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Abstract 
The present work is concerned with the behavior of the second bfurcation of a 

Hopf bifurcation system excited b,v white-noise. It is found that the intervention of 

noises induces a dr$t of the bz@rcation point aiong with the subtantial change in 

bijurcation type. 
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IS Introduction 

Nonlinear analysis efforts mainly include researches on the stable motion of a system. 
investigations on its stability features and the instantaneous motion of a dynamical system 
when changes occur to its governing parameters. The so-called stochastic bifurcation implies 
the transition phenomenon that arises, under the action of noises, in a nonlinear system in the 
vicinity (neighbourhood) of bifurcation point. 

Prigoging and Nicolist’J, Haken121, and Graham13i noticed the significant effect of noises on 
the long-time behavior of a system far from equilibrium state and that on the non-equilibrium 
phase transition, and by the end of 197Os, these investigators initiated investigations on 
stochastic bifurcation behaviors. 

With the intervention of noises, a complete description of a nonlinear stochastic system 
usually implies: 

(I) for white-noise systems, Ito stochastic differential equation is satisfied by the sample 
functions of state variables; 

(2) for an Ito system, the probability distribution function of sample orbits satisfies FPK 
equation. 

This is attributable to the emergence of the two types of conceptual guidelines in 
stochastic bifurcation studies. 

In the early stages, research interests were mainly focused on the mathematics and physics 
essence of stochasatic ‘bifurcations, starting with the invariant measure --the stationar? 

solution of FPK equation of a white-noise system, in order to determine the location of the 
bifurcation point and the form of the bifurcation solutions. 

As the process of evolution keeps going forward, it is increasingly more realized that 
stochastic bifurcation is essentially a kind of nonlinear singular phenomenon that, appearing in 
the sample orbits of the stochastic system, reflects the catastrophe mechanism of the sample 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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stability of a system. As to the invariant measure method, its capability of grasping the 
information on stochastic bifurcations is less completed!: ‘* ?‘I. As revealed by the ergodic 
theory, the invariant measure &c) is, in essence, a measure of the averaging time of an 
arbitrary orbit in the infinitesimal neighborhood of ,Y. Therefore, it is incapabie of exactly 
describing the state of the sample orbit. Still, only in certain extent, does the extremum of the 
invariant measures reflects the most probable and almost improbable motion of a system. 

On the basis of the advances achieved in investigations on sample stability problems 
regarding nonlinear stochastic systemst’s ‘1, significant amount of effort has been devoted to the 
research topics in connection with sample stability problems of nonlinear stochastic systems 
ever since the advent of 19SO. In speciIic. such effort has been focused on the evolution of 
maximum Lyapunov exponenttg* lop “p ‘4 of relevant systems. In this aspect, the maximum 
Lyapunov exponent is empioyed as an important index for the definition of stochastic 
bifurcation point in probability 1 sense. At the same time, specific attention was attached to 
investigations on the geometrical attributeslr31 of sample orbits of the diffusion solution 
processes to noniinear stochastic dynamical systems. Apparently, the core of investigations is 
consistent with the conceptual guidelines manifested by the increasingly wide4pread ergodic 
theory in research activities regarding the theory of deterministic dynamical system. 

Based on the classical Khasminskii method, the maximum Lyapunov exponent of a 
linearized stochastic system at its equilibrium point is evaluated, and, in addition, the location 
of the first bifurcation point in probability 1 sense is determined. Next, the stochastic 
averaging method is invoked for investigation on the invariant measure- of FPK equations, 
corresponding to the amplitude Ito stochastic differential equations. Also involved in these 
investigations are the determination of the second bifurcation point and bifurcation solution in 
maximum probablility sense. it is found that, the intervention of noises does essentially induce 
a change of the original bifurcation type. 

