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A b s t r a c t  

This paper propo.vc.~ a/i)rmal(v wronger set-valued Caristi's f ixed point theorem and 

by using a simph, method wc ,.,ivc a dirt'ct pr'.!f.for the equivalence between Ekchmd.~ 

variational principh ~ ami th~.~ .~ct-vah.,,l ( "aristi "v f ixed point theorem. The re.~'ulrv stated m 

this paper inwrovc and .~trcngthcn the ~tJrrt'.V~omllng results #1 [4]. 

in 1974, Ekelandl~l proposed the following variational principle: 

T h e o r e m  1 IEkeland's variational principlem. Let (),'.d) be a complete mctrt.~ ,pace and 

qg:.X ~(--o.o, +~,o]a  lower semi-continuous functional bounded from belo~v and ~.: -- 

Suppose that e is an arbitrary position number and u a point in A'such that 

,~(u)~,~inf . lcp(x.l:  x E X }  + e  (. 1 ) 

Then for any 2.".0 there exists a point z" in A such that the following hold 

~ ( v ) - ~ q ~ ( u ) - - ~ ) . . c l ( u ,  u )  (, '2 

A 

q ~ ( x ) > c p ( v ) - - e Z . d ( u ,  x )  V x 6 X ~ v }  ( . 1 )  

In 1976, Caristil'l proposed the following fixed point theorem: 

T h e o r e m  2 (single-valued Caristi's fixed point thcoremlq Let (X.~h be a complete metric 

space and q~" X ~[0, ~'~) a lower semi-continuous function. Suppose that T: .V-~, ,V is a 

mapping satisfying the following condition: 

d ( x ,  T x ) < ( p ( : c ) - - ~ ( T x ) ,  V :~6_X 

Then T has a fixed point in Y. 

it is well known that these two famous theorems are of  fundamental importance in the recent 

theory of nonlinear analysis, in particular, they play an important role in the control theory', 

optimization, global analysis, geometric theory of Banach spaces and nonlinear semigroups etc. 

By, virtue of Theorem 1, in 1979, Ekelandl-'fgave a direct proof  of Theorem 2. Recently, using 

Theorem 2. in 1987. Shital obtained a direct proof of Theorem 1. Hence the problem of how to giv~- .a 

direct proof  for the equivalence between Ekeland's variational principle and Caristi 's fixed?o;~{- 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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theorem is solved. 
The purpose of this paper is to obtain the following formally stronger set-valued Caristrs fixed 

point theorem 3 and by ~ i n g  a simple method we give a direct proof for the equivalence between 

Ekeland's variational principle and this set-valued Caristrs fixed point theorem. The results stated 

in this'paper improve and strengthen the corresponding results in [4]. 

T h e o r e m  8 Let (X,d) be a complete metric space, CB(X) a family of all nonempty subsets of 

X and 9:  X ~ ( - - o o ,  +o~]  a lower semi-continuous functional bounded from below and 

+ co. Suppose that T: X ~ CB(X) is a mapping satisfying the following condition: for any 

xEX there exists a yETx such that 

d(x, 

Then forany  uEX, 99(u)~ +,~o , and 

In particular, if 

y ) < ~ ( x ) - ~ ( y )  

f l ) l  , there existsa fixed point 

d(u, v)<~fl(99(u)--.~(o)) 

99(u)~<inf{99(x): xEX} + e ~ i a f { q ~ ( x ) - x E X }  + 1  

then v has the following property: 

d(u, v)~, , /-U 

Now we give the main'result of this paper: 

T h e o r e m  4 Theorem 1 and Theorem 3 are equivalent to each other. 

P r o o f  Theorem 1 ).Theorem 3. 

For any uEX, 99(u)~-+oo and f l ~ l  , if 

~ (u)= inf{~0(x)  : xEX} 

then - 99(u)~99(y),  VyETu �9 By condition (5) we get, for some yETu , 

d(u, y ) = 0  

This implies that 

a r e  t r u e .  

If 

denote 

Using Theorem 1 for q9 

( 5 )  

vEX of T such that 

( 6 )  

( 7 )  

uETu , and u is a fixed point of T. Taking v= u, hence we know that (6), and (7) 

99(u) ~>inf199(x)" xEX} 

99(u)--inf{99(x)- xEX}=e 

�9 and taking 1 =  (eft)-1,  it follows that there exists a 

99fv)~99(u)-- --~d(u, v) 

d(u, v)<~eB 

99(x)>~99(v)- -~--d(v, x) ,  

By condition (5) it follows from (10) that there exists vETo 

u xEX 

such that 

vEX such that 

( 8 )  

( 9 )  

(1.0) 
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1 d(v, y)+q~(y)~qJ(v)~--fl-d(v, Y ) + t p ( v )  
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Since f l > l  

This shows that 

true. 
Besides, if 

and cp(v)~cp(u)< +oo , it follows from the above inequality that 

d(v, y)"'O 

v=yETv  , i.e. v is a fixed point of T. In addition, it follows from {,~} that {6)is 

0 ~ e ~ l  , taking f l= (e ) - )~  > 1  and noting (9) it gets (7). 

This completes the proof. 
Theorem 3 ;,Theorem 1. 

Proof by contradiction. Suppose that under the conditions of Theorem 1 the assertions of 

Theorem 1 are wrong, hence there exists a 2 > 0  such that for any x(:X 

q~(x)>cp(u)--e2d(u, x) (11) 

1 
d(u, x ) ~  T (12) 

and a Yo, yQ~:x 

Letting 

such that 

9(yo)<~9(x)--e2d(x, Yo) (13) 

F ( x ) = { y E X "  y~-xandtr(Y)+e2d(  x, Y ) ~ P ( X ) } ,  xEX 

it follows from (13) that yoEF(x) , hence F(x) is, nonempty. Next, by the lower semi-continuity of 

9 we know that F(x) is a subset of)(. This implies that Fis a mapping from Xinto CB(.~ arrd it has 

no fixed point in X. 
On the other hand, by the definition of F, for any xEX we have 

d(x,  y)<~ ~2(~p(x)--~p(y)),  V y E F ( x )  (14) 

By Theorem 3 F has a fixed point in X. This is a contradiction. By this contradiction we pove that 

(13) is wrong. Besides, it is obvious that (11) and (12) can not hold, either. This means that under the 

conditions of Theorem 1, for any 2::>'0 there exists a vEX such that the assertions (2) and (3), (4) 

hold. 
This completes the proof of Theore.m 4. 
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