Applied Mathematics and Mechanics Published by SUT,
(English Edition, Vol.8, No.3, Mar. 1987) Shanghai, China

THE NUMERICAL SOLUTION OF THE UNSTEADY NATURAL
CONVECTION FLOW IN A SQUARE CAVITY AT HIGH
RAYLEIGH NUMBER USING SADI METHOD

Wang Pu( £ #)
(Lanzhou University, Lanzhou, )

R. Kahawita

(Ecole Polytechnique de Montreal, Canada)

(Received Feb. 20, 1986 Communicated by Yeh Kai-yuan)

Abstract

The unsteady natural convection flow in a square cavity at high Rayleigh number
Ra=10" and 2 x 107 has been computed using cubic spline integration. The required
solutions to the two dimensional Navier-Stokes and energy equations have been obtained
using two alternate numerical formulations on non-uniform grids. The main features of the
transient flow have been briefly discussed. The results obtained by using the present method
“are in good agreement.with the theoretical predictions!'?. The steady state results have

been compared with accurate solutions presented recently for Ra=107.

1. Introduction

Cubic spline technique in the numerical integration of partial differential equations are today
finding increased applications after the pioneering work of Rubin and Graves" and Rubin and
Khosla®. The authorss-7 extended the development of [3,4] and indicated the procedure for the
reduction of the 3 x3 matrices obtained with the previous formulation into a scalar system
containing either the function values at the grid points, the first derivatives or the second
derivativest®.

Convection in cavities is an area of study with apphcatlons in a number of various domains.
The ‘majority of prior work on cavity convection has been concerned with steady-state
situations®- 1. Yet in many of the fields of application, the convective flows may be in a transient or
unsteady state. Recognizing this fact, some of the recent work in the field has focused on the nature
of the flow in'the transient regime and the manner in which this flow evolves into the final steady
state. The numerical results of unsteady natural convection flow in the above works have been
obtained for Ra = 10¢. For the value of Ra = 107, the numerical transient solution seems to have been
reported in the literature.

This paper reports on the results of an investigation undertaken to assess the efficiency of the
technique in fhe solution of unsteady natural convection in a square cavity at Ra=107 and
Ra=2x 107. The SADI (Spline Alternatmg Direction Implicit) procedure is used for solving the
proBlem. Computations have been performed for Prandtl number Pr=0.71 and Pr=2.7. The main
features of transient flow predicted by a scale analysis are briefly presented. The steady
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state results are in good agreement with accurate solutions presented recently for Ra=10".

The results obtained are encouraging and make known that the cubic spline technique is an
efficient method for solving the problem of the unsteady natural convection flow at high Rayleigh
number, and justify further research in the field.

[I. Mathematical Formulation

‘The geometry of the problem under consideration is indicated in Fig. 1. The aspect ratio of the
half cavity is denoted by E=1/H. The Navier Stokes equations may be simplified and expressed as:
Continuity

Y
du dv _
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where V* is the Laplacian operator, £ is the bulk expansion coefficient, v the viscosity
coefficient, a the thermal diffusivity and P« is the density at the reference
terhperature T, ‘ '
" After elimination of the ‘prcssuré between Egs. (2.2) and (2.3), the use of the continuity
equation (2.1) coupled with the vorticity expression, results in the following system of equations,
where all the variables have been made dimensionless:

Vip=—Q (2.5)
aq aQ aq a0 ’
3c T¥rax —¥xgy = Prvid+Pr- Raow (2.6)

a9 -
61 L br o ax Py aY =v’0 (2.7)

where ¢ is the stream function, [/ ~

I
=gt = V==t

£ is the vorticity = _(% _%)

v=ta/L*, U=uL/s, V=uL/a, §=(T=T0)/(Ta—T,), X=x/L, V=y/L

with

P_=Prandtl Number Ra = Rayleigh Number.
Boundary conditions
The specified boundary conditions of the problem are:
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at  X=0, ¢p=9x=0, Q=—y¢xx, =05,
at X=1! '/’=¢’X=0: Q=—7pxx, 0=—0-5;

Y=(), 1, ¢=¢7=0' Q=_'/’YY, gg~=

It is of interest to note that the boundary conditions for the vorticity transport equation (2.6) are not
explicity known and have to be evaluated by using Eq. (2.5) at the walls. This is one of the well
known difficulties that arise in the solution of the problem. With the spline technique however,
Yxx and yrr may be directly determined using the basic spline relations, a distinct advantage
computationally.

