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Abstract
The author defines a concept of fixed point index of ultimately compact set-
valued mappings in Hausdorff locally convex spaces. Using this concept, the author
establishes several nonzero fixed point theorems of set-valued @ -condensing mappings.
These theorems extend some known results in [1,2,7,8,9].

I. Introduction

Fitzpatrick and petryshyn!!l defined the concept of fixed point index of condensing set-valued
mappings in Frechet spaces. Using the concept, they proved some existence theorems of nonzero
fixed point of the mappings. Petryshyn and Fitzpatrick? established the theory of topological
degree of ultimately compact set-valued mappings in a locally convex space in which each convex
subset is supposed to be a retract. As a generalization of the above mentioned concept, Duc, Thanh
and AngP! defined the concept of topological degree of ultimately compact set-valued vector fields
in not necessarily metrizable topological vector spaces.

In this paper, first we establish a concept of fixed point index of ultimately compact set-valued
mappings on closed and convex subset in general Hausdorff locally convex spaces. Then using the
concept, we prove several existence theorems of nonzero fixed point of set-valued @ -condensing
mappings in general HausdorfT iocally convex spaces. our theorems generalize and improve many
known results in [1,2,7,8,9].

II. Fixed Point Index of Set-valued Ultimately Compact Mappings

Let X be a HausdorfT locally convex space and the topology on X is determined by the family of
seminorms {p,, a€A} . K(X) denotes the family of all nonempty closed convex subsets of X.

A mapping T: DS X -»>K(X) is called upper semi-continuous (u.s.c.) if foreach ~ x€D
and openset p'—X Wwith T(x) c} , there exists an openset }y/—X with x€W* such that
rwnbycv . '

Now let F be a closed convex subset of X and £2<X be an open subset with Q,=Qn
F#¢ .Wedenoteby Q. and 3(f;) the closure and the boundary, respectively, of Qy
with respect to F.

Suppose T: Qp—>K (F) be a u.s.c. mapping. We define a transfinite sequence {K,} by
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induction. Let Ky=co 7' (Qr) .Suppose a isanordinalsuchthat K has been defined for
all ordinals A<a . Then,if @ isan ordinal of first kind, we let K.,=coT (Ka_,() Qn .,
whileif a is an ordinal of the second kind we let Ko ﬁﬂ K s . Then, as in [2], we can show that
each K, is closed and convex with K.=K;p for az=f ; T(K. Q,)C K, for each
ordinal a . Since the transfinite sequence {K s} is nonincreasing, there is an ordinal ¥ such
that K.=Ky for n>vy , (x|x€Q,, »€T (x)}<K, and coT(Ky, Nn8n =K, .We
writt K=K,=K(T,Qs) -

Definition 1 A u.s.c. mapping T: Q,->K( F) is called ultimately compact if either
KNQ,=¢, where K=K(T, Qy) ,orif KnQ,#¢ - then T(K () Qy) is a relatively
compact set.

Definition 2 Let T: Q,-»>K(F) be an ultimately compact mapping such that
x@T(x), Vx€3(82r) .By the definition of K=K (T, Q,) K hasall properties of the K in
the Definition 1 of [3]. Hence, from the argument in [3], it follows that the relatively topological
degree degx(I-T, 2,0) is well defined where I is the identity mapping. Define

ip(T,Q)=degx(I—T,Q,0)

ir(T,9) issaid to be the fixed point index of T over £2 with respect to F.

From the results in [3], we see that the index (7 ,2) has the following properties.

Theorem 1 Let T: Q3,>K(F ) be an ultimately compact mapping such that  x ¢ T"(x)
for x€9(£27) . Then

(P)if §y(T,Q)+0 , then there exists an x€£, such that x€T (x),

®P,) if x,€Qr ,then ir(%,, 2)=1 ,where £, denotesthe map whose constant value is
{%o}.