II. Model of the Hopf Bifurcation System Parametrically Excited by White- 

Noise 

Consider a model of a kind of typical Hopf system which is excited parametrically by 
stochastic perturbations 

where ,u is the bifurcation. parameter, lG)ti a constant, .and a is a small. quantity. Again $1 (t) 
and <z(t) represent independent unit -white-noise processes- respectively.. Note also that 
stochastic differential equation (2.1) is established in Stratonovitch sense. In addition, (71 and 
crz represent respectively the intensity of $i (f) and lZ (t) , U; , (7; and ,Y being small quantities 
of the same order as E. 

For a deterministic Hopf Bifurcation system(o,=uZ=O),owing to the deterioration of the 
real part of the eigenvaiue of the Lyapunov matrix for its linearized system, a limit circle 
emerges at the equilibrium point (JC= -Y=O). To examine the effect of noise on the stability and 
bifurcation behavior of a Hopf bifurcation system, the maximum Lyapunov exponent and 
rotation number of the linearized system 

~=,uu+cihJv+u~,t~(~) 
~=--GI~u+~v+vc~~~~(~~ 

(2.2) 
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corresponding to equation (2.1) will be determined. 
Taking into account Wong-Zakai correction terms[‘41 gives rise to Ito stochastic differential 

equation 

du==Audt+B,udlV,+BsdlVz 

A= , Bi=(;’ ; ), Bt=(; y,,), u=( ‘) 
2 V 

where IV,(t) , lVz (t) are independent Wiener processes. Also, corresponding to (2.3), the 
vector solution process ~1 is a diffusion processt’4’. 

III. Khasminskii Transform and the Invariant Measure of One-Dimension 
Diffusion Process 

By means of Khasminskii transform ~1 the diffusion process u is mapped on a unit circle. , 
Using transform 

and applying Ito differentiation rules [I41 to the manipulations with respect to p and 
0 ( =arc tg ( V/U) ) yields the Ito stochastic differential equation 

dP=Q(8)dt+.L(O)dWp(t) (3.3) 
dO=@(Qdt+V(6’)dWe(t) (3.4) 

in terms of p and 0, on the basis of equation (3.2). Note that in the above equation 
Wr(t) (r= 1 ,2), bV@lf) are independent Wiener processes. Also, 

QW =&As++-SBs (3.5) 

S?(O) ==sTBps (r= I ?2) (3.6) 

CD(O)=- ZTAs+STBs (3.7) 

Y-2(iJ) =ZTBs (3.8) 

In this process, setting 
2, 

B(0) = x c&s) (BUS) Ed (3.C9) 
?-=I 

ds 3=--s 
d0 (82, --a) T=(sinO, -cosU)~ 

yields. corresponding to (3.5)-(3.8), the following equations 
Q(O)=~~+(o;cosV+o;sinV) .- (~;cos40+~;sin40) (3.10) 
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21(e) =u,cos20, X2 (0) =~gAn%J (3.ll) 

#(tq= -c&++u; -~~)sin8c0s~+(u~c0s26--~~sinz0)sintk0s~ (3.12) 

!P(O) = (u; +u; )sinzL3cos20 (3.13) 
From Ref. [8], the differential generator relevant to (2.3) is 

L=@(e) -$++Y2(0)-$ 

+[-+i ~7; -k0~)sinzOcoszf3 1 d’ - 
de2 

(3.14) 

Noticing the form of equation (3.4) together with its coefficients expressions (3.12), (3.13), 
it is apparent that 0 is an one-dimension diffusion process on unit circle, whose stationary 
probability density function- invariant measure Al satisties the following FPK equationt’41 

L*,u(o) =o (3.15) 

with L* as the adjoint operator corresponding to L, i. e. 

Via direct integration of (3.19, the general solution of ~(0) is obtained as 

(3.16) 

where 

with C, G as integration constants to be determined. 
The decisive effect of the singular points of the diffusion process 0, located on a unit 

circle, on the concrete form of p(a) -the invariant measure, is revealed by the classical 
theory of one dimensional diffusion processes l’jl. Let us examine the characteristics of 
singularities of Q on a unit circle. 

