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Abstract
The initial problem for second order linear evolution equation systems is discussed by
using the contraction semigroup theory. A kind of initial value problem for second order is
also discussed with variable coefficients for evolution equations by using the analytical
semigroup theory, and is unified with the solutions of the initial value problem for this class
of equations and those of first order temporally inhomogeneous evolution equations. This is
an important class of equations in mathematical mechanics.

I. Introduction

Let ¥ and W be Hilbert spaces with ¥ dense and continuously imbedded in W. Assume
AEL WV, V') and @EL (W ,W') are the Riesz maps of ¥ and W respectively, and let B be
linear from the subspace D(B) of V into . For every f € C'(R*, W’) [1]discussed the
initial and initial-boundary value problems for

Cu” (1) + B’ (1) + 4u(t)=f(1) (1.1)
[3] made (1.1) an extension to
@ " (1) + BV (1) + (1) =f1(1)

Ev" (1) —Fu' (1) +4.0(t)=f,(t)
where 4ux(y)=ai(x,y), (x,y€V), €wx(y)=ci(x,y) » (x,y€W) and a4 (),
ci(-»+) aresesquilinear symmetric continuous elliptic forms, (i=1,2)[ f,(-), f,(-)JEC'(R?,
W'xw’) .
This paper will discuss the Cauchy’s problem for

(>0} (1.2)

Cuu"(t)+€,0"(t) + Fw (1) + B0 (1) + 41,u(t) +.41u () =f,(t)

€t (1) + @ 0" (1) + Bt (1) + Boot’ (1) + Ao (t) + o0 (1) = fz(t)(t>0) }
(1.3)
and will give examples of the initial-boundary value problem. Therefore the results in [3] are
extended.
Spaces and operators are given as follows.
LetV; and W be Hilbert spaces with J/, dense and continuously -imbedded in #;(i=1,2).

Assume 4,,€% (V,,V;")and @,EL (W,, W) are Riesz maps of V;and W, respectively, and
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B1E€L V3, V), 4u€L(V,VY), €€l (W, W), €u€l (Wi, W), D(%.)
<Vi, D(Bu)<V. D(B)<VuD(B.)<V\.Bn€L(D(K1), V') BrE€L(D(%1).
Vi), Bo2€EL(D(Bn), V'), Bn€EL(D(B2), V'),

Moreover, we will discuss Cauchy’s problem
Cu’ () + B (1) + 4 (Hu(@)=f(t)
u(0)=u,, 4'(0)=u,
where 4 (#) and B(r) are given as follows:
4 (t)u(v)Aa(t,u,0), B(t)u(v)2b(t,u,v) (u,v€V) (1.5)
a(t,.,.) and b(t,.,.) are sesquilinear continuous V-eiliptic forms.
We will unify the solutions of the initial value problem (1.4) and those of first order evolution

equations.

(>0} (1.4)

II. The Cauchy Problem for Equation (1.3)
Define V=V, xV, W=W x W,

(%, %], [y, ¥2D)v=(%1,y0)r1+ (%, ¥:)vz, ([%,%,.], [y1,4,]EV)
([xl,xz],[yhyz])w=(xx,yx)W1+(xz:yz)u'z, (Cx1,%,],Ly:, ¥, JEW)
then V and W are Hilbert spaces, /=y /xV,’, W'=W,/xW, 6 V\ W iscontinuously.
Define 4e€2(V,V’), C€L (W, ,W') by
A%y, %, 1LY, Y2]) = A% (Y1) + F12%2(91) + F o121 (Y2) + A 02%:(Y,)
(Lxy,2,], [yhszEV) (2.1)
€L, xz](Eyl, Y, ) =€ 1%:(y) + € r2%(y1) + € ux1(Y,) + € 20%,(y,)
(Exhxz], [yl’yz:leW) (2-2)
Define D(B)=(D(.%’11)XD(%21))X(D(%lz)XD(%zz)) » we have then D(B)<V
Define Be 1(D(B), V") by
BLx,,%,3([y1,¥: 1) =B 11 (41) + F12%:(Y1) + B0 % (Y,) + B 20%, (y2)
(Cx1,%,1€ED(H), Lyi,u.I€V)  -(2.3)
Denote W=[u,v], f(#)=L[f.(t), f, ()] , from (2.1)—(2.3), we have an equation
equivalent to (1.3):
CW" (t)+ BW' (1) + AW (1) = (1) (2.4)
Definition We consider .4,, symmetric with 4, if

