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Abstract  
The initial problem for second order linear evolution equation systems is discussed by 

using the contraction semigroup theory. A kind of initial value problem for second order is 

also discussed with variable coefficients for evolution equations by using the analytical 

semigroup theory, and is unified with the solutions of the initial value problem for this class 

of equations and those of first order temporally inhomogeneous evolution equations. This is 

an important class of equations in mathematical mechanics. 

I. Introduct ion 

Let V and W be Hilbert spaces with V dense and continuously imbedded in IV. Assume 
~Eo~ (I 'r, V')  and ~Eo~(H, r, W l) are the Riesz maps of Vand Wrespectively, and let B be 
linear from the subspace D(B) of V into V t. For every f E' C 1 (R*, W' )  [1] discussed the 
initial and initial-boundary value problems for 

~ u " ( t )  + B u ' ( t )  +.r  = f ( t )  (1 .1)  

[3] made (1.1) an extension to 

,u,, (t) + ~v'(t)  + ~,u(~) = A  (t) 
( t ~ 0 )  } (1.2)  

~v"( t )  - ~ u ' ( t )  +.~2v(t) = A ( O  
where ~ r  , (x ,yEV) ,  ~ l x ( y ) - - - - c i ( x , y )  , (x ,yEW) and aj ( . , . )  . 
r ( . , . )  are sesquilinear symmetric continuous elliptic forms, (i = 1,2) I'll (-), .f~ (.) 3E C' (RL 
W' x W') . 

This paper will discuss the Cauchy's problem for 

~:~llUV (t) q- ~lzVu(  t ) + ~ltUt(  t ) "[-~l~Vt(t) + ~r "~t-.~/lzV(t) = i t  (t) 
(t~>0) } 

~,. . , , ( t)  + ~2~v,(t) + ~ ,u , ( t )  + ~ v , ( t )  + ~ , u ( t )  +.4~o(t)  = / d r )  
(1 .3)  

and will give examples of the initial-boundary value problem. Therefore the results in [3] are 
extended. 

Spaces and operators are given as follows. 
Let I,r~ and W~be Hilbert spaces with I,r~ dense and continuously imbedded in I4/~ (i= 1,2). 

Assume ~ .  E o~ ( V i ,  ~ t ) and ~ ~E ~ (W~, IVy) are Riesz maps of Viand. ~ respectively, and 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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~,~E~6(r,'~,F,'),a~,tEZ(Ft,V,'), ~,,C~(W,, W,'), ~a,,E~6 (W,, 
<V,, D (,~,,)<V~, D (~ ,~ )<V t ,D(~ , , )<V , ,~ , ,EL (D(~ , , ) ,  
V,'), ~ v E L ( D ( ~ , ) ,  Vz ' ) ,~zEL(D(~z) ,  Vz' ). 

Moreover, we will discuss Cauchy's problem 
~'u" (t) + B(t)u'(t) + ~ (t)u(t) = f ( t )  

where ~ ( t )  

u(0)=u0, u'(0) =u, (t>~0)} 
and B(t) are given as follows: 

.~r B(t)u(v)ZXb(t.u,v) (u,vEV) 

Wit), D ( ~ , )  

V 1 f),~,zEL (D(~,~), 

(1.4) 

(1.5) 
a(t,.,.) and b(t,.,.) are sesquilinear continuous V-elliptic forms. 

We will unify the solutions of the initial value problem (1.4) and those of first order evolution 
equations. 

