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Abstract 
The growth, equilibrium and stabilization of  free gas nucleus are analyzed. It is shown 

that the cavitation results from growth of  free gas nucleus to criiical radius and conditions 

of  cavitation have been derived. 

I. Crowth of  Free Gas Nuclei 

A large mamber of free gas nuclei exist in water. These nuclei are full of  undissolved air anti 

vapor. It is the continued growth of  these nuclei which forms the cavitationm. 

Consider a free gas nucleus which changes size in a surrounding water. The velocity potential is 

given byt21 

R z d R  
q~ = --~- "--dT- ( 1 . 1 )  

in which, R = R(t) is the radius of free gas nucleus, r is the radial distance from its center, t is time. 

By formula (1.1), the radial velocity of any water particle relative to the gas nucleus center can 

be got 

Oqb R 2 d R  ( 1 . 2 )  
Or r z d t  

If the effect of gravity is omitted, the equation of motion for the liquid is0~ 

Off ~ pP--=F(t)---- P~o ( 1 . 3 ,  
- - 8 t  + + P 

where P is the density of water, P is the pressure at any point of water, P~o is the pressure at 

infinity in the water, where u = 0, ~-~ 0 . 
Reducing to r = R gives the motion equation of the free gas nucleus-wall as 

d U  3 z P . o - - P  (1 4) _ R  . _ ~  _ - ~ J  --.= p 

Here U= dR/dt  is the radial velocity of free gas nucleus-wall, p =p(R) is the water pressure at the 

outside of free gas nucleus-wall. 
A free gas nucleus grows very rapidly. The changing process of its volume can be regarded as an 

adiabatic process. Hence 

/ R0 \sT 2a ( 1 . 5 )  
P =  P,t,---~--) + P ~  R 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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in ~.t'fich R o is the initial radius of  nucleus, p~ is the air pressure inside the nucleus at initial moment 

(R= 'Ro ,  R = 0 )  , p , = p , ( T )  is the vapor oressure inside the nucleus, ~---cr(T) is the surface 

tension of water, )g is the gas constant (adiabatic) of air. 

Substituting (I.5) into (1.4) gives 

R d U  3 1 d 
- - ~ i - + - 2 U ~ =  2R2U dt (R3UZ)= 

�9 R ,3~ 2or 1 
_ _  1 0 

where C ~ = p / p  

Integrating (1.6), we have 

/ 5 ,  N P o e .  

P 

( p ~ - -  p~) ( 1 . 6 )  

o r  

dR f gC~" ~ [ ( ~ ) 2 - , ]  

+ 2 (P~ [(--~)~ - ~]} '': (~,7) 
3 p 

d l t . ~ .  ~ .  

~.c~ 
3 (~--~ ~,) 

dR 
/ no "r 20. I - /R0 ' f _ l ] + { ( p - - . o , , )  ~,- '  " ',: 

_ 
( 1 . 8 )  

By doing numerical intergrations of  formula (1.8), we can find the relationship of  time versus 
nucleus radius under different P,~ (see Fig. 1 or Table I). 
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II .  E q u i l i b r i u m  a n d  S t a b i l i z a t i o n  o f  F r e e  G a s  N u c l e u s  

By lbrmula (I .6), we have 

dU 3 �9 R . a, 2~y 1 
e - a t  - ) p R - - p  - ( p ' - ' - p v ) = f ( R '  T )  

The function J(R. T) is the force encouraging radius change�9 The sign of  f(R,T) will be positive 
to promote nucleus growth and negative to encourage collapse. 

Let 6/ ' / .3.R=0 , for constant temperature, the nucleus radius R,. corresponding to the 
minimoin , due of. f iR,T) is 

Rc~( 2ff ) 1-...18 ~ 
- - -  2 ,y / 3pC,Ro V ( 2 . 2 )  

If water lemperature Tend the initial radius R 0 of  a free gas nucleus are given, R,, is a constant 
value. If T= 15~ R,= 10-~mm, then R =0.5778mm. 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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When R ~ R ,  , then Of/OR~O,  the-nucleus is in an umtabtestate.  