B1:%(y) = A uy(x)
Lemma1l .4 defined by (2.1) is symmetric if ' 4,1, 4:. are symmetricand A1 is

symmetric with 4., .
Proof Let 4,, .4,, besymmetricand .4, besymmetric with 4 ,we have then

ALx%, %10y, Y9.))= 4uy (9‘1) + :d'zxyx (%2) + A 12y2(%1) + ﬂzzyz(xzj
=A4LyY,, Yy ([ x1,%,7) (Exléxz], Ly.,y.J€EV) (2.5)

If .4 issymmetric, letx,=y,=0, then 4,1 is symmetric by (2.5). In the same argument,



Extensions of Initial Value Problem for Evolution Equations 231

A 5, is symmetric. Let x,=y,=0, then 4,, is symmetric with 4, by (2.5).
Lemma 2 Assume
Re{d %, (%) + Ao (%) + A or% (%) + A 30%,(%,) } >, | %, 17, + alxly, (2.6)
(a;, a,>0, [x;,%,]€V)

or
Re.ﬁ"u-’*‘ﬁ(-"31)>ﬁ1"-”‘1Ilf/1 (ﬂx>0);Re.d‘zzxz(xz)>ﬁz"xz"%/2 (B:>0) (2.7)

with | dlew:. v )+ ldalewirn )<28=2min(B,,6,) then 4 is V-elliptic.
Proof If (2.6) holds true, then

Re{vd[xx,xz]([xx,xz])}>min(a1. a,)L "x1||2Vl+ illel%zz]=aII[x1 %0 %

(a>0, [xl)x?.]eV)
If (2.7) is right, then by

"ﬁuz_xz(xx) I<bgidew,ridlxdviix,lv.,

A2 () 1<l A2l @(riva) 1% v ]2, v,
we have

Re{ 401, % 1(Cxr, %0) Bl +B1203, — (i lgram®)
+ld e xlvilxlv,

>[ = (ldnsletran+ I duleond) | (nly, + 1513,

>c|lx, %1% (>0, [%,%,]€V)

Definition %1, is anti-symmetric with %, if Re(%F,x(y).+F.y(x))=0 for
x€D(%.,), yeED(E.:) -

Lemma 3 Assume %« is monotone (i=1,2)and 4, is anti-symmetric with %, ,
then B is monotone.

Proof By

Re{ %12, (%)) + B1:%:(%,) + B 1%, (%,) + Foo%:(%,) }
ZRe(F1%(%1) + B12%,(%,) ) =0 (Cx1,%,J€D(B))

we have ReB{x,,x,]1([%,,%,1)>0  ([x,,x,]J€D(B)) .

By Lemmata 1—3 and [1], we have

Theorem 1 Spaces V, Wand operators 4, B, ¢ aregivenasabove. Assume .4 and
@ satisfy conditions in Lemma 1 and Lemma 2, B satisfies conditions in Lemma 3. Let 4+B+
€):D(B)->V" is surjective. Then for every [f,(t),f,(t)1€C (Rt, W) and [u,,u,J€V
Cuy, v,J€D(B)with 4[u,,v,]1+B[y,,v,JEW’ , there exists a unique solution[y(#),v(¢)]

€C(Ry, V)NCH(R*, ¥)NC'(R:, W) N CHR*, W)with [u(0), v(0)J=[t,v,], [4(0),
v(0)1=[#,,v,].
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III. Examples

Let £ be bounded and open in R* and suppose its boundary 852 is a C?-manifold of
dimension (#-1). Let ", and ", beclosed subset of 342, with meas (/") >0and meas (r,)>o.
Let

