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Abstract
Solutions of quasilinear mixed boundary problems for the some parabolic and
elliptic partial differential equations are interpreted as solutions of a kind of backward
stochastic differential equations, which are associated with the classical Ito forward

stochastic differential equations with reflecting boundary conditions.
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I. Introduction

We know that the probabilistic representation of solutions of partial differential equations
with the mixed boundary conditions has many important applications both in theory of partial
differential equations and in that of stochastic differential equations with reflecting boundary
conditions, such as optimal control theory, submartingale problem, variational and
quasivariational inequality, etc (see [1], [2] and [4] etc).

Let a(x)={ai;(%)}%;21 and b(x)=={b:(x)}%.: be the bounded Borel measurable
matrixvalued functions, and let L. be an operator defined by:

o d
L,u(’x):—;- S ais(x)07 u(x) + 3 bi(x)d.u(x) (1.1
i,0=1 - i=1
g% )
where 3, u(x)= Fpr ————u(x) and g, u(x)_. u(x) forall j=1, 2. ..., d.

Let D be a bounded open set in R’ w1th the smooth boundary 8=/ . and let Q<D
be an annulus with the smooth boundaries I and I's. We consider the following mixed
boundary problem for the parabolic partial differential equation

A x,t)+ Lau(x,t)+ flu(x,t),(0.u(x,t) r(X)),x, ] =t
du(x,t) (%) =0p(x) (V¥ (x,t)E %[0, T1) (1.2)
u(x,T)=y(x) (Vx€D)

and the mixed Dirichlet-Neumann boundary problem for the elliptic partial differential
equation
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Loa(x)+flu(x),(8:u(x) -0(x)),x]=0 (Vx€Q)
Bau(x) p(x)=p(x) (Vx€l') (1.3)
w(x)=y(x) (VxEl,)

where 9,=(01, 92,y 9a) , and U(X) is a dXd metric-valued function such that a(x)=
g(x)-0(x)* (o(x)* is the transpose of u(x).

If the functional f is linear for u and 9.u-0, for example f=c(x)u—h(x), and
g(x)=y¢(x)=0 , we have known well that, under the usual regularity assumptions, the
solution of the problem (1.2) has the following probabilistic representation

u(x, t)-_—E[th(Xs )exp(—g:c(x,)dr)ds] (1.4)

where X, is a diffusion process satisfying the following stochastic differential equation (SDE)
with reflecting boundary conditions:

dX =0 (X)dW o +b(Xs)ds—p(Xs)dEs |
(

(1.5)
dés=Ip(Xs)dés (Xs€D; Ys=>t) .

with the initial conditions +=X . And the solution of the problem (1.3) has the following
representation:

w(x)=E[ | h(Xo)exp(={ c(Xo)dr )ds] (1.6)

where X, is the solution of the equation (1.5) with the initial conditions X =x , and
r=inf{s>0, X.El ,} is a stopping time (see {1] and [2]).

" In this essay, we will consider the quasilinear case. We will show that, under some
appropriate conditions for the nonlinear functional f(#%, (d;4-0),+, ), the solutions of the
quasilinear mixed boundary problems (1.2) or (1.3) can be respectively interpreted as a
solution of a backward stochastic differential equations, which is associated with the reflected
stochastic differential equation (1.5),

“'dps=f(ps,QS,XS,S)ds—Qdes+(p(Xs.)d§s (]7)

This kind of backward SDE is first discussed by Pardoux and Peng (see [7] and [8].) In the
work of Peng (8], the solutions of quasilinear Dirichlet problems are interpreted as a solution
of this kind of backward SDE associated with the classical SDE of Ito’s type.

In what follows, we first give a .brief discussion on the existence and uniqueness of the
solution of the stochastic differential equation with the reflecting boundary conditions (1.5),
and establish some important estimations about the solution of this kind of equations.

