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A b s t r a c t  

The unsteady natural convection flow in a square cavity at high Rayleigh number 

Ra = 107 and 2 x 107 has been computed using cubic spline integration. The required 

solutions to the two dimensional Navier-Stokes and energy equations have been obtained 

using two alternate numerical formulations on non-uniform grids. The main features o f  the 

transient flow have been briefly disc .ussed. The results obtained by using the present method 

a r e  in good agreement, with the theoretical predictions II,zl. The steady state results have 

been compared with accurate solutions presented recently for Ra = 107. 

I. I n t r o d u c t i o n  

Cubic spline technique in the numerical integration of partiat differential equations are today 

finding increased applications after the pioneering work of Rubin and Gravest3] and Rubin and 

Khoslat4]. The authorstS-7] extended the development of [3,4] and indicated the procedure for the 

reduction of the. 3 x 3 matrices obtained with the previous formulation into a scalar system 

containing either the function values at the grid points, the first derivatives o r  the second 
derivativestSJ. 

Convection in cavities is an area oi ~ study with applications in a number of various domains. 

The majority of prior work" on cavity convection has been concerned with steady-state 

situationst9- till ~et  in many of the fields of application, the convective flows may be in a transient or 

unsteady state. Recognizing this fact, some of the recent work in the field has focused on the nature 

of the flow in'the trahsient regime and the manner in which this flow evolves into the final steady 

state. The numerical results of unsteady natural convection flow in the above works have been 

obtained for Ra = 106. For the value ofRa = 1 0  7, the numerical transient solution seems to have been 

reported in the literature. 
This paper reports on the results of an investigation undertaken to assess the efficiency of the 

technique in the solution of unsteady natural convection in a square cavity at Ra = 1 0  7 and 

Ra = 2. x t07. . Tahe SADI (Spline Alternating Direction Implicit) procedure is used for solving the 

problem. Computations have been performed for Prandtl number Pr = 0.71 and Pr = 2.7. The main 

features of transient flow predicted by a scale analysis are briefly presented. The steady 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



220 Wang Pu and R. Kahawita 

state results are in good agreement with accurate solution.s presented recently for Ra = 107. 
The results obtained are encouraging and make known that the cubic spline technique is an 

efficient method for solving the problem of the unsteady natural convection flow at high Rayleigh 

number, an d justify further research in the field. 

II. M a t h e m a t i c a l  F o r m u l a t i o n  

.The geometry of the problem under consideration is indicated in Fig. 1. The aspect ratio of the 
half cavity is denoted by E= I/H. The Navier Stokes equations may.be,simplified and expressed as: 

C o n t i n u i t y  

Ou Ov oX +--~- =o (2.1) 

M o m e n t u m  

po/aU~._~_ OU OU \ OP 
+ u-s- ;-  + - - s - 7 +  

(2.2) 

po(  ov oo oP + r e .  ( 2. ) + u - ~  + v -~- - )=-  au 

--9poEl--fl(T--To) I 

E n e r g y  

Tl=0,5 

rU 

In:gffl'ated 
r  I I i i z . -  L 

i~l ,'1 

i . . . . . .  , 

Insulated 

T ~ = - - 0 . 5  

(Co~d)' 

Fig. 1 Definition sketch of natural 
convection problem 

OT OT aT 
at ~-u-~-+V-~y =aVzT (2.4) 

where V z is the Laplacian operator, fl is the bulk expansion coefficient, v the viscosity 

coefficient, a the thermal diffusivity and t90 is the density at the reference 
temperature T O . 

After elimination of the .pressure between Eqs. (2.2) and (2.3), the use of the continuity 

equation (2.1) coupled with the vorticity expression, results in the following system of equations, 
where all the variables have been made dimensionless: 

V~r (2.5) 
a~2 oF~ oi~ ao 
O---~- +~r-ff~- -~x- '~y--= P r v ~ Q + P r  �9 R a - ~ -  (2.6) 