Vi={veH'(Q):v(s)=0, s€l,,a. e.}

V,={veH'(Q):u(s)=0, s€[,,a. e.} (3.1)

It is easy to verify that both ¥, and V,are Hilbert spaces.
Let W\ =W,=1*Q), W=W,xW¥, -Suppose

Cip(x)=Cu(x), 3 Cuy(@)&LL=CULI+IL]") (x€9Q) (3.2)

§,=1

where C,,(x)€(8) , and

Cun(v)=[ Cu(u(x)d(0dz (i,i=1,2) (3.3)

then ¢ defined by (2.2), (3.2) and (3.3) is symmetric by Lemma 1 and elliptic by Lemma 2.
SupposeR(.)ELoo(_?)and a vector field pu(x)={(u;(x), ps(x), -, px(x)), x€Q
witheach 4 (x)€C'(Q) . Wedefine g eg(V,,W,) by

Funo)= | (Reu(x) + 245 Yo (w)dx, (3.4)
the indicated directional derivative being given by au(x) = 2 Syu(x)ps(2),
If A
N
ReR(x)——l-}:-a“—‘(i)—% (x€Q)
2 i=1 ax_,

u(s)n(s)=>0, (s€d2—1I") (3.5)

then

Regu(w) =Re[ (R(x)u(x) +£’fa(ﬂ—x)~)§(x)dx>0

Suppose
22=0;
Bu(@)=] s (x)es( () [ bho()p()ds,
Fuv(9)={ T8, (s ()F (x)dx
J=1
where

N .
b= 3 3;bs: BAECD), (=12, N.) vith
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N
Y bscos(n,x4) [sa-riur,=0 (3.6)
=1
we have
5?12'"(‘1’)"‘%’21?’(”)
N b - ab, -~ b - d N b _ d
=L§;( ;v-,¢+(—9—;;v¢+ mp:,) x—jaog svpcos(n,x;)ds

Because v€V, @€V, and (3.6), we see 4§,, is anti-symmetric with - %1 .

Thus B is monotone and BeZ(V , W) .

Let af, €C'(Q),(k=1,2,3,4;1,j=1,2.-, N) .Let (ai),(af;) by Hermitian
matrices. And

a—g.f.::E?—l .i, J=1: 2'"' N

N N
Huu(@)L]] 3 @ty pedx, Aan(@)2[ T oty ., dx
Di’j;-l I 1,4=1 3T

N N
AunN&[, T (@, Pedr 4uw®)A[ T 6l P, de

i,i=1 4,5=1
thus 4 defined by (2.1) is symmetric by Lemma 1. Suppose

- (a};) (a%y)
(Fur) ((a?:) (ats)

and
2N 2N
> tabillaza Y 16| (a>0)
k,l=1 =1
Thus .4 is V-elliptic by Lemma 2.
Let Fi(x,2), Fy(x,)ELH(Qx RY) - with 2 F\(x,1)
i =FE(- 1), f.(1)y=F,(-,1)eC' (R}, L(Q)).

For every Ct4o," uo]EVﬂ(Hz(.Q)xAHZ(Q)), (u, v, JEK  ,because BeL(V,W) ,

we need  [u,,0,J€V N (H*(Q)x H*(Q)), 4Lu,,v,]1€W only. By the definition,
we assume

9

T F,(x,t)€EL*(2x R}), then

N
Z (afi(x)“atj +aiy (x)vocj Jeos(n, %) {sg_r=0
§,9=1

) (3.7)

N

2 (875(%)t0e, +at s(*)V0e ) cOS(1,%:) |0p-r,=0

§,5=1

thus
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N

A4 (@) +vdlzvo(?’)=ja— Z “a“%(afi(x)“ocj‘+agJ(x)vn-'j )@dx

i,9=1

+Jdni§l(a§,uo,j+a,’-,-vo,j Y@cos(n, x;)ds
Thatis, @u%(¥)+ 4..0:($) isa linear continuous functionalon L*() .In the same way,
we see . 4,4 ($)+ 4 v, (p) is a linear continuous functional on L*(£2) thus