II. The SDE with Reflecting Boundary Conditions

Let ¢ and & be R%%.valued and R°-valued measurable and bounded functions on
R® respectively, satisfying the condition that there is a constant Ko >0

fo(x)—o(x)]+1b6(x)~b(x") | <Kolx—x'] (Vx,x’€ER?) (2.1)

Let D be a bounded open set of R’ whose boundary I" is a C’-manifold. and let 7 be a R’
valued function on D=D U such that 7 is of class C}(D) and satisfies the following
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condition:
p(x)n(x)=8:>0 (V=€) (2.2)

where O1 is a constant and n(x) denotes the exterior unit normal vector at x€I . Let
(82,5 (F1)i.0, P) be a probability space satisfying the usual hypotheses, and W, be a R’-
valued standard (. ,)-Wiener process.

Under the assumptions (2.1) and (2.2), it is well-knowa that, for any (x,#)€D X [0,0),
there exists an unique solution (Xs,&s) of the stochastic differential equation
(1.5), i. e. there exists a continuous adapted D-valued process X, and a continuous adapted
non-decreasing process & satisfying the following integral equation:

Xs~_-x+&j b(X,)a’r+Ssa(X,)dW,—Sjy(X,)dg, (W s>1) (2.3)
and the boundary condition:
o=\ 1o (Xode, (ys>) (2.4)

(see [1], [2] and [6]). In what follows, we want to prove two important lemma for the solution
(Xs,£s), which are used in the next section.

Lemma 2.1 (Lemma 4.1 and Proposition 4.1 in [6])

Under the assumption (2.2), there exists a dXd symmetric metrix-valued function
e(x) ={e:;(x)+%,;5-1 such that e;;(x)€C} (R®) foranyi j =1, ..., d and there are positive
constants v, Co such that

d
e(x))>vly, VXERY e (x)y;(x) =mi(x) (VY 1<i<d,xED) (2.5)

j=l

&
Colx—ylt+ Y e, (%) (' —y')y;(x) >0 (Y xEl,y€D) (2.6)

ijal

And there exists a function @(x)€ECE (R?) satisfying that there is a constant §,>0 such
that

p (x)8:D (%) <~ 8 (Vx€D) (2.7)

Lemma 2.2 Assume (2.1) and (2.2) hold, and (Xs, &s) is the unique solution of the

stochastic differential equation (1.5). Then for any T >>i>>0 that are fixed., there exists a
constant C:>0 such that for any s, $,€[¢#,7] and s2>s5, we have that

ElXe=Xa*+E|€s—£a|*<Cils2—51] (2.8)

Proof Let .>0 be a constant to be determined. Using (2.5) and (2.7), and applying
[to’s formula to the function F (x) =exp{ — AP (x) } x*e(x)x, we obtain that

Elexp{—iD(X.z) HX s2= X a1) *e(X 2) (st—sz) ]
<K.E [SS | X, — X, |%exp{ —A® (X,) }dr] + K, E [g | X,

~ Koy |%0XD{ =P (X) }d&s [=0wAE [{ 1 X, = Xo, IPexp{~i0(X,) bdE,]

St
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_.ZE[SSz exp/{ —-A(D(X,)}(X,_Xsl)*e(Xr)v(Xr)dgr]

St
where Ki and K. are constants, and K: does not depend on /. Then using the boundary
condition (2.4) and (2.6), and choosing A= (1/3zv) (K14 2C,), we finally deduce that

E[{7 (Xo=Xa)*e(Xs,) (X, = X )oxp{ i (X o) br |

51

<K1E“S

)

XX, Pexp{—m(x,)}dr]
or

E[IXSZ __Xsl_ ’2]<K;E[Ssz [X,.—-sz lzdr]

S1

and applying the Gronwall’s inequality, we have that
E[) X5 = X5y |P1<C] |52 —51]
Then since ;(x) is bounded in I', using similar arguments, we easily obtain that
E[|&s: —&s: [P1<CY 5251l

Therefore this lemma is proved.

Let QD be an annulus with the boundaries I' and I'o, and I'o be a C’-manifold. Let
(Xs,&s) be the unique solution of the equation (1.5) with the initial values X ==xEQ and
£,=0. Let r=inf{s>0; X,€I,}. Then 7 is an (& )stopping time.