II. The Cauchy Problem for Equat ion  (1.3) 

Define V= V I x V2, W= W l x W2, 

(IX,, x2], [Yl, Ya])v--~(xt,Yt)vl+(x2,y2)v2, ([X,,Xz], [y l ,yz]E[  "r) 

([xl,xz],Eyt,yz])w---(xt,Yt)w~+ (x2,Ya)wz, ([xt,xa],Eyl,yz]EW) 

then Vand Ware Hilbert spaces, V~=V~• Vzt W~=WI~• Wzt, V~Ve r is continuously. 
Define ~E~,(V,V ' ) ,  ~ . ~ ( W , I C  ~) by 

�9 ~ [ ' X l ,  X2"] ([ 'Yl ,Y2])  = ,J~I tX l  (Y l )  At_ .R~I 2Xz(yl ) AI_ j ~ I X l  (yZ) .1 L ~zX~(y2) 
([x,,x2], EYt,y2]EV) (2.1) 

WFx,, x~l(Ew, y~3) =~',,x,(yi) + ~',~x~(y,) + ~'~,x,(v~) + ~x~(y~) 
([x,,x~], [y,,w.]EW) (2.2) 

Define D(B)=(D(~t , )  x D ( ~ 2 , ) )  • (D (~t2)  x D ( ~ z z ) )  , we have then D(B)<~V 
Define BE I ( D ( B ) ,  V t) by 

B[ x! , x2 ] (FV l  , V i i )  = ~ l  ix! (Y l )  -~- ~12x,(Y! ) ~i_ ~ i x  I (Yg.) ~- ~94x2(y2 ) 

([x, ,x~]ED(~), [yt,y,]EV) . (2.3) 

Denote W = [ u , v ] ,  f(t)=[f~(t),  f z ( t ) ]  , from (2.1)-(2.3), we have an equation 
equivalent to (1.3): 

~w,, (t) + gm,(t)  +.~W(t) =/(t)  (z. 4) 

Defin i t ion  We consider ~t~2 symmetric with .~2t if 

d,,~x(y) = ~ , y ( x )  
L e m m a  I M defined by (2.1) is symmetric i f  MH, dzz  are symmetric and Mtz is 

symmetric with d,  zj �9 

Proof  Let .~tt, d,  zz be symmetric and .~tz be symmetric with .e~zt , we have then 

.~c~,, ~,](cV,, v,])= .~,,v, (~,i + ~, ,v,  (~,) + .~ i,v,(~,, ) + .~,,y,(~,,J 
=.~[yt ,y , ] ( [x t ,x , ] )  ([xt ;x,], [yt, yz']EV) (2.5) 

If :~  is symmetric, letxz--y2 = 0, then .~ t~ is symmetric by (2.5). In the same argument, 
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d22 is symmetric. Let x~ =y~=O, then .~2  is symmetric with 

o r  

Mzt by (2.5). 
L e m m a  2 Assume 

R e { ~ x ,  (xl) + A~x~(x,) + .~x ,  (xD+ a~,.~x~(x~) } >~a, lfx, ~ + a~ ~x. ~ ;  

(a. a~>O, [x~,x~3EV) 

(2.6) 

Re~,,x~(x,)>~x, ll~x (/3,>O), Re~b=xz(xO>~/3~llx~, (/3~>0) (2 .7)  

with II.~zll~(vx.vV)+ll~ztllz(v,.v, ')~<2/3=2min(fl, ,flz) , then M is V-elliptic. 
P r o o f  If (2.6) holds true, then 

Re{~[x~ ,xz](I-x, ,xz]) }~>min (a, ,  aa)E Ilx~ll ~a + ~x.ll%~ ] =allUx, ,x~3 II 

( a > 0 ,  Ex,,x~3EV) 

If (2.7) is right, then by 

II ~ ,2x ,  (x,) I1~< U af,  zll ~e(v~,~,')llx, II~a ~x2 live, 

II~x~ (xO II~< II aCv II~(,,,v~')IIx, IIv, IIx211,2 

we have 

Re{ MI-x, ,xz3(Ex,, xz]) }~/311x~ll~ ~ -r-~llx2 II ~Z - ( II ~ ,~  I[~(v~,vx') 

+ II d ,., II,~ (,,, v,' ) II x, II , ,  II x~ II v~ 

~>cllEx~,xz311~, ( c>0 ,  ffx,,x~3EV) 