.d«[”o ,'Uo]eW.
‘Summarize the above and then Theorem 1 assert the existence and uniqueness of a solution of
the problem:

C a* 8 0 a 0
u(x)th“(X, t)'f‘cxz(x)-a‘t—z v(x,t) +R(x)—3t—u(x, t)+—a—#—ﬁ-u(x, 1)

+¥ Ej(x)—aat vs, (%, z‘)+bo(x)—gt—v(x, H—3 %(a%,(x)ﬁ—g:u(x, 1)
j=1 i g=1 0
0
aty () g=v(x, 1) =Fi(%,1) (3.8)

az. 62 . N - ¥ a 3 6
Czl(x)_a?u(x, t)+C22(x)'5¥—z‘v(x;t)+ZbJ(x>u=j(x:t)_2 m(ail(x)'é}_; u(x:t)
1 i,j-vl

+a;*,.(x)—a—i-;u(x,t)>=Fz(x,t), (x,)€Q% (0,T), a.e, (3.9)

2@l s(x) Uy + alj(x)ve )cos(n, %) |aa-r =0

l’J=l

» (t20) (3.10)
Z (af;(x)ue; + ai;(x)ve,)cos(n, %) log-r,=0

u(x,t)=0, ~€l',, v(x,t)=0, x€,, t=0 | (3.11)
u(xr0)=u0(x)t U(x,0)=vo(x)x (3.12)
%l;—(x,0)=ul(x), ‘?;; (%,0)=v,(x) (3.13)

(3.8),(3.9) and (3.10) are true under the meaning of variations. But u,, and. v,€L*(2) ,
u €, , v€V,.(3.10)is truein [*(8Q2—I",) and [2(9Q—I,) respectively, if the
regularity of such boundary value problem is guaranteed.
IV. Cauchy Problem for (1.4)

Suppose:
Ia(t’u;v)l<k1"u”7"v"v; (k1>01 u: UGV) (4 1)
Rea(t, u, v)>c/ful}, (u€V, ¢,>0) } '
Ib(t,u,v)l<kz"u"y‘"l}”;}, (k2>01 u: UEV) N (4-2)
Re b(t,u,u)>c,uly, (¢,>0, u€V) } '
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Define V,, =V x W, the product Hilbert space with scalar-product given by
([xl! xz]’ [ylr yz])Vm=(x1: yl)V+ (xZ! yz)W ([xlr xz]' [yh yz]eVﬂl)

Let Cand ¢ represent the Riesz maps from ¥ and W to I/ and F/’ respectively. Define
ME LV m» V') by
plxy, %,1(Cyr, ¥ 1) =(x, %], LY, Y:1)vm [?‘x‘, %1, Ly, y,J€EV
so M is the Riesz map from V toV 5/,
Let v=u’, from
o u-, —C._u. 0
S IR D B = I
€ A4 (@) B(t)"-v f(#)

v

we can obtain (1.4). And, using an elementary transformation, (4.3) is equivalent to

A@)y=pL(t), g(t)=MF(1),
D(A(t))=D(L(t)) 2 {Ex,,%,]€V XV + 4 ()%, +B(t)x, €W’}

then equivalent to (4.4),

C 4., AC -C u 0
[ %”][v] +[mt‘) B(t)+1{,ﬂ][u]=[f(t)e—“] (t=0) (4.4

Let W (t)=[u(t), v(¢)] ,denote the operator in the second term of left-hand side of (4.4)
by L(#) and the right-hand side by F(z). Let

Wi(t)+ AW (t)y=g(t)  (t>0) (4.5)

where D(A(#))={[%., %1€V xV: 4 (t)x,+B(t)%,€W'}

This is a standard form of first order linear evolytion equation.

Assume D(A(?)) is a fixed subspace, so that some theorems in [2] are applicable to prove the
existence and uniqueness of a solution of Cauchy’s problem for (4.5).

Definition Let H be a Hilbert space. If D(4) is dense in H, A is accretive,and A+ A4 is
surjective for some A>>0 , then A is called maximum accretive operator.