When R ~ R ,  , then Of~OR<O, the nucleus is in a stable state. 

It is thus clear that under fixed temperature, value of R c is the maximum radius keeping the 

nucleus in stability. We call it the critical radius of  free gas nucleus. In negative pressure fields, the 
I 

nucleus will grow unceasingly, its radius will expand gradually, and it is in a stable state until its 
4 

radius is equal to or exceeds the critical value R.  At this time, plenty of.water around the nucleus is 

gasified, the nucleus grows very quickly to form a microscopic bubble. This phenomenon is named 

cavitation. 

Supposing  the time that a nucleus grows from the initial radius R 0 to R is tRr the relati6n 

between P=o and tec can be found out from Fig. 1, as is shown in Fig. 2. 
Table 1 The relationship of time versus nucleus radius (T-- 15'12, R0= t0"lm m) 

, I I I I I I  
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From Fig. 2, we can see, under general negative pressure, the time when the nucleus grows from 

the initial radius R 0 = 10 - ~mm to the critical radius R is approximately 10- + second. In other words, 

even if the pressure fields are of high frequency oscillation, the time is long enough to make the 

nucleus grow to the critical radius. 
If fl~R,T)=0, the nucleus is in the equilibrium state, its radius is correspondingly named the 

equilibrium radius R .  From (2.1), the following equation can be obtained that the equilibrium 

radius should satisfy 
�9 Ro .s~ 2a l ( p o _ _ p . ) =  0 (2.3) ) 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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When the water temperature and R 0 are given, the value o fR  e will vary with Poo their relationship 

is illustrated in Fig. 3. 

From Fig. 3 we see that a free gas nucleus has a definite equilibrium radius when Po: is in 

certain range, within which the nucleus will grow till R = R, and will not form cavitation. Poo has a 

limit value at the vicinity of 0.015 kg/cm 2, where the curve slope tends towards infinity, which 

indicates that when P ~  is smaller than this limit value, a nucleus has no equilibrium state and will 

grow continually until R = R c , thus forming cavitation. This limit value of  P ~  can be defined as 

follows. 

According to the preceding discussion, when R = R ,  function fiR, 7") has minimum value. By 

(2.3), we have 

] 

�9 R .3~ 2a 1 -] 

C~ -,o ( p o o _ p ~ )  | =  0 (2.4) pro 
"By which the minimum value of P~ that the nucleus is in the equilibrium state is obtained. 

__  2 R 0  3Y 
R~ + P v  (2.5) 

By (2.2) we have the solution of pC~RSo ~ , then substituting (2.5) with it, we get 

2 a ( 1 - - 3 7 )  
p,,oml,,= 3R,v + P~ ( 2 . 6 )  

When water temperature T=  15~ R 0 = 10-Imm, by (2.6) we get P,,omln=0. 01542kg/cm z 

III. C o n d i t i o n s  for  I n c i p i e n t  C a v i t a t i o n  F o r m a t i o n  

According to the preceding discussion, the conditions of  incipient cavitation formation can be 
obtained as follows: 

1. It does not form cavitation, if Po~Poom~n 

2. It forms cavitation, if Poo~Poom~n . 

For a stmmerged body, P~. is the minimum pressure of  the body surface. For  the oscillating 

fields, the oscillation of pressure can be omitted, because half of  the cycle is much greater than tRc 

and Po~ = P~--  P , where po is the hydrostatic pressure at the oscillator, p is the crest value of  the 
pressure produced by. the oscillator. 

IV.  A d d i t i o n a l  R e m a r k s  

In this paper the conditions for incipient cavitation formation are discussed in water. These 

conditions may be applicable to any other liquids. The compressibility of water is omitted in this 

discussion, because only at the last stage of  the bubble collapse does it show the remarkable effectt31. 

The effect of viscosity is to produce damping and loss of  mechanical energy during the growth 

and collapse process. The viscosity of  water is very low, so that the effects of  viscosity on cavitation 
are relatively negligiblet31. 
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