D e f i n i t i o n  ,,q~,z is anti-symmetric with ~2t  if 

xED(,~,2), v E D ( ~ 2 , )  �9 
L e m m t t  3 Assume ~ t  is monotone (i= 1,2) and 

then B is monotone. 
P r o o f  By 

Re{ ~ , , x t  ( xl) + ~,2xz( x,) + ~z ,x l  ( x,) + ~zzxz( xz) } 

>~Re(,~.xt(x,)  +,~zzx2(xz) )~O (Ex,,x2JED(B) ) 

Re(~,2x(v).+ ~z,V(x) )=O for 

~ z  is anti-symmetric with ~2t  , 

we have ReB[x l ,xz ] ( [x l ,x , ] )>~0  ([xl,x23ED(B)) 
By Lemmata 1 - 3  and [1], we have 
Theorem 1 Spaces V, Wand operators M,, B, ~ are givenasabove. Assume ~ and 

~' satisfy conditions in Lemma 1 and Lemma 2, B satisfies conditions in l_emma 3. Let (af  + B +  
~ )  : D ( B ) ~ V '  is surjeetive. Then for every [ f , ( t ) , f 2 ( t ) q E C ' ( R ~ ,  W')  and [uo,voqEV , 
Eut, v, qED(B) with dI-u,,vo3+ BEu,,vlqEW ~ , there exists a unique solufionEu(t) , V(t) ] 

EC(R~, V) fqC'(R +, V) NC,(R+o,W) fqCZ(R+,W)with In(O), v(0) .3=l 'u , ,v~ fu ' ( 0 ) ,  
v'(O)3=Eu~.v~3. 
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HI. Examples 

Let /2 be bounded and open in R" and suppose its boundary 
dimension (n- 1)- Let 

Let 

VI={oEH'(D):v(s)=O, sEF,,a, e.} 1 
Vz={vEH'(D):v(s)=O, sEFz,a, e.} J~ 

It is easy to verify that both V~ and V 2 are Hilbert spaces. 
Let /4/t =Wa=L~(~Q), W = W ,  x W~ . Suppose 

where 

C,~(x) = C 2 , ( x ) ,  

C,j(x)E(D) , and  

then 

0 0  is a C -u -manifold of 
/ ' t  and F z be closed subset of 0~,  with meas (Ft)  > 0  and meas ( F 2 ) ~  0. 

(3.1) 

with each 

2 

C,~(x)t,t,~C( IC, 12+ IC~I 2) (xeO) (3~ 

y,ju(o)=I C,j(x)u(x)V(x)dx ( i , i= l ,Z)  (3.3)  

defined by (2.2), (3.2) and (3.3) is symmetric by Lemma l and elliptic by Lemma 2. 
SupposeR( . )EL~176 a vector field #(x)=(#,(x) ,  #2(x), .... #iv(x)), xEl2 

#j(x)EC~(~) . We define ~ t L E , ~ ( V t , W t )  by 

the indicated directional derivative being given by Ou(x) 
If O/z = ~]~.t O:1u(x)~(x)" 

1 iv 
ReR(x)__~ . i .~  a#~(X)oxj >/0 (xEO) 

then 

~(,)n(s)~>0, (s~_oF2-F ) 

R e ~ t  ~u(u) ---- R e l o ( R ( x ) u ( x ) +  ~ ) u ( x ) d x > ~ O  

(3.4) 

(3.5) 

Suppose 

N 

j - ,  

where 

N 

O b. b,(x)EC'(~), ( j = I , 2 , . . . , N , )  with b~ ~ Oxj '" 
$=t 
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iV 

~ b s e o s ( n , x ~ )  I,a_r,u~==O 
j i t  

( 3 . 6 )  

we have 

I i (  = bav, 7 ~ + -ff-~vq~+Oavqa,a) dx= ~_~b~v~cos(n,xa)ds 
O dH~' a.=l 

Because vEt/z, q~EVt and (3.6), we see ,~tt  is anti-symmetric with - ~z t  . 