00 00 O0 - 2 
Or C Y T X - - ~ - ~  - = v  v (2.7) 

where ~ is the stream function, 09 �9 0~p . 
u =  o-T-y--r v = -  a - X - _ - r  , 

is the vorticity = _ (  0_~U OV - - g ~ )  , 
with 

\ ~.r 

r=ta/L ~, U=uL/a, V=vL/a, O=(T-~To)/(T~--T~ X=x /L ,  Y = y / L  

P~ = Prandtl Number Ra = Rayleigh Number. 
B o u n d a r y  c o n d i t i o n s  

The specified boundary conditions of the problem are: 
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at X=O, ~p=IPx=0, O=-- lPxz,  0=0 .5 ,  

at X = I ,  r  O=--Oxx, 0=--0.~r,  

O0 
Y = 0 ,  1, ~P=r O=--~brr ,  " 0 y - = 0  

It is of interest to note that the boundary conditions for the vorticity transport equation (2.6) are not 
r known and have to be evaluated by using Eq. (2.5) at the walls. This is one of the well 
known difficulties that arise in the solution of the problem. With the spline technique however, 
~xx and e r r  may be directly determined using the basic spline relations, a distinct advantage 
computationally. 

III. Numerica l  So lut ion  

In this study, the SADI (Spline-Alternating-Direction-Implicit) procedure was used to 
generate an algorithm resulting in a tridiagonal system containing either function values or first 
derivatives at the node points. The boundary conditions were evaluated using a general formula 
obtained from the basic spline formulae. The principal formulations are presented in Appendices 
Vor t i c i t y  e q u a t i o n  

In the two-step procedure the algorithm obtained for the first step is: 

II'+ I / Z  

-- F, ~+ R, - -+ la•  ~Ar,+la , , $~"*d y$ " r ' ~ l d , $  ,trz vl~J 

where 
F~2 Ri2 Qij are known from the previous time step. 

In the second step, the values of ~Q are updated from time ( ,n+l /2)Ar  to 
standard ADI methods. 

( 3 . 1 )  

( n + 1 )  Ar asin 

o . §  ~;,,?,~+ - ~ , ~ , , ,  J , , ~ - - w ~ -  ) , , ~  ~a l ' l J  ~ l . k U ~ l l §  L I'.l, l l f l  

+ Pr (M,",Sta + L~',~j I + Ra g , '~)  ] 

l . + l + c v  L.+l =Ft~,.t'q - Rt~,:t l,.~ ,*,r ~,~ ~,J ( 3 . 2 )  

Where the following notation has been used 

m=OO/OX, M = o ~ o / o X  ~, I=OD/OY, L=a212/OY 2, g=OO/OX 

Eqs. (3.1) and (3.2) have been solved by using Eq. (A.2) in Appendix The values of 
evaluated directly with the boundary conditions 

( O ' + ' " ) x - o  - -  - ( r  (~"+"~)~  - , - -  - ( r  

(O"+') r - 0 = -  (0"rr) r-,J (t2 "§ ~'., = - (~rr) 'r . ,  

f) are 
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r  , r  , ~bxx, ~brr being obtained from the stream function equation at time n �9 Ar �9 

In order to obtain the values of  the first derivatives "-'*+'/~ In+' "',,s , . , , j  a tridiagonal 
formulation containing only first derivatives was used it being unnecessary to specify additional 

boundary conditions. Mn+�89 , L.+~ were evaluated in a similar fashion. 

E n e r g y  e q u a t i o n  ' '~ ~'J 

For the first time step in the X direction, Eq. (A.2) from Appendix was used with the boundary 

conditions. 

0 x . o = 0 . 5 ,  0 x . l = - - 0 . 5  

O.+,.'~--n. _ ~ (  ) ,,~ - - ~ , , j  + - - ( ,prg"+~/z ) , ,~+(~Pxk)  ~ , ~ + G  " + ' , z 2 - r ( "  

where 

For the second time step 

['2_ n + , 1 2  (3.3a) 

0~0 O0 OzO 
G = b--X-r , k = -b-y- , K = o y e 

t! ~ t t  L t l §  It T - ( n + l  vi,~n"+t---- F,,~+ Ki,~,,~ +Q ,,'~'~*,3 ( 3 . 3 b )  

The alternate equation (A.3) in the Appendix, which contains the first derivatives only, was used 

. + l _ "+ ' -- then since the adiabatic wall condition implies zero first derivatives, i.e. ( k ) r - o - -  { k ) y .  ~--0 , 

