \ ~ a )  
Coro l la ry  1 Let Ot and /2z be bounded open subsets of a Husdorff locally convex 

space X with 0 E O ~ t ~ O z  . andT~ ~ z , w ~ C K ( W ) i s  4) -condensing. If one of the 
following conditions holds: 

I f or each aEA , (I-T)(Qz,rz) is Po-bounded and there exists a hEW with 

(H~) ~ p~ such that xET(x )+th  for xE.O (Dz.w) and t > 0  ; ZxET(x) ,  
V x  E O(g2~,~r), 3,>1. 
for each aE~l , ( I -  ~ ( Q i, w) is f 

('Hz)'~ p,(h)4=O such that x~_T(x)+th 
[ 

Then 7" has a fixed point in D2,w\D,,rv 

P r o o f  Putting B(x)  ={h}, VxE~z,w in Theorem 3, we obtain corollary I. 
R e m a r k  4 Corollary 1 is the improvement and generalization of Theorem 3 of [1]. 
T h e o r e m  4 Let P be a cone of a Locally convex metrizable space X. Ot and ~ are 

bounded open subsets ofXwith 0 E I - 2 t ~ , ~ O 2 .  , T: ~2,p~CK(P)  is ~-condensing. If 
one of the following conditions holds: 

inf inf IV I There is a compact set-valued map B.. 0 (O~,~ , )~CK(P)  such that x~(~a.~)u(B(x) 

(H.) ~0,  x ~ T ( x ) + t B ( x ) ,  ~txf:O(O~,r). t~O~ 

Lx E T ( x ) ,  VxEa(g2~,P), 3,>1. 

inf inf 
[ there exists a compact set-valued map B: 0 ( ~ ,  r) -~CK (P) such that xEo(~, ~)vEB(x) 

( H , ) / ] U I > 0 ,  xET( x ) + tB(x ) ,  VxEO(O~,r),t>O~ 

t XxET(x), VxEa(t2,,,), ~t>l. 
Then T has a fixed point in P [7 ( D z \ ~ t )  . 

Proof  The proof is similar to that of Theorem 3, so we omit it. 
T h e o r e m  ~ Let P, X, ~ t  and Dz be the same as in Theorem 4. T:P~(.~,Qt) 

-> CI~(P) is a compact set-valued map. If one the following conditions holds: 

inf inf lul>0, I~ET(x), x~O(~ t ,p )* /~>~ l t  f 
,,(~(a~.,) yeT(x) 

(Hi)  
#xET(x), xEa(O,,~,)o#~<l. 

~xET(x) ,  x E a ( ~ , , ~ . ) ~ < l .  

Then r has a fixed point in P ~ (Q~\D~) 
P r o o f  Suppose (Hs) holds (when (H~) holds the proof is similar). It T has a fixed point in 

0 (~?~ ,~) IJ 0 (Dz,e), then the theorem holds. Now assume that T has not fixed point in ~ (S~ ,e) U 

0 ( ~ , e ) .  By Theorem 2.1 of [6], B has a u.s.c. !compact set-valued extension (still denote it by B) B. 

Q~, ~ ~ CK (P) . From (H~) and Lemma 4 it follows that fi, (T, D~ ) = 0 �9 It is easy to see that 

P,-bounded and there exists a hEW with 
for xEO(O~,~,)and t~O ;2xET(x ) ,VxE  
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(Hs) implies (3.1) with W= P. By Theorem 2, we have ir (T, ~Qz) = 1 . The remainder of proof 

is the same as that of Theorem 3. 

R e m a r k  5 Theorem 5 extends Theorem 1 of [7], Corollary 3.3 of [1] and Theorems 1.2 and 
1.3 of [8]. 

Now suppose that B: P ~C/ - ( (P)  is a compact set-valued map. Let P~ = {x~/a [ ~).~> 0, YE 
B(x)such that .x-,~vEP} . Specially, if B(x)=__{h} with 04: hEP for x E P , wewrite 
P~={xEP[ ~ 2 ~ 0  such that x--2hEP} 

T h e o r e m  6 Let Ot and "~qz be bounded open subsets of a Hausdorff locally convex 
space Xwith O E g 2 ~ O z . T :  ~ , ~  CK(P) is ~b -condensing. If one of the following 
conditions holds: 

[for each aEA, (I-T) ( ~ , ~ , )  is p~ and 

(H,) {V~x, VxEP~OOz, vET(x); 
! 