Thus B is monotone and BE~ ( V ,  W) . 
Let a~ECt(~),(k=l,9. ,3,4;  i , . /=l ,  2...,  N )  . Let (a~a),(a~) by Hermitian 

matrices. And 

a _ , i j = l  2 . - - , N  a i $ ~ t l i j  ~ , 

iV 

d,,,u(~,)&j" a 5-', a~Ax)u,jr 
iV 

d,,zV(9)zxla ~ a~(x)v,j~,,dx 
II~J- 1 

iV 

afz,u(9)&Ia ~ a~(x)u,~,, dx, 
f , r J -  1 

N 

* f , l J . l  

thus .er defined by (2.1) is symmetric by Lemma 1. Suppose 

( t . ) = ( ( a ~ j )  (a,'. ~)) 
'.(alj) (a,'- A /  

itnd 

2N 2N 

k T l , ' I  k - I  

Thus M, is V-elliptic by Lemma 2. 

0 
Fl( x,t  ) , % F z (  x ,t)ELZ( O• R'o), then Let F~(x ,J ) ,  Fz(x,t)ELZ(~x R~) , with Ot 

f~(t)=Fj( . , t ) ,  f~(t)=F~(.,t)EC~(R+o, Lz(~)) .  

Forevery Euo," VoqEV N(HZ(Q)xH~(O)),  Eu~, vl]EV ,beCause BE~,(V, W) , 
we need Euo,vo]EI'rf] (H2(O) x H 2 ( Q ) ) ,  ~Euo,vo] EW only. By the definition, 
we assume 

N 

( a~ , ( X )Uo. ~ + a~ j ( x )vo. s )eos(  n,x,  ) I.a_r,= 0 
f ~ j - I  

thus 

iv 

( a ~ / x ) u o . j  + a t  Ax)vo.j )cos(n.x,) I ~,,-r.= 0 
(3.7) 
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1r 

.,~,1 ll/0 ((jO)"91- ~ 12U0(Qg)~ffD-- t~j__ 1--~ (a~j(~)Uosj.-~a~j(~)uo; $ )q)d~ 

/v 
I )~cos(n, x,)ds + ~ ( a ~uo,s+a,~vo,~' 

dD i ~j=l 

That is, ,~/~u~(~) + d,~.vo(~) is a linear continuous functional on LZ(~) . In the same way, 

we see . Mz~uo(r ~zzvo (r is a linear continuous functional on LZ(l'2) thus 

~4Euo,voqEW. 
Summarize the above and then Theorem 1 assert the existence and uniqueness of a solution of 

the problem: 

Oz 0 z 
+R(x)--Tf-u(x, t)-~ o~ ot CH(x)-~iru(x, t )+C~(x ) -~rv (x , t )  0 0 O u(x, t) 

u O 

+a~j(x) o-~jv(x , t ) )=F, (x , t )  (3.8) 

Oz Oz ~ ~--- 0 {a~ x" 0 C~,(x)--ffiru(x, t )+C~(x ) - -~v (x ,  t ) §  y-~6Ax)u,j(x,t)--.~. --O-~, \ . ,( )-O-~j u(x,t) 

+a~5(x) O~ v(x , t ) )=F2(x , t ) ,  ( x , t ) E ~ •  a:e; (3 .9 )  

N 

S-~(al~(x)u.j + a~j(x)v.j)cos(n.x,)I,,~-r~=0 ] 

,, (t>~0) 
S--I, (a~j(x)u,j + a~j(x)v,j)eos(n,xt)10a-rz----O 
t~ j= l  

u(x,t)=O, xEF~, v(x,t)=O, xEF~, t~O 

u(x,O)=uo(X), v(x,o)=vo(X), 

Ov (x,O)=v~(x) o~,ot (x, 0)=u,(x), --0t 

(3.8),(3.9) and (3.10) are true under the weaning of variations. But 

u~EV~ , v~EV z. (3.10) is true in LZ(O~--I'l) and 
regularity of such boundary value problem is guaranteed. 