Lemma 2.3 Assume that there exist constants §>>a2>0 such that

Bli=a(x)=als  (Vx€Q) (2.9)

and there exists a function ¥ (x)€C} (R%) and two constants ;>0 and m >0 such that

0¥ (x) -y (%) =8, >0(V*€DN); LY (x)=>m  (V*EQ) (2,10)
Then,under the assumptions of Lemma 2.2, there exist some constants pu>0 such that
Eler?]< oo and E[£2]<{o0 (2.11)

Proof Let i and u be two positive constants to be determined. Applying [to’s formula
to the function F (x,s)=exp{—A¥(x)+pus}, we obtain that

F(x,t) =E[F(X,,'\‘,,r/\s) JtE [S:M F (Xrar) (azq/(Xr) 'V(Xr))clfr]

_E[S:A F(JYr’T){M'i'—Az Zagj(X,.)a W(Xr)a W(X.-) —ALx W(X,-)}a’r

fiw=l
(2.12)

" We now choose u such that 0<lu<m?/(28M,¢), where M,p,>0 is a constant such that

10,7 (x) | <<Msw for all x€Q , and then we have that m®—4u (éﬁﬁ’[w )>0 . Hence,

from the assumptions (” 9) and (2.10), we can choose . >0 such that, for all x€Q

ut e Zau (%) 0¥ (x)9,¥ (x) —AL¥ (x) <,u+-——ﬂ. BM 3¢ — Am<C0

i7=1
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Thus, we have
F(x,t) ZEF (Xopest AS) 1M Elexplu(zAs) 1]

where M,=exp(—~iMyg)>0 and My >0 is a constant such that [ (%) | <M for all
x€Q . Let s—>o¢ in the above inequality, and applying Fatou’s lemma, we have

M,Elexplput]IEIF (X, 7) I<F (x,t)

and so we have that Elexplur]]<loo.
On the other hand, from (2.12) and for Z and y chosen above, it can be shown that

FAS .
E[S‘ F(an) (agq/(Xr) ‘ V(Xr))dgr]<F (x,t) —[{[F ()('n\’s,f/\s)]
Let s—>+oo, from Fatou’s Lemma, we obtain that
EU"‘ (X esr) B (X 1)+ (Xe))di: |<F (20)

Then from (2.10), it can be shown that E[{£;]<(oc. The proof is completed.
III. The Probabilistic Interpretation for Quasilinear Mixed Boundary Problems

Let @(x), y(x) be continuous functions on R* and f(p,g,x,s) be a continuous function
on RX R*X Dx[0,20) satisfying the following conditions that, '

(1) there is a constant C*>0 such that, for any pi, p» €R, qi, :€R? and (x,5)€DX
[0,0).

1F(P15G15%,8) = f (£25925%,8) | <<C2(| pr—=pal + 101 —¢2]) (3.1)
(2) there is a constant  §,>0 such that, for any p, mER, (g ,%,8)EREX DX [0, +0)
P (5 £1s2s%,) = F (5 ,%,5)) S — e (3.2)
Let 0>t>20 be a (F,)-stopping time. We consider the following backward stochastic
differential equation

—'dps=f(ps,q.nx.u3)d3 q:dWs+lP(Xa)d£s ((36[1‘,9])) }

(3.3)
Le=9(Xo),

where (Xs,£s) is the unique solution of the forward SDE (2.3) with reflecting boundary
conditions (2.4) with the initial conditions that X,=x€D and &£,=0. We say that a pair of
processes (pPs,qs) is a solution of the backward SDE (3.3) if p, is a (Fs)-adapted
continuous process and g, is a R%valued process, and they both satisfy the following integral
equation:

[ [
Ps=¢(Xﬂ)+gif(Pr’erXr9'r_)dr—SSQrdWr"‘SS(P(X'-)dS,-, (sE[t,0])  (3.4)

Theorem 3.1 Let §=T>t. Assume that ¢ and b are bounded continuous functions
satisfying (2.1), y€C} (D) satisfying (2.2), ®,% and f are continuous functions, and f satisfies
(3.1) and (3.2). Then the backward stochastic differential equation (3.3) has a unique (F s)-
adapted solution (ps,gs) . Moreover, (Ps,Qs) also satisfies that
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E[( o1 tdr]<oo, E[] 10,1 [<o0 (5.5)

Proof Since @, ¥ and f are continuous and D is bounded, ¢, ¥ and f{(p,q,+,*)
are bounded on D and DX [0,T]. Therefore from Lemma 2.2, we have that

5 r
B8 1+E]§ 17(0,0,%,,0 12dr [<oo (3.6)

and

B[ 100X 170, J<oo (3.7)

From these estimations and using (3.1) and (3.2), using the same arguments as the proof of
Theorem 2.2 in [8], we can prove this theorem. Here we omit the details.