It is apparent that for U=O, n/2, n, 37~12 

CD(O) = -w”++(u; -~~)si~~Ucos~~(u~cos~zU-u~sin~U)sinUco~~~-~~~<~ 

rY2(6) = (~7: -l-o;)sin% cos%r=0 

From the definition of singularities t’@, it is known that 0. 7r/2. E, 37~J2, are the left shunt 
singularities of the diffusion process f?, while the others on the circie are non-singular points, 
Additionally, in accordance with Kozin and Prodromout”t, R. Mitchell and Kozint”l, and 
Nishiokat”], one- naturally, relevant to the concrete form of /t(0), comes down to the 
conclusions: 

(1) On the unit circle, forms of invariant measure at points, symmetrical with respect to 
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the center of the circle, are identical i. e. 

/J(Q) =Ptk!L~l (3.19) 

(2) In the interval 
L 

- f , -+j of U, invariant measures are 

(3.20) 

where 

Calculations on (3.18), (3.20) and (3.21) lead to the following form 

~ ex~(y~(~))(sin~)~-z(cos6)~-z~~~~x~[ -~~(~)~~in-~~~o~-~~~~ 

(3.22) 

as 0 c i --jr/z, 04 . Note in the above equation (3.22) 

f(ej=ctge-tge (3.23) 

(3.24) 

In addition, integration constant G is available via the normalization condition of /i(0) 

such that 

(3.25) 

IV. Maximum Lyapunov Exponent and Rotation Number 

It is known from [16] that, on the entire unit circle, the diffusion process 0 is.ergodic. as 
long-as the singularities of 0 one the unit circle are left shunt points. On such basis. from the 
Oseledec Multiplicative Ergodic Theoremn31 arises the maximum Lyapunov exponent ;. and 
rotation number X, relative to the stochastic differential system (2.3), i. e. 

(4.2) 

They are determined via the following expressions 
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The Lyapunov exponent reflects the average exponent change rate of system (2.1), while the 
rotation number reflects the average rotation rate of unit vector (~1, 3~). 

Let the maximum Lyapunov exponent be considered first. Substituting (3.10) (3.22)- 
(3.24) into (4.3), and using integral transfom ~=tg0. yields 

(4.5) 

wherein 

(4.7) 

Analytic expressions of the exact complete integrations in equation (4.5) are unavailable since 
the integrals involved are transcendental. The fact that ~7; and CT; are small quantities of 
the same order of magnitude as a and that ~1~ is a positive constant, leads to Y, ?Jr+ +m, 
both being very large. For such cases, the asympototic integration of (4.5) can be evaluated by 
using the following Laplace asymptotic integration theorem. 

Theorem (Laplace)~zo~. Let (p(x) and 11(x) be real continuous functions defined on tinite 
or semi-finite interval [a, /3] and 

(1) for every !J, P(x)exp[/r(x) ] be absolutely integrable on [CG j?]; 
(2) h’(x) and /z”( x are continuous functions on [a, p]; ) 
(3) /z(x) attain its maxima at G! with /z’ (x) <O. 

Then, as Y++=, 

In case, in the above theorem, (3) is replaced by 
(3)’ /r(x) attains its maxima at /3, with 12’ (P)>O , then as I’+ -km 

\ ~~~x~exp~~~(x~l~~x~~~~)exp(~Jf~(~)) h,c~jy 

By using Lapface asymptotic integration theorem, it can be seen that, as U; -i-,~i -+O 

u; cosV+u~ sinV) - (u; COS~U+U; sirPU) jdU 
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It is evident from (4.9) that, as A>0 i. e. @- (cri -l-o;)/8 , the sample orbit of 
system (2.1) becomes unstable in probability 1 sense. Consequently, p= - (uf -t-o: ) /8 is 
the bifurcation point of the white-noise perturbed Hopf bifurcation system (2.1). The 
appearance of this bifurcation point is ahead of time as compared to that of the deterministic 
Hopf bifurcation point /L=@(~:=uz=~) . It is in such sense that the intervention of noise 
terms weakens the stability of the original system. 