IV. Cauehy Problem for (1.4) 
Suppose: 

la(t ,u,v)  l~<kallullvllvllv, (kx>0, u, vEV) 
R e a ( t ,  u, v)~>c~llull~.. (uEV. cl>0) ] 
Ib(t.u.v) l<~t~llullvUvllv. (k~>0. u. vEV) ) 
Re b(t,u,u)>~czllull~, , (cz~o , uEV) ] 

f~j 

Lz(OO--Fz) 

(3.1o) 

(.,3.11) 

(3.12) 

(3.13) 

a n d  v.EL~(~Q) , 
respectively, if the 

(4.1) 

(4;2) 
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Define V,~ = V x W, the product Hilbert space with scalar-product given by 

(Ex,, Xz3, [V,, y z ] ) v = = ( x t ,  Yt)v+(xz, Yz)w ([xl, xz3, EYt, Vz36V,,) 

Let C and ~ represent the Riesz maps from V and W to V' and I,V' respectively. Define 

ME ~ ( V = ,  V,n')  by 

#Ex,, xz](Evt, yz3)=(Ex,, Xz3, [y,, yzJ)vm, Ex,,, xz], Evj. yz]EUm 

so M is the Riesz map from F, .  to V ,d ,  

Let v=u',  from 

we can obtain (1.4). And, using an elementary transformation, (4.3) is equivalent to 

A(t)=MqL(t), g(0 =M-'F(t), 
D( A(t) ) =D(L(t)  )&  { Fx, ,Xz]EV x V: .4 (t)x~ + B(t)xzEW' } 

then equivalent to (4.4), 

<,>0, 

Let W(t)----[-u(t), v(t) ] , denote the opei-ator in the second term of left-hand side of(4.4) 

by L(t) and the right-hand side by F(t). Let 

W'( t )+A( t )W( t )=g( t )  (t>~O) (,1.5) 

where D(A(t) ) = { [x~, x~]EU x V : . 6  ( t )xt  + B(t)x~EW'} . 
This is a standard form of first order linear evolution equation. 

Assume D(A(t)) is a fixed subspace, so that some theorems in [2] are applicable to prove the 

existence and uniqueness of a solution of Cauchy's problem for (4.5). 

Def 'mi t ion  Let H be a Hilbert space. If  D(A) is dense in H, A is accretive, and 2 + A" is 

surjective for some .~>0 , then A is called maximum accretive operator. 
L e m r n a  4 Let AEL(D(A),  H)  be a maximum accretive operator, a Hilbert space Vdense 

in H, Vk+H continuously. Assume a(u,v) is continuous sesquilineaf V-elliptic form, moreover, 

a(u,v)=(Au,v)n, uED(A), VvEV 

then -A is the generator of an analytic semigroup driven by a(.,.). 
P r o o f  For every fEH t , there.exists only one sol/Jtion ufiV such that a(u,v) 

= / ( v )  , ( V v E Z ) .  
Then we have a linear operator T and a subspace D(T) With 

a(u,v)=(Tu,v)u (uED(T), vEV) (4 .6 )  

According to [1], -T is the generator of an analytic semigroup 

(4.6) shows T is an extension of A but A is maximum and A = T. 

Define E(F  3, F -]) " by 

E([u,v], [9, 9])=2(u,~)v--(v,q~)v+a(t ,u,9)+b(t ,v ,9)+a(v,~) ~ 
([u,v-], E~o,~0.16Vx V) (4 .7)  
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It is clear that Vx V is dense and continuously imbeded in V,,. 
L e m m a  5 Is ]. [ ]) is a continuous sesquilinear elliptic form on Vx V, with 

(A(t)Eu,v], Ecp,~])v,,=E(I-u,v], [-q~,~p]) 
([u,vTED(A(t)),  [-qg,r x V) (4.8) 

P r o o f  From (4.7), we have 

IE(Eu,v], Eq~,r162 (4.8) '  

For {Re(a( t ,u ,v) - - (v ,u)v)  I~<flllul{'{{oil (/~>0) �9 
We have 

ReE(~_u,v-I, f_u,v-1) 

>~211uli..+.c~llvll~_1311u!l ilvtl>~21lull, +c~tlvll ~_ flrt 2 

If we choose large r/ suchthat  cz>fl/2rI andchoose it suchthat  

can obtain elliptic property of E by (4.9). That is 

[E(Eu,vl, r-u,v3)I>~alll-u,o311~,~v (4.10)  