O n + l  
~, ~ may be evaluated by a recursive relation with the following form (with the index i omitted) 

" b j  

with 

where 

0~ + , __ d o b i - d l b o  
- a o b l ' a l b o  

ao=l+6Qo"/h,2~ bo=l-a o 
d~176 + Rdk~176 ( 2kl"+l+4k~ ) 

d - - F  " + R  "k .+1 l g k : + l " A k ' + l ~  

h j = Y t - - Y ~ _ l  ( g r i d  spacing) 

S t r e a m  f u n c t i o n  e q u a t i o n  

The stream function equation may be rewritten as a Cauchy-Kowaleska equation 

a~ =V~ ~ +  at 
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The first step in the solution procedure is 

. / , , ,+. . :~__./ , , ,  At , . .  At - - + I /  
t.lJ l , j .~ v.c f~ y j , ' , ,J -- , ' , ,s  + - - ~ ( L , , j  + f 2 I ' , j ) + - - T - M , ,  ~ z = T , , j +  ~R.+,,~ 

while the second step results in 

( 3 . 4 )  

~.+1 .§ At . . . §  + At L .+ l  ( 3 .5 )  j,, : r  +--~--(M,,, +~ ' , j )  - 5 - ' , '  

Equations (3.4) and (3.5) are solved in a similar manner to the second step of the Energy equation. 
No difficulties arise since the boundary conditions are appropriately specified. To obtain steady 
state solutions, repeated iterations until convergence are necessary. As the SADI procedure is 
unconditionally stable, large fictitious time steps may be used. Clearly, with this procedure, any 
intermediate results would not be representative of any time transient solution. 

Nusse l t  n u m b e r  c a l c u l a t i o n s  

00 Nu( X )  = ----~-X-+ UO .(3.6) 

I'o U(X)dr (3.7) 
The .first term in equation (3.6) represents the flux transport due to conduction, the second term 

is the contribution due to heat advection and increases with increasing Rayleigh Nm~ber. 

Theorctically,Nu(X) would be independant of X and equal to the values calculated on the vertical 
walls. Numerically, this property is generally not satisfied �9 the maximum difference between the 
Nu(X) values may be used to check the accuracy of the numerical method. 

IV. R e s u l t s  a n d  D i s c u s s i o n  

T r a n s i e n t  f low 

The computations were performed for the transient convective regime in a square cavity for 
values of Ra-- l 0  7 and 2 x 107 the Prandtl number being of the values from 0.71 to 10 (the conditio n 

~ a ~ P r  '6 imposes the value Pr = 2.7 as a limit value to access to regime VI). The initial Conditions 

imposed were U - ~ Y - - - - ~ O = O  �9 In order to provide high resolution in the "boundary layer" 
region near the walls, a non uniform mesh was used with the spacing ratio from wall to centre-liae 
h, , , /h ,  = 1.28for the mesh which was 21 by 21 which being h~§ = 1.18 for 31 x 31. The time Step 
Av = 10-5 was used in the vorticity and energy equations while being At =0.05 for stream 
function equation. 

The computations were carried out for the transient convective regime called VI by Patterson et 
alt'.2]. In a square cavity, the condition for this flow toexist is giveli by: R a ~ . P r  'e . Starting from a 
fluid at zero conditions; the ev.alution to steady state is divided into four transient sub-region with 
the following hierachy of reduced time scales and main features: 

times scales main features 

~. _. Ra-O. 5 (4.1)  Thermal boundary layer and inertial intrusiona formed 

r 2 = l / ( P r ' / S R a  ~/'z) (4 .2)  Inertial intrusions reach the far end,wall,internal'wave 

activity and layering commence. 

v ~ f R a :  ".~ (4 .3)  Cavity filled by horizontal layering but internal wave 
activity present. 
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roo=Rr -1 
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(4,4) Steady state by decay of wave motion. Distinct velocity 

and thermal layers present. The flow in dominated by 

inertia and the heat transfer by convection. 

P = 2 ~ / 2 / R a .  Pr (4.5) Period of internal wave motion. 