Let 7 be the stopping time defined in the Section II. Then, as in Theorem 3.1, we can
prove the following theorem by using Lemma 2.2 and Lemma 2.3.

Theorem 3.2 Let 8=t and r=90. Assume the same conditions as in Lemma 2.3 and
Theorem 3.1 are satisfied. Then the backward stochastic differential equation (3.3) has a
unique (% )-adapted solution (pssqs) . Moreover, (Ps,qs) satisfies the following conditions
that

E[{ 1 pel%dr]<eo, E[go las1dr [<oo (3.8)

In what follows, we will show that the solution of the quasilinear mixed Dirichlet-
Neumann boundary problem (1.2) or the mixed Dirichlet-Neumann boundary problem (1.3)
can be respectively interpreted by the solution of the backward SDE (3.3), which is given in
Theorem 3.1 and Theorem 3.2 respectivly.

Theorem 3.3 Suppose that the mixed boundary problem for the parabolic partial
differential equation:

9su (x,1) 4 Lou(x,t) + f{u(x,1), (0.u(x,t) -0 (x)),x,6]1=0
a,u(x,f)-y(x) =@ (x) (¥ (x,8)E % [0,T7]) (3.9)
#(x,T) =9(x) (Vx€ED)

has a solution u(x,f)€C% (DX [0,o0)). Then, under the same assumptions as those in
Theorem 3.1, u(x, £) has the following interpretation:

u(x, t)=1 (3.10)

where p, is a stochastic process determined uniquely by the equation (3.3) for 0= T in Theorem
3.1

Proof Applying Ito’s formula to the diffusion process X, given in (2.3) for the solution
u (x. 1) of the equation (3.3), we have that

ST
w(Xz,T) —u(,Y,,s)=g (Bstt(Xrsr) +Lxu(Xe,r))dr

(X p (X)) dE (| a0 (Xesr) -0 (X0))dH s
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Since u(x, 1) satisfies the mixed boundary problem (3.9), and (X,&,) satisfies the reflecting
boundary conditions (2.4), we have that

w(Xo,9) =$(Xr) | f(a(X0sr) 0 (Xrrr) Xy r)dr
+{ o) dee - QX 0 (X)al,

where 0(Xs,s) = (8:4(Xs,5) -0(X¢)). Hence (u(X,,s),v(X,,s)) is the unique solution of
backward SDE (3.3). 1t follows that

ulxy t)y=p; (3,11)

the proof is completed.
Theorem 3.4 Suppose that the mixed Dirichlet-Neumann boundary problem for the
elliptic partial differential equation:

L.u(x)+f(u(x),(0:u(x). 0(x)) ,x) =0 (Vx€Q)
dau(x) -y (x)=0(x) (V€D (3.12)
u(x) =9 (x) (Vx€l'y)

has a solution #(x)€C} (D). Then, under the same assumptions as those in Theorem 3.2, u(x)
has the following interpretation:

u(x) =p, (3.13)

where po is determined uniquely by the equation (3.3) for 0=t and =0 in Theorem 3.2.
Proof Applying Ito’s formula to the diffusion process given in the equation (2.3) for the
solution u(x) of the problem (3.12), we have that

w(X 1) —u(Xo) =§'Lx,u(x,)dr

1]

~{, @) -y (X)) dgrt| (X 1) -0 (Xe))dW s

Since u(x) solves (3.12) and (X,,£&.) satisfies the reflecting boundary conditions (2.4), we have
that

WX =p(X) +{ f@(X0) 0 (X0), X dr

+| o (Xr)dé~| @u(Xr)-0(X0))d,
where v (X ;) =(0.4(Xs)-0(Xs)). Hence (u(X,) ,U(X'.;)), is the unique solution of (3.3).
It follows that »

u(x) = p, : (3.14)

the proof is completed.
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