Lemma4 Let A€L(D(A), H)beamaximum accretive operator, a Hilbert space ¥ dense
inH, V' H continuously. Assume a(u,v) is continuous sesquilinear V-elliptic form, moreover,

a(u,v)=(Au,v)y, uw€D(A), VveV
then -4 is the generator of an analytic semigroup driven by a(.,.).
Proof For every f€H’ , there exists only one soliution u€}) such that a(u,v)
=f(), (Vver). |
Then we have a linear operator T and a subspace D(T") with
a(u,v)=(Tu,v)s (weD(T), v€V) (4.6)
Acc_prdit}g to [1], -T is the generator of an analytic semigroup
(4.6) shows T is an extension of 4 but 4 is maximum and A=T.
Define E(L 1, [ 1) by
E(Cu,v], [p, 1) =A(s,@)v—(v,@)v+a(t,u,9)+b(t,v,9)+A(v.9)w
(Cu,v], [p,pI€V XV) (4.7)
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It is clear that ¥ x ¥ is dense and continuously imbeded in V.
Lemma 5 E(U 1. [ 1) is acontinuous sesquilinear elliptic form on V' x ¥V, with

(A w,0], [@,9])va=E([4,0], [e,¢])

([u,91€D(A()), [@,pI€EV V) (4.8)
Proof From (4.7), we have
VE(Lu,v], LoD I<MITu,v]lv.vile,lver, (4.8)
For |Re(a(t,u,v)—(v,u)y) | <Bluliv] (B>0) -

We have
ReE([u,v], [u,v])

Al +e ol = flal izt + eyl — B uir— Lol 4 g

If we choose large 7 suchthat ¢,>f/2n andchoose A suchthat - A>fn/2 ,we
can obtain elliptic property of E by (4.9). That is

IE([u;v]p [U,U])I>a"[u,v]"%xy (4-10)
Because
(A(t)[u,v:],[(p,vp])y,,,=(y"'L(t)[u,v], [‘P,'l’])Vm:L(t)[".U]([‘P:‘/)])
=Au,p)v—(v,@)vr+4(t)u(p) +B(H)v(p) +A(v,9)w
([u,01€D(A(Y)), [@,91€Va) (4.11)
we know (4.8) is true. ‘
Lemma 6 A(¢) is maximum accretive.

Proof In order to prove that for every [f,,f, 1€V m, there exists an[x,,- x,J€D( A(¢))
suchthat A(#)[x,,x,]=[f,, f,] we need only to prove that there exists [x,, x,] such that

Acxy—cx,=cf,,

vd'(f)xl'f'B(t)xz'l’/lgxz:?fz
We can find x,€) such that

} (4.12)

(T4 +B() +4@ )= f, —F 4 (1),

and let
X, =%,/A+f/AEV

We can see [x,, x,] satisfies (4.11) and € D(A(?)). Thus A(¢) is a surjection of D(A(r) Jonto V.
From (4.10) and (4.9), we have
1A(#) [, vl Zallu,v]], ([u,vIED(A(t))) . a>0

Thus A" (¢) exists and | A~!(¢) |< 1/a
Take n suchthat 0<<7<« . Let

Plu,v]=—nA7 ()[4, v]+ A (L f,, f,],
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Then Pis a constraction. And P has a fixed point {u,v], such that (A(#)+n)[u,v] = (f,,f.]
Thus (n+ A(t)) is surjective onto V.
It is easy to show that A(¢) is accretive.
We denote by S(8) a fixed closed sector which consists of those complex numbers 7
satisfying —g <l arg A<< 9, 0>=x/2.
Lemma 7 The resolvent set /(A(¢)) contains S(§) and the resolvent
(n+A(t))™"' satisfies

c

l|(77I+A(f))_l||<—1—_*__|—n[—

, n€S(9), inli=1 (4.13)

Proof Because E([u,v], [¢,9]) isacontinuous sesquilinear elliptic form and A in (4.8)’
and a in (4.10) are independent of 7 and ¢, from (4.8), we have, by [I],