( v ~ ( l + e ) x ,  VxEP~O~Q~,  vET(x) and e > O .  

inf inf po(x)~O and 
x(g2~, e v~B(x) 

[for  eachaEA, (I-T)(l~l,p) is "Po-bounded and ~E~,inf ~ vEB(.~)inf P . (V)~O and 

(Hs) { V ~  x, VxEPBf-IOg2~, vET(x) ;  

[y~( l+e)x ,  V xEPnOf2z, yET(x) a n d . e ~ 0 .  

Then T h a s a  fixed point in Pf )  (~z\~21) . 

P r o o f  Suppose (H7) hold~s (when (Hs) holds, the proof is similar). We show that (H7) =~ (H~) 
with W= P. If the condition X q~ T(x) +tB(x), '7'xE0(~Qz,~, ) ,t~O is not true, then there exist 

xoEO(~z,e), to ,  O, yoET(xo) and �9 zoEB(xo) such that x o=yo+toz~.Hence xo--tzo= 
v0ET(xo) ~ P a n d  so xoEPn N 0s . Since x0-- Y0=t0 Zo E to B(xo) ~ P  , we have Vo~X0 . 
This is in contradiction with (HT). If the condition 2x ~ T(x), VxEO(g21, e), 2~>1 is not true, 
then. there exist x0EO(O~,P), 20~1 and voET(xo) such that 2 xo= V0 �9 Letting 
0;(e0<20--1 , we have l+e0~20  and W ~ ( l + e 0 ) x 0  . This is in contradiction with (HT). 
From Theorem 3 with W= P, it follows that Theorem 6 holds. 

R e m a r k  6 Theorem 6 is the generalization of Corollary 3.1 of [1]. 
T h e o r e m 7  LetP,.X, Y2t and g2z be the same as in Theorem 4. T: ~z,r-~CK(P) is 

~-condensing. If one of the following conditions holds: 

inf inf I r i S 6 ,  V~"~x, VxEPnr]os vET(x)~ 
"(Hg) x~a(~, ,')y~B(x) 

y ~ ( l + e ) x ,  V x E P N 0 ~ z ,  vET(x)and  e > 0 .  

inf in:f [ V [ ) 0 ,  y~rx, VxEPs[']Og-2z, yET(x)) g 

j x~a(ga,, ~) v~B(x) 
(Hi0) 

t V ~ ( l + e ) x ,  VxE P[-]O~,, vET(x)ande~O. 

Then T has a fixed point in p ['] (Oz \~ l )  �9 

P r o o f  Using similar argument as in Theorem 6, we easily show that (H9) ~ (H~) and (Hm) 
~(H4). This theorem follows from Theorem 4. 

~ e m a r k  7 Theorem 7 improves and extends Theorem 2 of [7]. 
Coro l l a ry2  LetP, X, ~ and .Q~ be the same as in Theorem 4 T: ~z,~,-->CK(_R) is 

q)-condensing. If one of the following conditions holds: 



218 Ding Xie-ping 

(H,)'J" V~x,  VxEP,  NO~z, vET(x) , .  
l y ~ ( l  +e)x, VxE.PN O~z, yET(x) and.*~>0, 

u~x, VxaJ', N a~,, yET(x) f (HI0)' 
~" y ~ ( 1  + , ) x ,  V x E P  N 0~t ,  y ~ ( x ) a n d * * > 0 .  

Then T has a fixed point in P n ( ~ z \ ~ l )  
P r o o f  By putting B(x)={h} ,  V x ~ P  , where hEP, Ihl~0 , this corollary follows 

"from Theorem 7. 
R e m a r k  8 Corollary 2 extends the corollary of [7] and Theorem 2 of [9]. 
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