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Abstract 
Solutions of quasilinear mixed boundary problems for the some parabolic and 

elliptic partial dz$ferentiaL equations are interpreted as solutions of a kind of backward 

stochastic d@erentiai equations, which are associated with the classical Ito forward 

stochastic dl$ferential equations with reflecting boundary cot?ditions. 
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L Introduction 

We know that the probabilistic representation of solutions of partial differential equations 
with the mixed boundary conditions has man’y important applications both in theory of partial 
differential equations and in that of stochastic differentjal equations with reflecting boundary 
conditions, such as optimal control theory, submartingale problem, variational and 
quasivariational inequality, etc (see [l], [2] and [4] etc). 

Let U(X)={~ij(X)}fj=l and b(z) ={bt( TC)}~ =I be the bounded Bore1 measurable 
matrixvalued functions, and let Lx be an operator defined by: 

w&e diju( xj =&zA(~) and ain(z +.j for alljcl, 2. . . . . d. 

Let D be a bounded open set in R” with the smooth boundary 8D=l- . and let QcD 

be an annulus with the smooth boundaries T and I-0. We consider the following mixed 

boundary problem for the parabolic partial differential equation 

~j?~(x,~)+~*~(x,~)+~[~(x~~), (i3*ti(x,t) *u(x)) :x,k] =o 

&u(x,t)-y(x~=vJ(x) ~V~%~~~~~~~, TlI 
1 

(1.2) 
d~,~)=$Jc~J c v+D) 

and the mixed Dirichlet-Neumann boundary problem for the elliptic partial differential 
equation 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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where d *=(&, i&,-*7 ad) , and u(z,) is a dXd metric-valued function such that u(z)= 

0(x) -u( xj* Md* is the transpose of u(x) . 
If the functional f is linear for u and az~*o, for example ~=c(~)u-/z(x) , and 

P(X) =.$(xJ =o 9 we have known well that, under the usual regularity assumptions, the 
solution of the problem (1.2) has the following probabilistic representation 

where X$ is a diffusion process satisfying the following stochastic differential equation (!?DE] 
with reflecting boundary conditions: 

dx~=u(x=)d~~+6(x~jds-y(x~)d~~ i 

f! 
il.fjj 

d&=Ir(Xsldts (Xsa-h yet) 

with the initial conditions X8=x . And the solution of the problem (1.3) has the following 
representation: 

where x is the solution of the equation (1S) with the initial conditions X0=x , and 
r=inf {s>O, X&rO} is a stopping time (see [I] and [2]). 

In this essay, we will consider the quasilinear case. We will show that, under some 
appropriate conditions for the nonlinear functional f(~, (azz4.0), . , .), the solutions of the 
quasilinear mixed boundary problems (1.2) or (1.3) can be respectively interpreted as a 
solution of a backward stochastic differential equations, which is associated with the reflected 
stochastic differential equation (1 S), 

This kind of backward SDE is first discussed by Pardoux and Peng (see [7] and [S].) In the 
work of Peng [S], the solutions of quasilinear Dirichlet problems are interpreted as a solution 
of this kind of backward SDE associated with the classical SDE of Ito’s type. 

In what follows, we first give a ,brief discussion on the existence and uniqueness of the 
solution of the stochastic differential equation with the reflecting boundary conditions (lS), 
and establish some important estimations about the solution of this kind of equations. 

II. The SDE with Reflecting Boundary Conditions 

Let a and b be Rdxd -valued and Rd-valued measurable and bounded functions on 
Rd respectively, satisfying the condition that there is a constant Ko>O 

~u~~~)-u~x’)~+l6ix~-~~x’jl~~ol~-~’l ( ~x,x’a?d) c2.11 

Let D be a bounded open set of R’ whose boundary T is a C’-manifold. and let 7 be a R’- 
valued function on D=D lJ r such that ; is of class Ci (D) and satisfies the following 
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condition: 

y(+e4>&>0 lvxcr) (2.2) 

where 81 is a constant and n(x) denotes the exterior unit normal vector at xW. Let 
(a, 3 9 (Yg) tGO, p) be a probability space satisfying the usual hypotheses, and W, be a Rd- 

valued standard (St)-Wiener process. 
Under the assumptions (2.1) and (2.2), it is well-known that, for any (x?f) ED x [0 ~ SD), 

there exists an unique solution (XS ,lS) of the stochastic differential equation 
(1.5), i. e. there exists a continuous adapted D-valued process xS and a continuous adapted 
non-decreasing process lS satisfying the following integral equation: 

and the boundary condition: 

(see [l], [2] and [6]). In what follows, we want to prove two important lemma for the solution 
( XS , 18) , which are used in the next section. 