Because 

(A(t)[u,v3,1-cp,~p3)w,= (U-~,L(t)lu,vl, rcp,r162 

- - I lu l l~ -  2-~--Ilvll z (4.9) 

. 2>flrl/2 ,we 

= 2 ( u ,  cp) v-- (v, cp) v+ a~ (t)u(r + B(t)v(r + 2(v, q)) re 

(Eu,vqED(A(t)), r~v,~p3EV,,) (4.11)  

we know (4.8) is true. 

L e m m a  6 A(t) is maximum accretive. 

P r o o f  In order to prove that for every [ft,fz-lEVm, there exists an [-x~, xz3ED(A(t))  
such that A (t) [-x~, xz] = [-fa, fz3 we need only to prove that thereexists [x~, x2] such that 

2cxi--cxz'~cf b 

~ f ( t ) x ,+B( t )Xz+2~xz=~ ' / z  } (4.12)  

We can find xzEV such that 

and let 

- T ~  (t).f~ 

x ~ = x d 2 §  

We can see [xt, x2] satisfies (4.11) and E D(A(t)). Thus A(t) is a surjection of D(A(t) )onto V .  
From (4.10) and (4.9), we have 

liA(t)Eu,v]ll>/a]l['u,v3]l, ( [ u , v T E D ( A ( t ) ) ) ,  a > 0 .  

Thus A "1 (t) exists and [IA-~(t)1[~ 1/ct 
Take r/ such that 0 < r / < c t  . Let 

Pf-u,v3= --rlA-~(t)[-u,v-l+ A-t ( t )Ef  l,f2], 
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Then P is a constraction. And P has a fixed point [u,v], such that (A(t) + rl ) Eu, v3 = [_ [,,  fz3 
T h u s ( r l + A ( t ) )  is surjective onto V .  

It is easy to show that A(t) is accretive. 

We denote by S(O) a fixed closed sector which consists of  those complex numbers r/ 

satisfying -- 0 ~ arg 2 ~ O, 0 ~ Jr~2. 
L e m m a  7 The resolvent set 

(rl+ A(t)  ) -~ satisfies 

p ( A ( t ) )  contains S(O) and the resolvent 

C 
II(rTI+.4(t))-'ll~ 1 +  1,71 ' tIES(O), i1~!1~1 (4 .13 )  

and 

[IO(o+ A(t)  )- 'II~M(O) ( t IES(0) )  

where M(O) is independent of  t and ,7 

Thus we have (4.13) by (4.14) and C is independent of  t and 77 

L e m m a  8 Denote 

P r o o f  Because E(Eu,v], log, ~] )  is a continuous sesquilinear elliptic form and M in (4.8)' 

a in (4.10) are independent of  r/ and t, from (4.8), we have, by [1], 

(4 .14)  

~,C - - C  ,~C ~ C  

 o=I I 1 .3(t) B(t) ~(~) B(t)+)~ 

Then both L o and L are maximum accretive operators of  D(A(t)) with 

IILoEu,vqllv'~allEu,v311v~v, IlLEu,v311,.',,~allEu.v311v~v 
Ez,,v3ED(A(t)) (4 .15)  

The proof  is similar to that of  Lemma 6. 

L e m m a  9 Assume operator B-'( t) . , ,4( t)  and subspace B - ' ( t ) I i / ' ~ V  are 

independent oft .  If B(s) .  B -~ (t) is a continuous surjection from V'onto itself, and its restriction 

on w t satisfies 

then we have 

IIB( s)B-' ( t ) - B (  r )B -~ ( t ) ll~w,~ <c l s-:r l 

I IA(s)A- ' ( t ) --A(r)A- ' ( t ) l l ;e~v,~<els--r t  ( e > 0 )  

(4.16) 

P r o o f  We have 

I] (A(s )  - -A(r)  )l-xi,  x2-1 [I v,., = II (L(s) --L(r) ) [x i  ,xz]  ]1 v, ~ 

= IId,,(s)xx+B(s)xz--~f(r)xx--B(r)xzllw' 

= liB(s) ( x z+B- ' ( s ) .d ( s )x t ) - -B(r ) (x z+B-~(r )~( r )x , ) I lw '  

Denote y = x z + B - ' ( t ) ~ ( t ) x ,  , and then y is independent of t. 