(P)if Q,, 2, is a pair of disjoint open subsets of £ such that x¢ 7T (x),V*€E
(Q\(QUQ))r=FN (G\(2,UR,)) ., then ip(T,Q)=ix(T, ) +ir(T,Q,),

(P4)”if H.[0,11x Qr>K( F) is an ultimately compact set-valued map such that
x¢ H(t,2),V(t,x)€L0,11x3(Q) , then ip(H(1,-), Q)=ir(H(0,-)Q) .

" Proof Since K=K(T, Q,)<=F,KNA<F (1 Q2=QpandK N3RS F 852=8(S2p)from the
argument of Theorems 6 and 7 of [3], it follows that the conclusions (P,), (P,) and (P,)) hold. Noting
that %,(x)={x,}, V»€Q, and %€Qr , from the definition of K="K(%,, 5,) it
follows that x,€K (12 . Hence (P,) holds easily.

III. Nonzero Fixed Points of Set-valued Condensing Mappings

In this section, using the fixed point index of ultimately compact set-valued mappings, we shall
consider the nonzero fixed point problem of set-valued condensing mappings.

Let X be a HausdorfT locally convex space and its topology is determined by the family of
seminorms {p,, a€A} .Given a€A4 and Qc X , we define

Xa(§) = inf {£>>0]| there exists x,€X ,i=1,..., nsuch that Q& CJ:B.(x;,e)} with
i%
Ba(%,,8) ={yEX | pa(xi—y)<le}

and
v+(2) =inf{d>0| Qcan be contained in the union of a finite number of sets, each of which

has  pa.-diameter less that d}.
Now we let C={¢, A->R*=[0,00)} .For ¢ ¢€C and A>0 , we define

p<ypod(a)<p(e)  (Va€d),
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(18) (a)=1d(a)  (Va€A);
0(a)=0 (Va€A)
(max{gd,y})(a) =max{¢(a), p(a)}, (Va€).
We now define the mappings X: 2*>C and 1y, 2¥>C as follows:

2 (@)=x.(2), (Va€EA),
p(8)(a)=v.(2), (Va€A).

The mappings X and 7 arecalledthe x -measureand ¥ -measure of non-compactness.
The X -measure of noncompactness was first introduced by Sadovskii [4] and the ¥ -measure
of noncompactness was introduced by Petryshyn, Fitzpatrick [2]. For the properties of x and
¥, the reader may consult [2].

We recall that a closed convex subset W of Hausdorff locally convex space X is called a wedge if
1x€EW for each x€EW and t€R*.If the wedge W satisfies W [ {—W}={6} , then we say that
W is a cone in X. In the following, we denote the cone by P.

In the following we always assume @=y or ¥

Definition 3 A u.s.c. mapping T: DS X ->K(X) is called @-condensing if for each
2= D which is not relatively compact there exists @€A suchthat @(T(2))(a)<p(2)(a)

Now we denote the family of all compact convex subsets of X by CK(X).

Lemmal LetT: Q,»>CK(X) bea ¢ -condensing mapping. Then T is ultimately
compact and hence the fixed point index of T has the properties in Theorem 1.

Proof By theconstructionof K=K (T, Q) , T (KN@:)=K . KN8r=9¢,
then the Lemma holds. Suppose K [1Q,+¢ . We have that

D(T(KN8Dy))(a)=P(co T(KNQy)) (a) =P(K)(a)
>P(KNQr)(a)  (Va€A)
Since T is condensing, it follows from the above inequality that K ] Qy is compact. Since T'is a

u.s.c. mapping with compact value, therefore T(K Q p) is compact and so T is ultimately
compact.