III. Numerical Solution

In this study, the SADI (Spline-Alternating-Direction-Implicit) procedure was used to
generate an algorithm resulting in a tridiagonal system containing either function values or first
derivatives at the node points. The boundary conditions were evaluated using a general formula
obtained from the basic spline formulae. The prihcipa] formulations are presented in Appendices
Vorticity equation

In the two-step procedure the algorlthm obtained for the first step is:

Dty =01,y + 55— i), 4 (93,

+ Pr(M"“”+ L?,+RaPrg "“)]

—'F(;!+ Rl;lm.+l/z+Qi:lMt+“z (3.1)

where

w» Rip Q are known from the previous time step.
In the second step, the values of 2 are updated from time (n+1/2)Ar to (n+1)Arasin
standard ADI methods.

.Q‘ Y - Qu+l/z+___[ (¢’mu+112)‘ ’+(¢xl )“,

+Pr(M"“"+ L7%'+Ra g?“)]

—-F‘,,+R,,;I"“+Q';,3L, (3.2)

Where the following notation has been used
m=90/8X, M=9'Q/0X* 1=08Q/3Y, L=38Q/Y*, g=080/8X

Egs. (3.1) and (3.2) have been solved by using Eq. (A.2) in Appendix The values of (Q are
evaluated directly with the boundary conditions

(@) xo=—(P"xx)x-03 (2" xii=— (¥ xx)zey’
(") yao=—(9"rr)raes ("*)ro1=—(Yrr)r.,
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¥x , ¥r, ¥xx, ¥rr being obtained from the stream function equation at time = - Ar .

In order to obtain the values of the first derivatives m}‘;}" 2 I '“" a tridiagonal
formulation containing only first derivatives was used it being unnecessary to specify additional
boundary conditions. M"*‘% , Ly} were evaluated in a similar fashion.

Energy equation ’

For the first time step in the X direction, Eq. (A.2) from Appendix was used with the boundary

conditions.

ex.n=0.5, 0x-1=—0.5

N 4172 n A n4 n n n
015 =01y + -5~ (9rG™ ), s+ (W) B+ G 112 K3, )

=Fi:l+Rt,19nJ“2+ Qi,; u+j”2 (3.32)
where
__ 9% o6 %0
G"aXZ' k= ay K“ayz

For the second time step

0rst=Fi o+ R k3 4+Q (K ) (3.3b)
The alternate equation (A.3) in the Appendix, which contains the first derivatives only, was used

since the adiabatic wall condition implies zero first derivatives. i.e. () :+;= (k)pti=0 , then

%35 may be evaluated by a recursive relation with the following form (with the index i omitted)

0:+1=d5—al G?i} 150
F)
with
0n+1= dnbl_dlbﬂ
0 ayb,—a,bg
where

6,=14+6Q,"/h* b,=1—a,

’ n+l n+t
dymFy? 4 Rothy —Qr (R 4R

a;=—6Q;"/h by=1-—a;
d Fjll_*_R "h n+l+Q ,,(2_[3',':_}_—*_—_4_’3_1:)
hy=Y;—Y;_, ( grid spacing)

Stream function equation
The stream function equation may be rewritten as a Cauchy-Kowaleska equation

ay
S =Vy+a



Solution of Unsteady Natural Convection Flow Using SADI Method 223

The first step in the solution procedure is

At

0=y +%‘(L?u +88,4) +TM77+_1“2=ThJ+waM”juz. (3.4)

while the second step results in

' t
U = S (M Q) + 5L (3.5)

Equations (3.4) and (3.5) are solved in a similar manner to the second step of the Energy equation.
No difficulties arise since the boundary conditions are appropriately specified. To obtain steady
state solutions, repeated iterations until convergence are necessary. As the SADI procédure is
unconditionally stable, large fictitious time steps may be used. Clearly, with this procedure, any
intermediate results would not be representative of any time transient solution. '
Nusselt number calculations

Nu(X)=—a—f’)é)(—+U0 (3.6)
IW(X):—I:Nu(X)dY (3.7)

The first term in equation (3.6) represents the flux transport due to conduction, the second term
is the contribution due to heat advection and increases with increasing Rayleigh Number.
Theoretically,Nu(X) would be independant of X and equal to the values calculated on the vertical
walls. Numerically, this property is generally not satisfied and the maximum difference between the
I_\I-u(X ) values may be used to check the accuracy of the numerical method.