From (4.16) we have 

UB(s)y--B(r)vllw' <cllB(t)Yllw [s--rl 

(4.17) 

(4.18) 

i.e. 
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II~f(s)xl + B(s)xz--af  (r)x,--B(r)xzlliv, <c}ld,(t)xl + B(t)xzllvr [ s - r l  (4.19) 

By Lemma 8, we can define a norm on D(A(t)) by IIEx., xz'lllo(A(t))=llLfxx,xz3llv~., 
[-x~, xz]ED(A(t  ) ), which makes D(A(t)) a Banach space. Since L is a closed operator and(4.15). 

And so does L,,. Then it follows that for some positive numbers C~ and C2 

c, lltog 311v',,~<ilLE -lll~,'m~<c2llLoE lllv'm (4.20) 
Then it follows that 

II~(r <llLoUxt, x2311v',,<lllLI-xx,xz-Illv',,, I -xl ,xz]ED(A(t))  

(4.21) 
From (4.21), (4.19) we obtain (4.17). 
We summarize the above. 
T h e o r e m  2 Let V and W be Hilbert spaces with V dense and continuously imbedded in W. 

Assume .~( t )  and B(t)Ea~(V, V') defined by (4.1), (4.2) and (1.5). IfB(t) satisfies (4.16), 
B-~(t)~d(t) and B-I( I )W ' are independent of t, then for every f E C;(R~,w' )  and 
[Uo,UolEV x V with ,eb(O)uo+B(O)uxEW' , there exists a unique solution u(t) of 

~u't(t) + B(t)u'(t)  + ~ ( t ) u ( t ) = / ( t )  
(t>~o) } (4.22) 

~(0) =u0, u'(0)=ul 
Proof  A(t) is maximum accretive by Lemma 6 and -A(t) is the generator of an analytic 

semigroup by Lemma 4 and 5. From Lemma 7 we have (4.13). We obtain (4.17) by Lemma 9. So 
finally Theorem 2 is proved. 

Coro l la ry  1 In addition to the hypqtheses of theorem 2, assume that 

B( t )=e  ~ef(t), e~O. Then for every f E C I (R~, /,V') and  [-uo,ut-lEI'• U with 
(t) (uo+eut)EW' , there exists a unique solution u(t) of 

~u" (t) + e ~  (t)u'(t) + af(t)u(t) = f ( t )  
t~O } (4.23) 

u(0)=u0, u'(0)=ul 

It is clear that B-t(t)y~(t)  is independent of t. 

Coro l l a ry  2 Under the conditions oftheQrem 1, if A ( t )  = 0 ,  then for every f E C 

(R~, W'), uoEV, u~EB -x(t)W',  there exists a unique solution u(t) of 

Ceu" (t) + B(t)u'( t)  = f ( t )  
t~o } (4.24) 

u(O)=uo, u'(0) =u~ 
It. is clear that B -x(t.)~f(t) is independent of t. 

V. Discuss ion  About  the Boundary Problem (4.23) 

It is natural to ask a question: May e in (4.23) go to 0? 

If for every s, A(t)A-~(s)  is twice differentiable in t and f f ( . ) i s  a Hoelder continuous 
function, then, by [2], solution of (4.5) and therefore solution of (4.23) is differentiable in high order. 