The transient solutions are shown in the Fig. l a - l d  for Ra=107 and Pr=0.71. The 

characteristics of the transient convective regime are very similar to those obtained by using the 

method of spline fractional steps. They will be presented in another paper [12]. 

In Fig. 2a, the transient temperature profiles in the horizontal middle plane are shown. Fig. 2b 

shows the vertical velocity profiles in the horizontal middle plane. At v0 = 10- 4 , the core may be 

regarded as stationary�9 As the time increases, the convective effects and the core activity become 

very strong. The dependence of the mean convective flux on r is given in Fig. 2c. It is difined by: 

q..=~iUOdY 

0.? 

O..1 !,',z ~ 10'  

Pr =0.';] 

0,3 

0.:.' l ~ r  

O. 

�9 ~ ' ,  . 
(a) Temperature dlstnbutlon in the 

horizontal middle plane 

lq~" r =O.O0.l �9 

. . . . . . . .  T o o  1U 

J -  . . . .  _, . . . .  _ _  0.1 0.2 0:3 0.4 ~r 
(c) Mean convective flux 

N~ 

j ,  , r  

,~0! )  .t 

640. Ra=lO,- 
Pr--O.?l 

480 i 

320. rz 

r . . .  

160 \ ~  

~ 0.,2 ~ 
_ _ _ _ _ _ _  

(b) Vertical velocity profile in the horizontal middle 
plane 

30. O.O0~g 

2 0 .  �9 " ~ c  

i , . l  l ~ I l r ~ l  

o.ot o.o2 ~_os = 0.04 o,o~ o.0o 

(d) Variations of  the mean Nussdt  numbers Nu  t and Nu~, as 
a function o f  time, 

Fig.2 

l0 

0.0L 
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~O.I A" 

20. 

10. 

/~a'=l O' 

~ l  o.ooz, i 
..(P,.--~o) / ~  . . . .  , ~,(er~-.2.7, 

T . . . .  
0.005 0.01 0.015 

_1- 

Fig. 3 Variations of the mean Nusselt number N u  

as a function of time for different Prandtl numbers 

The variations with r of  the Nusselt number at hot wall (Nu, )  and in the middle plane of  the 

cavity ( N u )  are shown in Fig. 2d. The r2 value is indicated and it appears that the scale analysis of  

[1,2] allows to properly predict the beginning of  the internal wave motion. The period of  the internal 

wave motion is given on the figure and its value is in good agreement with the theoretical predictions 
(p = 0.00334). 

The dependence of  the oscillation of  Nu c on Pr is given in Fig. 3. The results show evidence 

together with Fig. ld that, as the value of  Prandtl number increases, the period of  the internal wave 

40. 

30. 

20, 

10. 

/ 7 a = 2  • 10: 

Pr----2.7 

t~ 

I" 

0 05 0.01 0.015 

Fig. 4 Variations with t of Nusselt numbers for Ra=2 • 107 and Pr=2.7 
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motion decreases with a ratio PJPt----- ( P r d P r 2 )  ~ 5 . For  Pr = 10, P r t ~  , the oscillations 

o f N u  c doesn't arise. For  Pr = 3.0, however, the transient convective regime is very similar to those 

obtained for Pr = 2.7, although in this case p r t O ~ R a  . It seems that the condition P r Z e ( R a  is 

of  scale signification only. 

In Fig. 4, the variations with r of  Nusselt number for R a = 2 x  107 and Pr=2.7 .  

Table 1 Comparison of the steady state solutions at Ra= 107 and Pr=0.71 

Mesh size 

31X31 

[12] $IX31 

[lO] 31• 

Ref [13] 

29.48 

30.08 

29.08 

Vmax Umax 

710.2"/ 149.68 
X=0.0192 Y-----O.8T3 

TlO.T7 150.16 
X=0.0192 Y=O.ST3 

697.28 144.49 

X----0.0215 Y=0.860 

728.23 147.56 
X=0.0237 Y=0.808 

Nuw 

16.73 

16.70 

16.66 

16.34 

Nuc 

16.68 

16.77 

16.34 

Nil min 

1.425 
Y = I  

1.4~ 
Y=I 

I 1.387 
I Y=I 
t 1.416 

Y----1 

Num~ 

40.00 
Y----0.0192 

39.00 
Y=0.0192 

40.42 
Y=O.OIT 

36.50 
Y=0.011 

Table 2 The Steady State Solutions at R a = 2 x  10 ' and Pr=0.71 

M~h size $0c Vm~ Um~ NU NU c NU~. N u  

1051.20 203.63 1.906 49.22 
31 x 31 38.02 20.08 20.87 

x = 0.018 y = 0.879 y = 0.99 y = 0.018 

The steady state results for Ra = 107 and Ra = 2 x 107 are reported in Table 1 and Table 2. The 

comparisons with available finite element data of  Upsonp31 from [10]) and the spline solution from 