IV. Results and Discussion

Transient flow

. The computations were performed for the transient convective regime in a square cavity for
values of Ra=107 and 2 x 107 the Prandtl number being of the values from 0.71 to 10 (the condition
Ra>Pr'®imposes the value Pr=2.7 as a limit value to access to regime VI). The initial conditions
imposed were U=V =Q=0=0 . In order to provide high resolution in the “boundary layer”
region near the walls, a non uniform mesh was used with the spacing ratio from wall to centre-line
hi,1/hs=1.28for the mesh which was 21 by 21 which being A, , /h; = 1.18 for 31 x 31. The time step
At =10 was used in the vorticity and energy equations while being At =0.05 for stream
function equation.

The computations were carried out for the transient convective regime called V1 by Patterson et
all'?, In a square cavity, the condition for this flow toexist is given by: Ra>-Pr'® . Starting from a
fluid at zero conditions; the evalution to steady state is divided into four transient sub-region with
the following hierachy of reduced time scales and main features:

times scales ~ main features
7;=Ra~?"5 (4.1) Thermal boundary layer and inertial intrusions formed
T2=1/(Pr'/*Ra512) (4.2) Inertial intrusions reach the far end wall internalwave

activity and layering commence.

Ty=Ra 0" (4.3) Cavity filled by horizontal layering but internal wave
activity present.
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Too=Rr™! (4.4) Steady state by decay of wave motion. Distinct velocity
and thermal layers present . The flow in dominated by
inertia and the heat transfer by convection.

P=2x./3/Ra-Pr (4.5) Period of internal wave motion.

The transient solutions are shown in the Fig. la~1d for Ra=10" and Pr=0.71. The
characteristics of the transient convective regime are very similar to those obtained by using the
method of spline fractional steps. They will be presented in another paper {12].

In Fig. 2a, the transient temperature profiles in the horizontal middle plane are shown. Fig. 2b
shows the vertical velocity profiles in the horizontal middle plane. At 7o= 10™* | thecore may be
regarded as stationary. As the time increases, the convective effects and the core activity become
very strong. The dependence of the mean convective flux on 7 is given in Fig. 2c. It is difined by:

Qov== j :UadY
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Fig. 3 Varnations of the mean Nusselt number Nu,
as a function of time for different Prandtl numbers

The variations with 7 of the Nusselt number at hot wall (N u,) and in the middle plane of the
cavity (Nu ) are shown in Fig. 2d. The 7, valueisindicated and it appears that the scale analysis of
(1.2] allows to properly predict the beginning of the internal wave motion. The period of the internai
wave motion is given on the figure and its value is in good agreement with the theoretical predictions
(r=0.00334). _ ,

The dependence of the oscillation of Nu_ on Pr is given in Fig. 3. The results show evidence
together with Fig. 1d that, as the value of Prandtl number increases, the period of the internal wave

N
Ra=2x10
Pr=217
"y P r
0.0 0.005 0.01 0.015

Fig. 4 Variations with ¢ of Nusselt numbers for Ra=2x10" and Pr=2.7
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motion decreases with a ratio 2,/91=(Pr,/Pr,)""®

.For Pr=10, Pr'*»Pa | the oscillations

of Nu_ doesn’t arise. For Pr = 3.0, however, the transient convective regime is very similar to those
obtained for Pr=2.7, although in thiscase Pr'®>>Ra .Itseems that the condition Pr'®<Ra is
of scale signification only.

In Fig. 4, the variations with

Table | Comparison of the steady state solutions at Ra=10" and Pr=0.71

T of Nusselt number for Ra=2x 107 and Pr=2.7.