So from (4.23), we have 
(u'" (t) ,u" (t) ) w.+ ea(t, u" (t) ,u" (t) ) + a(t,u' (t) ,u" (t) ) 

+ea ' ( t , u ' ( t ) , u " ( t ) )+a ' ( t , u ( t ) , u " ( t ) )= f ' ( t ) (u" (Q)  (5.1) 
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SO 

SO 

For 

where 
By choosing 

Therefore 

2Re (u '"( t) ,u"(t))~=dllu"(t)I1~.  2Rea(t,u"(t),u"(t))>/O 

2Rea (t ,u'(t) ,u" (t) ) = d a ( t , u ' ( t  ) ,u'(t) ) --a'(t ,u'( t)  ,u'(t) ) 

2Rea'(t ,u'(t) ,  u"(t) ) =da ' ( t , u ' ( t ) , u ' ( t )  ) --a"(t ,u'(t)  ,u'(t) ) 

2Rea'( t ,u(t)  ,u" (t)) =2  Reda ' ( t ,u ( t )  ,u'(l) ) 

--2Rea"(t,u(t) ,u'(t) ) --2Rea'(t ,u'(t)  ,u'(t) ) 

-~Uu"(t) ll~, +2eRea(t,u"(t), u"( t ) )+  a(t,u'(t),u'(t)) 

--a'(t,  u'(t) ,u'(t) ) +eda ' ( t ,u ' ( t )  ,u'(t) ) --ea"(t,u'(t) ,u'(t) ) 

+2 Reda ' ( t ,u ( t )  ,u'(t) ) --2Rea"(t,u(t) ,u'(t) ) 

- -  2Rea'(t, u' ( t) ,  u' ( t))  ] = 2 Re./' (t) (u" (t)) 

Integrate (5.2) from 0 to t, we have 

E Ilu" (t)I1~,-Ilu" (0)II~,+a(t,u'(t) ,z,'(t)) -a(O .~,'(0) .u'(0) ) 
+ea' (t,u' (t) ,u' ( t) ) - ea '  ( O ,u' ( O ) ,u'(0) ) 

+ 2Rea'(t,u(t) ,u'(t) ) --2Rea' (0 ,u(0) ,u'(0) ) ] 

, ro o" , ~ ' , ~  ~',~, ~ + ~ I ' o  o', ,~ ~,~ ~ ' , ~  ~ + 

]lu" (t)II~,+a(t,u'(t) ,u'(t) ) ~  JIu" (0)IJ~,+ a (0 ,u,, z,, ) 

+ ll/'Jl~,o,~,,~,, +I'o (,,,"(~>,~+c,,,'(~) 11~)~ 

c=3llA'(t)c~evy,) 
M,(0)uoEWl M (0)uiEW1, from (4.23) we have 

Ilu" (0)II~.~< Ill(0)IIw, +~1[.~ (0)u0llw, q- I1.~ (0)uo II w, 

Ilu"(t) I1~ + c~llu'(t)I1~<#( IIf(0)ll~,, +e  2 II ~t (0)uoll~z, 

(5.2) 

(s .3)  

(5.4) 

(.5.5) 

(5.6) 
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When e ~ 0  , right first term in (5.6) is bounded. So by Gronwalrs lemma we have 

Ilu" (t)I1~,+ cllu'(t)I[~<~M+c(T)M (5.7) 

where C(T) is only dependent on T. 
u't(t) and ut(t) come from (4.23), so are dependent on e . Mis  independent of  e . Thus 

(5.7) shows passing limit as e ~ 0 in (4.23) is meaningful. 

Summarize the above, we have 
T h e o r e m  3 Let V and W be Hilbert spaces with V dense and continuously imbedded in IV. 

Assume that . ~ ( t ) E ~ ( V , V  ~) satisfies elliptic and symmetric conditions and (4.16). If  

II.d, (t) II~e<v,v'~, II~'( t)  II~ecv,v'), andll~f"(t) ll,~<v,v,~are all bounded independent of t ,  for every 

xE~d.-Z(s)W ', .ef'(t)x, ~ ." ( t )xECt(R~,W ') Then for every f ( . )  E C~(R-~, W') ,  
uoEV, uIEV , with .d,(0)u0 EIC t and .d,(0)u~EVt' , there exists a unique solution of  

$'u,,(t) ( t>0)  
+o~f(t)u(t) ~f(t) 

u(0)=u0, u'(0) =u, 
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