[10] also given in Table 1 for R a =  107 and Pr =0.71. In the Tables, the symbols have the following 

significance: @o -the stream function at the center of  the cavity; Umax -the maximum 

horizontal velocity on the vertical middle plane. V max -the maximum vertical velocity on the 

horizontal middle plane. The values of  the minimum and maximum local Nusselt numbers on the 

hot wall together with their locations are shown also. 

V. Conclus ions  

The numerical solutions of  the transient convective flow at Ra = 107 and Ra = 2 x 107 have 

been obtained. The results are in good agreement with the theoretical predictions. 

The SADI method seems to be an effective procedure for solving the problem of  unsteady 

natural convection flow in square cavity at high Rayleigh numbers. The main advantages of  using 

cubic spline approximation are that: 

(1) The governing matrix system obtained is always tridiagonal. 

(2) A variable mesh may be used without an introduction of  a numerical viscosity since 

the truncation error is O(h 3) on the first derivatives. 

(3) Since the values of  first or second derivatives may be evaluated directly, boundary 

conditions -containing derivatives may be directly incorporated into the solution procedure.thus 

avoiding the difficulty that exists with conventional finite difference schemes. 
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A P P E N D I X  
In this section, the results of some simple developments are presented. (From Wang and 

Kahawitat'l) 

For example, after an equation of the type (3.1) has been obtained, it may be converted with the 
aid of the spline formulae into three useful forms containing exclusively either the function values, 
first derivatives or second derivatives. 

Consider the following system of equations 

u ".+x= F ".+1 +/~+~ mr+t+ Q:+'M". +* (A. 1) 
! ! I - - i  I 

1) The transformed system containing function values only (and with the time index n + 1 omitted) 
may be written. 

A,ui_t  + Biui + Ciui+l = Di ( A .  2) 

Where 

Bi =dlh l  
6c i  -'1 

A eihl 1 

(i----- I, N)  

ei+l(h~+h~+O R,+I(h=,+,+ 3R,h,+,-sQ,) + h,+h,+x 
3 c i + ,  - -  36c~+~. ' 

C,= d,+,(h,+h,+,) 
3cl+, 

R,(2h2,+l-3R,§ 1 
360~+, ~+, 

and 

D,=~c~ + 
a,.t(h, + h,+1) _ F,+,( z-R,h2j+,- 6O,h,+,) + F,R=+,h~,+t 

3c~+1 36c~+, 

a , = ~  ~-F,-i Q, 

R,R,_,h=, (R,h,+3QO(R,_lh,-3Q,-O 
c,~-" 36 9 

d~=R'-l( "h'6 R,9. ~J~-f) 

�9 

2) The equations containing first derivative values only are 
A~m~-l+ Bimi+Ciml+,=D, 

Where 

1 2Q~+4QH-R,-lh,  ~ 
A,=--~ -- hs,A ' - 

( i =  ~, N )  (A.  s) 

B 2 / 1 , 1 "~ 2Q,+I+4Q,-RIh,+I 2Q~-I+4Qi+ R~fi, 
, = - ~ \ ~  -~ ,h~-+~ ) - h3,+,A,+, - h~,Zx, 

1 2Q,+4Q,+I+R~+lh,+, 
C,-- 3--~'~',.1 - hS,+lA,+* 

F,+I-F,  F , -F , -1  
D,-- h:i+lA,+, + hhA, 

6[Q,-I-Q,-I~ 
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3) The system with second derivatives only is 

n + l  n + l  I1+1 A+M,._I + B~M i+x + C i M i +  1 =DI 

where 
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