Theorem 2 Let X be a Hausdorff locally convex space and Q<& X be an open set
containing 6 Suppose T: Q,->CK (W) isa ¢ -condensing mapping such that

AxgT(x), Vx€3(Sw)  (A>1) (3.1)
Then §u(T,0)=1 and T has a fixed point in Qy .
Proof Define the mapping H: [0,11x Qw->CK (W) by
H@,x)=tT(x), V (t,%)€[0,11xQw
If QcQw is not relatively compact, then there exists a€A such that
D(T(Q)) (a)<P(Q)(a)
Since H([0,11xQ)<Sco(T(Q)U{0}) , we have

P(H(L0,11x Q) (a)<P(co(T(Q) U{8})) (a)
<O(T(Q)) (2)<P(Q)(a)



214 Ding Xie-ping

Thus His @ -condensing. From Lemma 1 it follows that T is ultimately compact. Since (3.1)
implies x¢ H(t,x), V(t,x)€ [0,11x8(w) - By (P) and (P,) of Theorem 1 we have

in(T,D=ix(§, D=1
By (P,) of Theorem 1, T has a fixed point in Qy .

Remark 1 Note that X is general Hausdorfflocally convex space without the retraction
condition in {1,2]. Putting {7 = X, we obtain the improvement of Theorem 3.2 of [2]. Theorem 3.1 of
'[]isalso a special case of our Theorem 2.

Lemma 2 Let Q be a bounded open subset of a Hausdorff locally convex space X. T:

Qw—>CK (W) isa ¢ -condensing set-valued mapping and B: Qw->CK (W) 1sacompact
set-valued mapping. If tue following conditions are satisfied:
(i) for each a€A , theset (/—-T) (Qw) is  Po -bounded and

inf inf pa(y)>0
x€Qy YEBx

() x¢T(x)+tB(x), V(t,%)€L0,00)x (D)
Then iw(T,2)=0

Proof Suppose iw(T,Q)+#0.. For any A>( , define the mapping H:[0,1]x Qn
-»CK (W) by

H(t,%)=T(x)+tAB(x)

By (ii), we have x¢ H (t,x), V (t,%)€L0,11x.8(Qw)
Now if QcQy is not relatively compact, there exists gg4 such that

(T (Q)) (a) < (Q)(a)
Since H([0,11x Q) ST (Q) +co(4B(x) U{0}) and ®(AB(Q) U {6}) (a) =AP(B(Q)) (@) =0,
we have
@(H([0,11xQ)) (a)<P (T(Q)) (a) + P(co(AB(Q) U{6})) (a)
<P(T(Q)) (2)<P(Q)(a)

It follows from Lemma 1 that H is ultimately compact. By (P,) of Theorem 1, i, (T +AB,
Q)=iy(T,2)+0 .From (P)of Theorem 1 it follows that foreach A>>0 thereexists x,€Q,
such that x,€T () +AB(x;) - Since 2% yégfxﬁ-(y) >0, it follows that (I - T) (J)is
unbounded set. This is in contradiction with the condition (i). Hence iw (T ,2)=0

Lemma3 Let Pbeacone of a locally convex metrizable space Xand Q € X be a bounded
openset. Suppose T: Qp—>CK(P) is &-condensingand B: 3(p) »CK (P) isacompact
set-valued mapping such that

@) xeél(]slh) y E?(fx) l¥I>0 | where | - |is a quasinorm on X and the distance
d(x,y)= | x—y | generates the topology of X. (See. [5], 1.6.1)

(i) x¢ T (%) +tB(x), ¥ x€3(Qp), 10
Then ip(T,Q) =0

Proof Since 9(£2,)=P[)9f2 isa bounded closed set in X, by Theorem 1 of [6], B has a
u.s.c. compact set-valued extension (still denote it by B) B: O p = CK(P) such that

B(Qr)ScoB(3(5s)) (3.2)

Since B(d(£2p)) is relative compact, the condition (i) implies 0 ¢ B(8(£2)) . Itfollows easily
that