V. Invariant Measure, Extremum and the Noise-Induced Second Bifurcation 
Phenomenon 

Corresponding to the stochastic dynamical system (2.1) with time-homogeneous diffusion 
process solutions. the invariant measure /L(U) is defined as the solution of the FPK equation of 
the system, namely, the limit of transition probability density function p(u ?t ~ uO) as 
/-+ +X , if such limit exists. In principle? invariant measure is usually correlated with the 
stationary solution of the stochastic dynamical system (2.1). And, a stationary solution process 
LL of (2.1) implies that (u, {) is a stationary vector process on the probability space 

(Mx.L?v P) . f2 corresponds to the sample space of Wiener process, A4 the phase space of 
the sample orbit u=u(~,zA~~ u). The momentous significance exhibited by the stationary 
solution to a stochastic dynamical system is similar to that of the stationary solution 
(equilibrium point. zero point, fixed point) to a deterministic dynamical system. Whereas, the 
invariance property of an invariant measure indicates that the measure remains unchanged in 

the process of the calculation defined on the semi-group of the drift operators which are 
defined on Q. In fact, together with the *invariance” of the sample orbits regarding the 
calculations in the semi-group of point-map in the phase space AJ, the above property 
constitutes jointly the fundamental premise to the delinition of stochastic flow and stochastic 
dynamical system on the probability space (G x 111: /L) . In essence, the existence of the 
invariant measure is the sufficient-necessary condition to the stationarity of (u, 6) and vice 
versa. 

The physical significance of the invariant measure is ascribed to its capability of reflecting 
the probability distribution of the long-time behaviors of a stochastic dynamical system in 
state space, i.e. the invariant measure is an important description of the long-time 
characteristics of the system. It is, and will remain, an important auxiliary characteristic 
quantity in the study of stochastic bifurcation, even though the information it grasps regarding 
the bifurcation phenomenon appeared in a nonlinear stochastic system is not complete. In fact. 
its mechanism to judge the stability situations of a stochastic system is consistent with the 
relevant method of the classical exit problem. More than this, together with the transition 
time, it constitutes an effective characteristic quantitylz’r ?A for the depiction of the difference 
between the noise-excited transition phenomena and general chaotic motions. 
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To achieve further enhancement in depicting the noise:excited bifurcation behaviors, the 
second bifurcation phenomenon of the stochastic Hopf bifurcation system is examined, which 
is likely to occur after the first having been experienced. Bifurcation solutions, in most 
probable sense, will also be investigated. 

By introducing new variables o(f) and (p \r) , and using 

u=a(t)sim$(t), u=a(t)cosq5(t)9 4(t) =mJ+fp(t) 
the following standard equations are obtained 

where 

8 4 Ul ==#I, + & az=uz (5.4) 

and ~1, Us are constants. Note that in the above equation, a(l) and p(t) represent 
amplitude and phase respectively? both being considered as slowly-varied stochastic processes. 
By virtue of stochastic averaging method, from the above equations arises the amplitude Ito 
stochastic differential equattion 

da=m,dt+~,,dFV~ (t) ~~.5) 

where V=(t) is unit Wiener process, ,IE a the drift coefficient, and d,., the diffusion coefficient, 
and 

Note that in the above equations, K is the constant spectral density function of the white-noise 
process bVa (t). Corresponding to equation (5.5), the FPK equation is 