Lemma 2.1 (Lemma 4.1 and Proposition 4. I in [6]) 
Under the assumption (2.2), there exists a dXd symmetric metrix-valued function 

e(x) ={eij(x) bf ,j=i such that eij(x)CCi (R’) for any i, j = 1, . . . . d and there are positive 
constants v, Co such that 

And there exists a function @(x)ECz (Rd) satisfying that there is a constant a2>0 such 
that 

IJ 64 h@ hj < - d2 ~V~a-) (2.7) 

Lemma 2.2 Assume (2.1) and (2.2) hoid, and (Xs, {s) is the unique solution of the 
stochastic differential equation (1.5). Then for any r>t>O that are lixed. there exists a 
constant C, > 0 such that for any SI, szG[f,T] ‘and SZ>.SI, we have that 

~Jx~2-x~llz~~l~~2-~*Ilz~~ll~2-~Il (2.8) 

Proof Let ;.>O be a constant to be determined. Using (2.5) and (2.7), and applying 
Ito’s formula to the function F(x) =exp{ -&D(x) }@e(x)x, we obtain that 

~[exp{-~~(X~2)}(X~2-X~~)~e(X~2) tX82-X81j 1 
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-2E[\” exp{-a~tX~)}tX~-Xsl)*etX~)y(X,)~~~] Sl 
where KI and KZ are constants, and KZ does not depend on 7.. Then using the boundary 
condition (2.4) and (2.6), and choosing A= ( I/&Y) (Kz-(-3CB), we finally deduce that 

or 

EClxsz --A-s1 lzl<K;E[\;; IX?--xst I%] 

and applying the Gronwall’s inequality, we have that 

-U I Xsz -XSl p1=$; I%-%I 

Then since y(x) is bounded in r, using similar arguments, we easily obtain that 

ELI&z -gs, ~21~ct7w-~Il 

Therefore this lemma is proved. 
Let QED be an annulus with the boundaries F and TO, and l-0 be a P-manifold. Let 

(XS,tS) be the unique solution of the equation (1.5) with the- initial values X0=&Q and 
to=O. Let 7 =inf {@Or X8Wo}. Then r is an (yi)-stopping time. 

Lemma %3 Assume that there exist constants p>a>O such that 

/3fda 64 hfd (VJWI k9) 

and there exists a function Y(x) EC’: (Rd) and two constants &>O and m > 0 such that 

W(x) *y(x)>&>0(~xa--); LsY(x)>m hf~~c9 (2.10) 

Then.under the assumptions of Lemma 2.2, there exist some constants p > 0 such that 

E[efip] <= and .E’[{r] <= (Z-11) 

Proof Let ;. and p be two positive constants to be determined. Applying Ito’s formula 
to the function F (x,s) =exp{ -,&P(X) +P.v~, we obtain that 

F (x,~) =.ELF (xqt~~, r//s) i +E [ \“” F (x,,r) (8gYJ(Xp) .y (x~) ) cl<*] 
0 

We now choose ,U such that O<~<r?z’/ (@MM), where MdP>o is a constant such that 

183 (XI I <Map for all xE~ , and then we have that rn’ -4/J (+!f a!F )> ,O . Hence, 

from the assumptions (2.9) and (2.10), we can choose ;.>O such that, for all x@ 
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Thus, we have 