Fixed Point Index of Ultimately Compact Set-Valued Mappings 215

__inf |z|>0
260B(3(925)) (3.3)

By (3.2) and (3.3), we have

inf inf |y|>0
x€0Qr y€B(x)
Since (J, isa bounded closed set, it is easy to show that T'(Q,) isa bounded set and so (/- T)
(9Q7)is a bounded set. The conclusion of Lemma 3 holds from Lemma 2.
Remark 2 Lemma 3 is the improvement and generalization of Lemma 1 of [7].
Lemma4 Let P be acone of a locally convex metrizable space X and {2 < X bea bounded
open set. Suppose T:  Q,->CK(P) is a compact set-valued mapping zuch thst

@’ inf  inf |y|>0
x€a(82,) yeT(x)

)y  ux€T (x), x€3(2e)=>u¢ (0,1]

Then ip(T,Q)=0

Proof Letting 7= Bin Lemma 3, we show that the conditions of Lemma 3 hold. obviously, T
is - @ -condensing. We only need to prove (ii)/ = (ii) of Lemma 3. If it is not true, then there is an
%,€9(Qp) and #,>>0 such that’

%€(1+4)T (o)

<1 ‘and -—1——‘x°€T(xo) . This is in contradition iction with (ii)’.

Thus we have 0<{—1— 1+f i+1

By Lemma 3, this lemma holds.

Remark 3 Lemma 4 extends Lemma 2 of [7].

Theorem 3 Let £, and £, be bounded open subset of a Hausdorff locally convex
space X with 0€Q,=Q,=Q, ,and T: Q,,,>CK(W) is ¢ -condensing. If one of the
following conditions holds:

for each a€A , the set (I—-T)( Q,,w) is ps-bounded and there exists compact set--

(#,)) velued map B: G, >CK (W) suchthat iof - inf p.(y)>0, ¢ T () +1B(x),
V %€3(Q,,w), t
AxéT(x)r Vxea(gl.w); A’>1o

for each a€A |, the set (/- T)(Q,,y) is L= -bounded and there is a compact set-valued

B: Q inf f pa
(H,) (t;ap )\i)>,,0w—>CK(W) such that 120 Wyég(x)p (¥)>0 % ¢ T (x)+1B(x), Vx€d
1>W/,

AxgT (%), Vx€3(82,,w), A>1.

Then T has a fixed pointin Q,, 7\, -
Proof Suppose that (H,) holds (when (H,) holds the proof is similar). If T has a fixed point in
8(2,,%) Ud(£,,%) , then this theorem holds. Now assume that x¢ T(x),Vx€ 3(Q,, w)
Ud (£, ,w) . It follows from Theorem 2 and Lemma 2 that

in(T,0,)=1 and ip(T,0,)=0
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Since x€T(x) for x€ W N LQ\((2\32,) UR,1=0(2,,%) Ud(2,,w), by (P,) of

Theorem 1, we have

iw(T,0Q,)=iw(T,2\Q,) +iw(T,2,)

and so ig(T,2,\Q,)=—1 .By (P) of Theorem 1, T has a fixed pointin W 1 (2\Q))
Corollary 1 Let £, and (2, be bounded open subsets of a Husdorff locally convex
space X with 0€Q,cQ, =, ,andT, Q,,y >CK (W)is ¢ -condensing. If one of the
following conditions holds:
for each a€4 , (I-T) (Qz,w) is pa -bounded and there exists a A€W/  with
(H)) bs(h)#0 such that x¢T(x)+th for x€08 (Q,,w) and >0 ; Ax¢T(x),
Vx€3(2,,w), A>1.
for each qed4 , (I-T)(Q,,w) is Po-bounded and there exists a pegly/  with
('Hz)’{p,(h)gho such that x¢T(x)+th for x €8 (2,,»)and >0 ; Ax¢T(x),Vx€E
- 3 (Qy,%), A>1.
Then T has a fixed pointin Q, _\Q, &
Proof Putting B(x)={h}, Yx€Q,,» In Theorem 3, we obtain corollary 1.
Remark 4 Corollary 1 is the improvement and generalization of Theorem 3 of [1].
Theorem 4 Let P be a cone of a Locally convex metrizable space X. £, and Q, are
bounded open subsets of X with 9eQ,=Q,cQ, .T: Q,,,~>CK(P) is & -condensing. If
one of the following conditions holds:

t

There is a compact set-valued map B, 3((,,») >CK (P) such that xei?él R yiefjlgf( o [y]
(Hs){ >0, x¢T(x)+tB(x), Vx€3(Q,,7), t>0;
Lx eT(x)’ Vxea(QZ:P)y A>1.