with initial condition 

~~~,~l~o.~o~-+d~~-~o~ ,t+to (5.11) 

where fl (u,t i ac, tO) is the transition probability density function of the amplitude diffusion 
process u(l) whose invariant measure /t(u) satisties the following degenerated FPK equation 
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Direct integration of (5.12) yields 

(5.13) 

where 

with I- (m) as Gamma function. 
Namachchivaya recognized the ‘momentous significance of the extremum of invariant 

measure ,~(a). As indicated in [5], 
(1) As one of the most notable characteristics of Li(a), the number and location of 

extremum points embody basic information relevant to stationary behaviors of a nonlinear 
stochastic system. 

(2) As an extension of the stationary behavior of the deterministic system, the extremum 
of /L(Q) tends to represent the stationary behavior of the deterministic system, as the noise 
intensity approaches zero. 

(3) For an ergodic process u(l), as indicated by the Oseledec multiplicative ergodic 
theorem, IL(Q) is measure of time &at the sample orbit stays in the neighbourhood of u. 
Accordingly, maximum value indicates the longest period of time that the sample orbit stays at 
the’maximum point, implying stability. And, instability, if otherwise. 

For the FPK equation (5.12), amplitude a, in most probable sense, is available from, the 
maximum problem 

Based on the first equation of (5.14), one obtains 

azm-l>o, a2=2pt-mol 

To satisfy the inequality in (5.15), it is necessarily required that 

2m-l>O 

i. e. a==~.), when 

It follows from the second equation of (5.14) that 

(5.14) 

(5. Ifi} 

d2d4 z. 
--m- I Cl=0 

when p>- Xi (0: -!- oi ) . And, the second equation of (5.15) yields 
rrK 

d=2p’-ma~=2.p--7-(u~ +ui) 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



844 Liu Xianbin, Chen Qiu and Chen Dapeng 

From the above equation, one must have 2~’ --~n~~>u, that is 

In addition, from the second equation of (5,14), one arrives at 

i2LJ!& 

at ~=(z~~-~~~)* , when ~/Lz,[- -q$J: +u; )) . In other words, the maximum value 

of .~(a) is available at ti when P&Z . Whereas u= &-2pz) -47 corresponds to the *most 
coloured” limit circle in the the most probable sense in the phase space. And in phase space, 
from the long-time behaviors of the sample orbits of the bifurcation solutions to system (2.1), 
a region with indistinct bound emerges. In fact, this limit circle implies the most probable 
motion of the long-time characteristics of the sample orbits relevant to the average amplitude 
u(r). No doubt, ~2 can be taken as a bifurcation point of the system in the most probable sense, 
except for the bifurcation point pE gi 

C = --+ +@) ) in probability I sense. 

In consequence of the above discussion, it is evident that there are two bifurcation points 
in system (2.1)-bifurcation point /[I in probability 1 sense, and bifurcation point 
~z(~i<o<~z)in the most probable sense. As long as ,UI shows up ahead of the bifurcation 
point ;l=O of the deterministic Hopf bifurcation system, the appearance of ktl, in effect* 
renders the instability of the system shifted earlier. As p passes PI while moving along kl-axis in 
positive direction, the trivial solution u= 0 loses stability (in probability 1 sense), bifurcation 
sets in and nontrivial a(z) emerges. However, at this moment, the nontrivial a(r) is still not 
capable of representing a limit circle. The concrete form of a(r) is yet to be determined. It is 
appropriate, therefore, not to have PI considered as Hopf bifurcation point in probability I 
sense. As p passes nz, limit circle in the most probable sense appears. However, this limit circle 
still can not be considered as being bifurcated from a =O, as far as u=O is in almost sure sense 
unstable when PI <p<pz . Meanwhile. ,LLZ can not be considered as Hopf bifurcation point 
either, 

VI. Concluding Remarks 

Investigations on the maximum Lyapunov exponent and rotation number along with the 
invariant measure attribute of a Hopf bifurcation system excited parametrically by white-noise 
are conducted. It is found that, in the present effort, the type of the Hopf bifurcation system is 
thoroughly changed when parametrically excited by white-noise, along with the occurrence of a 
changing in the location of the bifurcation point. Limit circle appears to the system, in the 
most probable sense, after the bifurcation parameter passes the second bifurcation point. 
Whereas, limit circles do not appear after ~1 passes the first bifurcation point. Concrete form of 
the relevant bifurcation solutions is yet to be investigated. 
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