Mesh size Y. V max U max Nu,, Nu, Nt min Nt max
- T10.21 149,68 | 1.425 40.00
31X 31 29.48 X—=0 0192 | V=0 813 16.73 : 16.68 Vet Y=0 0182
710,77 160.16 | 1.4 39.00
(121 31X31) 30.08 | y_ ' oiool yeggrs| 1670 18.77 y=418 ¥'=0.0182
697.28 144.49 1.387 40.42
[10] 31X31| 20.08 X=0.0215 | ¥=0.860 16.66 18.34 Yei Y—0.011
' 728.23 147.56 1.416 36.50
Ref [13] X=0.0237 | ¥=0.888 16.34 Y=1 Y=0.01t
Table 2 The Steady State Solutions at Ra=2x 107 and Pr=0.71
Mesh size ¥e ﬁvm u_. Nu, Nu, Nu_ Nu
1051.20 203.63 1.906 49.22
31x31 38.02 <=0.018 y=0879 20.08 20.87 y=0.99 y=0018

The steady state results for Ra=107 and Ra=2 x 107 are reported in Table 1 and Table 2. The
comparisons with available finite element data of Upson!"! from [10]) and the spline solution from
[10] also given in Table 1 for Ra= 107 and Pr=0.71. In the Tables, the symbols have the following
significance: o -the stream function at the center of the cavity; Umax -the maximum
horizontal velocity on the vertical middle plane. ¥ ,,, -the maximum vertical velocity on the
horizontal middle plane. The values of the minimum and maximum local Nusselt numbers on the
hot wall together with their locations are shown also.

V. Conclusions

The numerical solutions of the transient convective flow at Ra=107 and Ra=2 x 107 have
been obtained. The results are in good agreement with the theoretical predictions.

The SADI method seems to be an effective procedure for solving the problem of unsteady
natural convection flow in square cavity at high Rayleigh numbers. The main advantages of using
cubic spline approximation are that:

(1) The governing matrix system obtained is always tridiagonal.

(2) A variable mesh may be used without an introduction of a numerical viscosity since
the truncation error is 0(4%) on the first derivatives.

(3) Since the values of first or second derivatives may be evaluated directly, boundary
conditions -containing derivatives may be directly incorporated into the solution procedure thus
avoiding the difficulty that exists with conventional finite difference schemes.
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Solution of Unsteady Natural Convection Flow Using SADI Method 227
APPENDIX

In this section, the results of some simple developments are presented. (From Wang and
Kahawital®l)

For example, after an equation of the type (3.1) has been 6btained, it may be converted with the
aid of the spline formulae into three useful forms containing exclusively either the function values,
first derivatives or second derivatives.

Consider the following system of equations

utH= FrHl | Revt patt g QutiMant (A.1)

1) The transformed system containing function values only (and with the time index n+ 1 omitted)
may be written.

Ao+ Bisi+ Cisiyy=Di (i=1, N) (A.2)
Where
_ehi 1
A=e h
B' dhr ailti ei+1(hi+hi+1) _R‘+1(’l2‘+1+3R‘h¢+1 GQ‘) h1+h‘+1
e 60; 3Cis 360(.,.1 h;hﬂ.l
C.= dipsChithen)  Ri(2h%41—3Re1his1)—8Qu(hiyy) 1
' 36441 360441 41
D= 04"4 Sy aip1(Aethiss)  Foan(2R A2,y —6Qihes )+ F i Risih?
3Ce41 36C41
and
o= F«Rs-xh«+F'_l(Rih¢ Q,)
Com= RRyih?  (Rih+3Q0) (Ry-1hi—3Qs1)
= 36 9
h, R, Q
C"-Ri-l( gt )
e=R, (—f"— +5ﬂ)+0.( 1+}3;‘ %)
hy=2%y— 2%y
2) The equations containing first derivative values only are
A,m,._1+Bim;+Cim‘+1=D‘ (i=ly N) (A"3)
Where
A __1__ _2Qi+4Q(~l'—R(—1hl!
=3k, h3,A,
B _3(1 . )_20.+,+4Q.—R‘h,+1 2Qi-1+4Qi+ Rk,
AV Wy h31B441 B34,
C.= 1 ZQ +4Q, u+ Riihin
= 3hin [ LAY

. FH.I—'F( F‘—'Fg—l
D= Fibm | ELA,

A= 1+e(—r—o‘+$"‘)
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3) The system with second derivatives only is

AMIH+BMMI+C M =D, (i=1, N) (A4
where
ki, R42Rey Quy
A=t TR ThA,
hi+hiy  Ria+2R, 2R +R,. { 1
B, =" 4l Vil i [ $-1 )
! 3 6441 + 6A, +Q‘< Bk + Bk
6‘=h_l+_1__ 2R-‘+1+Rf _ Qt+1
6 6A1 hH.lAHl
D, = F«+1"‘F« _ Ft—F{-l
! Bppihin Ak
__R—Ru
S
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