. of
there exists a compact set-valued map B, 3(£2,,») >CK (P) such that xe;?é“, ) yl(IlB( x)
(H) d1y1>0, x¢T(x)+1B(x), Vx€9(£2;,5),1>0;

Ax@T(x), V%€9(2,,r), A>1.
Then T has a fixed point in P1(Q,\Q,) .
Proof The proof is similar to that of Theorem 3, so we omit it. _
Theorem 5 Let P, X, £, and £, be the same as in Theorem 4. T:P [ 2.\
- CK( P) is a compact set-valued map. If one the following conditions holds:
inf inf |y|>0, ux€T(x), x€8(Q;,p)=>p>1;
(Hy) { x€a(h,p) YET(x)
pux€T(x), x€a(82,,r)>u<l.

inf  inf |y|>0, ux€T(x), x€9(Q,,r)=>p=>1s

(H ) xea(QZ-P) yeT(J‘)
’ px€T(x), x€3(Ly,r)=>p<l.

Then T has a fixed point in P [} (2,\82,)
Proof Suppose (H,) holds (when (H) holds the proof is similar). It T has a fixed point in
8(£,,r) U3(82,,r), then the theorem holds. Now assume that T has not fixed pointin 9(£2,,,) U

3(£2,,7) . By Theorem 2.1 of 6], B has a u.s.c.'compact set-valued extension (still denote it by B) B,
Q,,»> CK(P) .From(H,) and Lemma4 it followsthat i»(T,£,)=0 .Itiseasy toseethat
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(H,) implies (3.1) with W= P. By Theorem 2, we have ip(7T,Q,)=1 . The remainder of proof
is the same as that of Theorem 3.

Remark 5 Theorem S extends Theorem 1 of [7], Corollary 3.3 of {1] and Theorems 1.2 and
1.3 of [8].

Now suppose that B: P >CK (P) is a compact set-valued map. Let Pp={x€P| JA>0, y€
B(x)such that x—Ay€P} . Specially, if B(x)={h} with 0# heP for x € P , we write
Py={x€P| 3A>0 such that x— Jh€P}

Theorem 6 Let £2, and "2, be bounded open subsets 6f a Hausdorff locally convex

space X with 0€Q,cQ,=Q,.T. Q,,,~> CK (P) is @ -condensing. If one of the following
conditions holds:

. f »
for each a€4, (I-T) (Q:,,,) is pa-bounded and (S‘;zlfp y‘é}j,(x)f’ (¥)>0 and
(H,) {y&x, Vx€P3(10%;, ye€T(x),

yR(l+e)x, ¥V x€P982,, y€T(x) and £>0 -

for each@€A, (I-T)(8,,») is "bo-bounded and Elgf Lx(lg( {a(y)>o and
x€8. p x
(Hs) y¥/x: VxEPaﬂaf)l, UGT(x),.
y}(l""e)x,v X.EPﬂa.Qz’ yeT(x) and6>0 X

Then T has a fixed point in P (2,\Q,) .

