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Abstract
This paper proposes a formally stronger set-valued Caristi's fixed point theorem and
by using a simple method we give a direct proof for the equivalence between Ekelund's
variational principle and this set-valued Caristi's fixed point theorem. The results stated in
this paper improve and strengthen the corresponding results in [4].
In 1974, Ekeland"! proposed the following variational principle:
Theorem 1 (Ekeland’s variational principle!!l.  Let (X.d) be a complete metric spizee and
@: X ——(—co, + o2 ]a lower semi-continuous functional bounded from below and = =~
Suppose that ¢ 1s an arbitrary position number and v a point in X such that

o(uy<inf{p(x): x€X} +e (1)

Then for any A0 there exists a point ¢ in .\ such that the following hold

o)< p(u)—ci-du, v) (20

o1 .
d(u, v)&—i— (oD
P() >p(v) —ei-d(v, %) V x€X (v} (4)

In 1976, Caristi!¥ proposed the following fixed point theorem:
Theorem 2 (single-valued Caristi's fixed point thcorem!” Let (Y.) be u complete metric
space and @: X——[0,<>) a lower semi-continuous function. Supposc that 7: Y -» X is a

mapping satisfying the following condition:
d(x, Tx)<@()—@(Tx), V€N

Then 7 has a fixed point in X.

It is well known that these two famous theorems are of fundamental importance in the recent
theory of nonlinear analysis. In particular, they play an important role in the control theory,
optimization, global analysis, geometric theory of Banach spaces and nonlinear semigroups etc.

By virtue of Theorem 1. in 1979, Ekeland? gave a direct proof of Theorem 2. Recently, using
Theorem 2. in 1987. Shi* obtained a direct proof of Theorem 1. Hence the problem of how to give a
direct proof for the equivalence between Ekeland’s variational principle and Caristi’s fixed poing”
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theorem is solved.

The purpose of this paper is to obtain the following formally stronger set-valued Caristi’s fixed
point theorem 3 and by using a simple method we give a direct proof for the equivalence between
Ekeland’s variational principle and this set-valued Caristi’s fixed point theorem. The results stated
in this ‘paper improve and strengthen the corresponding results in [4].

Theorem 3 Let (X,d) be a complete metric space, CB(X) a family of all nonempty subsets of
X and @: X—>(—oo, +oo] a lower semi-continuous functional bounded from below and
== +oco. Suppose that T: X - CB(X) is a mapping satisfying the following condition: for any
%€X there existsa y€Tx such that

d(x, PI<e(%)—e(yY) (5)
Then for any ygX, @(u)= + oo »and B>1 , there exists a fixed point v€X of T such that
d(u, V)SB(P()—@(v)) (6)
In particular, if ‘
p()<inf{p(x): x€X}+einf{p(x):x€X}+1
then v has the following property:

d(u, )SN€ (1)
Now we give the main result of this paper:
Theorem 4 Theorem | and Theorem 3 are equivalent to each other.
Proof Theorem 1 == Theorem 3.
For any u€X, @(u)3+o and >1 ,if
p(u)=inf{p(x): x€X}

then - (u)<<@(y), Vy€Tu . By condition (5) we get, for some yeTy ,

d(u, y)=0

This implies that 47"y , and u is a fixed point of 7. Taking v=u, hence we know that (6), and (7)
are true.
If

p(u) >inf{p(x): x€X}
denote
@(u)—inf{p(x): x€X}=¢

Using Theorem 1 for ¢ , and taking }= (eB)~!, it follows that there exists a v€X such that

P)<p(u) — %d(u, ) (8)
d(u, v)<ef (9)
<P(x)><p(v)——-ﬁ17d(v, x), V %€X (10)

By condition (5) it follows from (10) that there exists y€7v such that
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d(v, ¥)+e(WN<P)I <3 L d(u, »+ew)

Since 8>1 and @(v)<Le(u)<+oo it follows from the above inequality thut

d(v, y)=0

This shows that v=y€Tv ,i.e. v is a fixed point of 7. In addition, it follows from (8) that (6} 15
true.

Besides, if < e<{1 , taking B=(s)‘% >1 and noting (9) it gets (7).

This completes the proof.

Theorem 3 =>Theorem 1.

Proof by contradiction. Suppose that under the conditions of Theorem 1 the assertions of
Theorem 1 are wrong, hence there exists a A>>0 such that for any x€.Y

P(x)>p(u)—eld(u, x) (11)
A, %> 5 (12)

and a y,, Y= such that
¢(y°)<(p(x)-—e/1d(x, yo) (13)

Letting

F(x)={y€X: y¥xand e(y)+eid(x, yI<p(x)}, x€X

it follows from (13) that y,€F (%) , hence F(x)isnonempty. Next, by the lower semi-continuity of
@ we know that F(x) is a subset of X. This implies that Fis a mapping from X into CB(X) amd it has
no fixed point in X.

On the other hand, by the definition of F, for any x€X we have

d(x, NS PN —0W)),  VYEF(x) (14)

By Theorem 3 F has a fixed point in X. Thisis a contradiction. By this contradiction we pove that
(13)is wrong. Besides, it is obvious that (11) and (12) can not hold, either. This means that under the
conditions of Theorem 1, for any A>0 thereexistsa v€X such thatthe assertions(2)and(3),(4)
hold.

This completes the proof of Theorem 4.
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