Fw)~Ev-~x~As, Qd l>~GWxpbWW I j 

where fwA= exp ( -ihfip)>O and MY >O is a constant such that 1 y(x) 1 <Mv for all 
xa . Let s+= in the above inequaiity, and applying Fatou’s lemma, we have 

~~~[exp[~~ll~~[~(~~,~)l~~(~,~) 

and so we have that E[oXP[/Jrll <w. 
On the other hand, from (2.12) and for jV and p chosen above, it can be shown that 

E[\;*’ F’tXr,r) (&WXp) sy(X,) )di& (x,t) -E[FL~w,~/“is) 1 

Let s+ +‘a , from Fatou’s Lemma, we obtain that 

E[~:~(x~,r)(~=~(x~).~(x~))~f~~]~~(x~~) 

Then from (2.10), it can be shown that E[lql<=. The proof is completed. 

111. The Probabilistic Interpretation for Quasilinear Mixed Boundary Problwns 

Let p(x), # ($z) be continuous functions on Rd and f (J!J,~ ,x,.s) be a continuous function 
on RxRdxDx[O , =) satisfying the following conditions that, 

(1) there is a constant C*>O such that, for any RI, pz (ZR, ql, qzERd and (x,s)eD X 
LO,=). 

~f(p1,m,x,s) -f~Pz,c72,x~~~ l4dlPr-P2l +lYl--c7zl) (3. II 

(2) there is a constant &>O such that, for any J,~~CR, (q,x,s)CRd x DX [O, -km) 

~l(j(P+Pl,~,x,s)-j(P,~,~,s))~-~~P~ (3.2) 

Let f&at&O be a (ys)-stopping time. We consider the following backward stochastic 
differential equation 

where (KS, ~$8) is the unique solution of the forward SDE (2.3) with reflecting boundary 
conditions (2.4) with the initial conditions that Xg==xED and Et=0 . We say that a pair of 
processes (Pa,gs) is a solution of the backward SDE (3.3) if ps is a (.Y$)-adapted 
continuous process and qJ is a R’-vaiued process, and they both satisfy the following integral 
equation: 

Theorem 3.1 Let !kT>t. Assume that c-r and b are bounded continuous functions 
satisfying (2. I), yC$~ (D) satisfying (2.2j, cp,$ and f are continuous functions. and j’ satisties 
(3.lj and (3.2). Then the backward stochastic differential equation (3.3) has a unique (ss)- 
adapted solution ( ps,qa) . Moreover, (ps ,qa) also satisfies that 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
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Proof Since P, $ and f are continuous and D is bounded, % $ and f (p,q, 9, l ) 
are bounded on D and B X [ 0, T] . Therefore from Lemma 2.2, we have that 

and 

From these estimations and using (3.1) and (3.2), using the same arguments as the proof of 
Theorem 2.2 in [8], we can prove this theorem. Here we omit the details- 

Let r be the stopping time defmed in the Section II. Then, as in Theorem 3.1, we can 
prove the foIlowing theorem by using Lemma 2.2 and Lemma 2.3. 

Theorem 3.2 Let 6?=r and r=O. Assume the same cvnditions as in Lemma 2.3 and 
Theorem 3.1 are satistied. Then the backward stochastic differential equation (3.3) has a 
unique (x8)-adapted solution (~>~,q~) . Moreover, (pa,qa) satisfies the following conditions 
that 

In what fohows. we will show that the sohttion of the quasiiinear mixed Dirichlet- 
Neumann boundary problem (1.2) or the mixed Dirichlet-Neumann boundary problem (1.3) 
can be respectively interpreted by the solution of the backward SDE (3.3)9 which is given in 
Theorem 3.1 and Theorem 3.2 respectivly. 

Theorem 3.3 Suppose that the mixed boundary problem for the parabolic partial 
differential equation: 

has a solution u(~,~)CC?, (DX CO,-)) . Then, under the same assumptions as those in 
Theorem 3.1, u(~Y, 1) has the foilowing interpretation: 

U(%, t) =.pt (3.10) 

where pz is a stochastic process determined uniquely by the equation (3.3) for fI& T in Theorem 
3.1. 

Proof Applying Ito’s formula to the diffusion process JYV given in (2.3) for the solution 
u (s. f) of the equation (3.3), we have that 
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Since u(~v, r) satisfies the mixed boundary problem (3.9), and (X8:Z8) satisfies the reflecting 
boundary conditions (2.4), we have that 

where u (Xs,s) = (azulXz,~) *o(X*) ). H ence (u(X8,s) ,V (X8,$)) is the unique solution of 
backward SDE (3.3). It follows that 

the proof is completed. 

g(x, f) =P: (3.11) 

Theorem 3.4 Suppose that the mixed Dirichlet-Neumann boundary problem for the 
elliptic partial differential equation: 

Lu(x) +f ltJ (4, Cb lx) *CT b)) 94 =o Cb'xEQJ 
8zu (x) *lJ @I =v (xl CVXH-1 

j 

(3.12) 

5zJ cd =$J (4 (V~(3--.0) 

has a solution u (%)Cci (D). Then, under the same assumptions as those in Theorem 3.2, U(X) 
has the following interpretation: 

u(x) =Po (3.13) 

where ~0 is determined uniquely by the equation (3.3) for Q=r and t=O in Theorem 3.2. 
Proof AppIying Ito’s formula to the diffusion process given in the equation (2.3) for the 

solution u(.K) of the problem (3.12), we have that 

Since U(X) solves (3.12) and (X8,18) satisfies the reflecting boundary conditions (2.4) we have 
that 

+p?J(x,)d&-\~ (a&(x,) *o(X9.))dW, 8 * 
. 

where v (x8) = (asu(X8) -0(X8)). Hence (u(X@) ,O (X8) ). is the unique solution of (3.3). 

It follows that 

the proof is compieted. 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 