In(n+A4@))HI<MO)  (n€S(6)) (4.14)

where M (8) isindependentof rand 7 .
Thus we have (4.13) by (4.14) and C is independent of t and 7
Lemma 8 Denote

Ac —c Ac —C

L0=[ B ] ’ L=[ B , ];
A4 () B(#) At) B(i)+i¢
Then both L and L are maximum accretive operators of D(A(f)) with

ILolu,vIlv' n=allu, v]lv.e, [LLu,v]lv o Zalle.v]lv.r
Lu,v]€D(A(H)) (4.15)
The proof is similar to that of Lemma 6.
Lemma 9 Assume operator B7'(¢)- 4(¢) and subspace B! (t)W’CV are
independentof . If B(s)-B~'(t) isacontinuoussurjection from ¥’ onto itself, and its restriction
on w' satisfies

1B(s)B™'(t)—=B(r)B ' (t) | gw<<c|s—=r| (4.16)
then we have
14(s) A7 (1) —A(r) A7 () l2vm<E |s—7] (6>0) (4.17)
Proof We have
[(A(s)—A(r))[x, %, va= I (L(s) =L(r))[x,,%,30v'n
= ||vd'(3)x1+B(s)xz"‘vd'(’)xl"B(")xz"W'
=|B(s)(x,+B(s) 4 (8)%)—B(r) (%, + B (r) 4 (r)x;) e’ (4.18)

Denote y=x,+B~'(t) .4 (t)x, ,and then y is independent of /.
From (4.16) we have

IB(s)y—B(r)ylw <clB()ylw|s—r]
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I ()%, +B(s)%,— g (r) %, —B(r)x,lw <cld(t)x,+B(#)%|p |s—r| (4.19)
By Lemma 8, we can define a norm on D(A(f)) by |[«,, 2,1l pacy)=ILLx: % Mvy,
Cx,,x,J€D(A(t)), which makes D(A(r))a Banach space. Since L is a closed operator and(4.15).

And so does L . Then it follows that for some positive numbers C, and C,

Ll Wv'w<ULL o< L v, (4.20)
Then it follows that

"Jd’(t\xl_*-B(t)xz ”W’ <"L0[x1 ’ xz]"V'm<'(}-1"L[xl :x2]"V'mr [xl ,xzjeD(A(t))

(4.21)

From (4.21), (4.19) we obtain (4.17).

We summarize the above.

Theorem 2 Let ¥ and W be Hilbert spaces with ¥ dense and continuously imbedded in W.
Assume ¢ (¢) and B(#)€L (V,V’) defined by (4.1), (4.2) and (1.5). If B(r) satisfies (4.16),
B~'(1) 4(t) and B~'(t)}#’ areindependent of /, then forevery f € C'(R{, /) and
Cug,u JEV XV with o4 (0)u,+B(0)u, €’ , there exists a unique solution u(t) of

@u' () +B(H)u (1) + 4 (H)u(t)=f(1)
3(0) =uy, u/(0)=1u
Proof A(r) is maximum accretive by Lemma 6 and -A4(¢) is the generator of an analytic

semigroup by Lemma 4 and 5. From Lemma 7 we have (4.13). We obtain (4.17) by Lemma 9. So
finally Theorem 2 is proved.

Corollary 1 In addition to the hypotheses of theorem 2, assume that
B(t)=e 4(t), €¢>>0. Then for every f € C' (R}, W’) and [u,,u €l " xV  with
g (1) (ug+-eu YEW' | there exists a unique solution u(r) of

Cur (t)+ed () (1) + 4 (Hu(t) =1 (1)
0 }

u(0)=u,, w(0)=u,

(>0) } (4.22)

(4.23)

It is clear that B7'(#) 4(t) is independent of .
Corollary 2 Under the conditions of theorem 1, if A(t)=0,thenforevery f € C
(R, W) u, €V, u,€B7'(t)W ', there exists a unique solution u(t) of
Cur(t)+ B (1)=f(t)
u(0)=u,, u'(0)=u;
It is clear that B~1(4) 4(3) 1s independent of 1.