Proof Suppose (H,) holds (when (H,) holds, the proof is similar). We show that (H) = (H)
with W= P.If thecondition x¢ T (x)+1B(x), Yx€3(£,,»),t>>0 isnot true, then there exist
%,€3(8y,), 3,>0, y,€T(x,) and - z,€B(x,) such that x,=y +¢, z,.Hence %y—12z,=
Yo€T (%) SPand s0 x,€P5(138, -Since x _y —t 2 €1, B(x,) =P -Wehave yo<<x, .
This is in contradiction with (H,). If thecondition Jx ¢ T (x), Yx€3(2,, p), A>>1 isnottrue,
then there exist x,€8(82,,r), 4:>1 and y,€T(x,) such that A x,= y, . Letting
0<e,<<A;—1 ,wehave 1+4e,<4, and Yo=>(1+¢&:)x, . This is in contradiction with (H,).
From Theorem 3 with W= P, it follows that Theorem 6 holds.

Remark 6 Theorem 6 is the generalization of Corollary 3.1 of [1].

Theorem7 LetP,X, £, and £, bethesameasinTheoremd.T: Q,,,-»CK(P) is
@ -condensing. If one of the following conditions holds:

inf inf [y|>0,
(H,) { %€3(21, )y€B(x) Iyl v, V2€EP3N00), yeT (x),

y2£(1+e)x, ¥V x€PN0R2,, yeT(x)and e>¢,

inf inf |y|>0, y&x, Vx€EP5(10%2, y€T(x);
H ){ x€3(S2;. ) yEB(x)
10

yRE(1+e)x, Yx€ PN, y€T (x)ande>0,

Then T has a fixed point in P (QZ\Q ) -

Proof Using similar argument as in Theorem 6, we easily show that (H;) = (H,)and (H,O)
=(H,). This theorem follows from Theorem 4.

Bemark 7 Theorem 7 improves and extends Theorem 2 of [7].

Corollary2 LetP,X, 2, and £, bethesameasinTheorem4 T: Q,,»>CK(P) is
@-condensing. If one of the following conditions holds:
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(H ),{ y<x: Vxepbnagh yeT(x);
’ yF(1+e)x, YxeP082,, y€T(x)ande>0,
(H )/{y<x, -V x€EPy(184,, y€T (%)
* Vyk(1+e)x, V2€PN8Q,, yET(x)ande>0.
Then T has a fixed point in P (~§2\Q,)
Proof By putting B(x)={h}, Yx€P »where hE€P, |h|+0 , this corollary follows

from Theorem 7.
Remark 8 Corollary 2 extends the corollary of [7] and Theorem 2 of [9].

References

[ ] Fizpatrick, P.M. and W.V. Petryshyn, Fixed point theorems and the fixed point index for
multivalued mappings in cones, J. London Math. Soc., 12 (1975), 75— 85.

[ 2] Petryshyn, W.V* and P.M. Fizpatrick, A degree theory, fixed point theroems, and mapping
theorem for multivalued noncompact mappings, Trans. Amer. Math. Soc., 194 (1974), 1 - 25.

[3] Duc, D.M. D.D. Thanh and D.D. Ang, Relative topological degree of set-valued compact
vector fields and its applications, J. Math. Anal. appl., 80 (1981), 406 —432.

[ 4] Sadovskii, B.N., Measures of noncompactness and condensing operators, Prob. Mat. Anal.
Sloz Sistem, 2 (1968), 89—119.

[ 5] Schaefer; H.H., Topological Vector Spaces, Springer-Verlag, New York, Fourth, Corrected
Printing (1980).

[ 6] Ma, T.W., Topological degrees for set-valued compact vector fields in locally convex spaces ,

" Dissertationes Math., 92 (1972), 1 —43.

[ 71 Guo Da-jun, Kexue Tongbao, 28, 20 (1983), 1217 —1219. (in Chinese)

[ 8] Gatica, J.A. and H.L. Smith, Fixed point techniques in cone with applications, J. Math. Anal.
Appl., 61 (1977), 58 —71.

[9] Leggett, RW. and L.A. Williams, A fixed point theorem with application to an infectious
disease model, J. Math. Anal. Appl., 76 (1980), 91 —97.