1>0 } (4.24)

V. Discussion About the Boundary Problem (4.23)

It is natural to ask a question: May ¢ in (4.23) go to 0?
If for every s, A(t)A7'(s) is twice differentiable in f and f/ (- )is a Hoelder continuous
function, then, by [2], solution of (4.5) and therefore solution of (4.23) is differentiable in high order.
So from (4.23), we have
(W), u" (1)) w+ea(?,u’ (1) ,u"(¥))+alt,u' (1) ,u" (1))
+ea’ (,u/(t) ,u" () +a’(t,u(t),u" (1)) =1"(t)(u"(¥)) (5.1)
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For

2Re (w//7 (1) ,u”(t))w=—;-;||u”(t) I&, 2Rea(#,u”(t),u”(t))>=0
2Rea (t,u/(1) ,u”(f))=%_0(f,“'(f) (1)) —a' (2,0 (8) ,u(¢))
2Rea’(t,u’(3), u”(f))=%a’(t,u'(f) L/ () —a”(t,u/(t),u' (1))

2Rea’(t,u(t),u"(2))=2 Re%a’(t,u(t) L (1))

50 —2Rea”(t,u(t),u’(t))—2Rea’(t,u’(t),u' (1))

[gt Ju” (£) 13 +2eRea(t,u" (t), u"(t))—}-g-ta(t,u’(t),u’(t))
—a’(t, u’(t),u’(t))+e%ta’(t,u’(t),u’(t))—sa”(t,u'(t),u’(t))
+2 Re%a’(t,u(f),u’(t))—zRea"(t,u(t),u’(t))

—2Rea’(+,u/ (1), (1)) |=2Ref’ (1) (4" (1)) (5.2)
Integrate (5.2) from 0 to ¢, we have

Clu” () 17— u”(0) Ig+a(t,u/(¢) /(1)) —a(0,u’(0) ,u'(0))
+ea’(¢,u/(t) ,u’(¢))—ea’(0,u'(0),u/(0))
+2Rea’(¢,u(t) ,u/(t)) —2Rea’(0,u(0),4’(0))]

<2 Re[ 172l 107 (%) D3] 0/ (2,00 () () )

+e 0" (0 (n) W () dr+2Re[ av (e u(x) () e (5.3)
SO
It (1) Va8, (£) 07 (1)) <1 (0) I +0(0 4, w,)

1 rr + | () ol (1) 1) dr (5.0)

where c=3"vd,(t)(§‘.’,V.V’)
By choosing 4 (0)u,€W’, 4(0)u,€’, from (4.23) we have

w0 lw<<IF (O) lwr+ef 4 (Ouglwe + A (0)tigl w (5.5)
Therefore

la” () 1% + e’ ) 13<BUF(OI%, +& 1 4(0)uol,
H.4(0) w3, +luliz+1 £/ "iz(ovwwn )

+j (lu” (=) Wy +elw’'(z) 13)dr  (8>0) (5.6)
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When e -0 , right first term in (5.6) is bounded. So by Gronwall’s lemma we have
lu” (#) Ip+ela’ () 17 <M+e(T)M (5.7)

where C(T) is only dependent on T.

u” () and u’(¢) come from (4.23), so are dependent on & . M isindependentof & . Thus
(5.7) shows passing limit as & — 0 in (4.23) is meaningful.

Summarize the above, we have

Theorem 3 Let ¥ and W be Hilbert spaces with V' dense and continuously imbedded in .
Assume that 4 (¢)€L (V' ,V’) satisfies elliptic and symmetric conditions and (4.16). If
l4 @ lewwv,y, 14 lew,v,, andl 4" (t)|ew,vareall bounded independent of ¢, for every
€4 ()W, A4'(H)x, 4"(#)x€CH R, W) . Then for every f(-) € C'(R}, W),
4, €V, w€V with  go)y e’ and 4 (0)u,ew’ - there exists a unique solution of

{?u”(f) + 4 (Du(t)=£(t)

(120)
u(0)=u,, u'(0)=u,
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