
.4pplied Mathematics and Mechanics Published by SU, 
(English Edition, Vol. 18. No. 9. Sep. 1997) Shanghai. China 

THREE-DIMENSIONAL ANALYSIS ON PLATES 

Xiao Wanshen (g E{$)’ Zeng Qingyuan (@Ez)’ Liu Qingtan (2tiE@)’ 

(Received Oct. I I, 1996; Communicated by Shen Yapeng) 

Abstract 
The dispiacenlenrs qf IIW plate ore assmed uppropriotel: to derise the solutions 

of the 3-D Nuvier equations. And the comiitions on tile plate’s swfme are investigated. 

In the excmpies, the bo~~~~~~tr~~-~~~~~L~e problems of the plate are solved by appl!Ting the 

Navier-eqmuiou’s solutions wd their closed-form solutions ure obmined. The results 
forndctted iii the present pflper satiJfj* exactly the governing eqmtions mid can reflect 

precise&q the boumiar~. effects of” complicated distributions on the edge of plates 

Key words plate, thick plate, displacement method. boundary-value 
problems. Navier equation 

I. Introduction 

Generally, as a three-dimensional (3-D) solid, the plate should be analysed with the thick 
plate theory. The thick plate theory. is multifarious: A customary thick theory originates from 
various modifications of the thin plate theory? which is based on Kirchhoff-Love hypothesis, 
with shear strains and trasverse normal strains . “1 The relatively typical and the most 
extensively applied in numerical computations in recent are Reissner theoryI and Mindlin 
theorycJj. 

A great number of the plate problems have never been solved satisfactoryly. Hence new 
theories and methods are invented successively. It is worth noticing that the theories developed 
in the rescent years counting in the higher-order effects of the shear strains have improved 
enormously the computational precisiotY. 

The methods mentioned above can constantly only obtain proximal results. In order to 
calculate the plate precisely, the 3-D boundary-value problems should be solved. 

Navier equations are the governing equations in the boundFry-problems that describe the 
elastic solids with displacements, and it is of significance find their general solutions. Works ij--‘l 
sumed up the general solutions. Paper [81 discussed the mechanical method to constitute the 
general solutions. ‘All these solutions are successful in the applications to solve the problems of 
the elastic half-space media and contact problems, but it is difficult to use them to solve 
plate problems. 

The present paper has found the solutions. suitable to the plate problems, of Navier 
equations and explained the solving process by using the solutions of Navier equation through 

solving some practical problems. 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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II. Solutions of Navier Equations 

As is shown in Fig. 1, O-vyz is the Cartesian rectangular coordinate system. Its 0.y.U 
coordinate plane coincides with the upper plate-surface. 

The Navier equation of the isotropic, 
linear ealstic solid of the smaI1 strain and of 
no body force is 

0 (O,O,O) 

a*7 

/.AS*~jj+(~+P)~j9j~~O (2.1) 

where 2 and Al are Lam; constants; i= I. 2. 
(!>. 3; j= 1, 2, 3; the summation convention is 

maintained when indexes coincide; UI, uz and 
72 ~13 are the components along the .K, g and z 

axes respectiveiy of the displacement of a 

Fig. 1 Plate and its coordinate system 
particle within the plate and are denoted as 
U, u and tu respectively. 

Here: ~1, u and w are the components, which are along -K, y and : axes respectively, of the 
displacement of a particle within the plate respectively; f(z), g(z) and ~(2) are thickwise 
distributing functions, which are determined by the differentiai equations; I+‘(.Y, y) is a 
distributing function of the deflection, which is assumed to be 

iV(~,y)=Wexp(cwl4y) (2.31 

where r, a and U are arbitrary constants, whose values are related to the boundary 
conditions. 

The stresses can be expressed as 
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Substituting (2.2) and (2.3) into (2.1) yields 

where 

k2==a2-l-13z b.t8 

The system of differential equations is solved as follows with respect to two cases h=O 
and k #O. 

1, /2=0 

c 1) a=d=o 

In this case? it can be known from expression (2.3) that W (x, g)= EF = constant. 

Substituting it into the system of differential equations (2.5) leads to d% (21 J-2 =O. Thus. the 
displacements are 

cd4 

~C~YYP~) ==u(x,y,z)=o, WlX,Y,Z) =&+Bo 

where ,-l” and B,, are arbitrary constants. 
( 2 ) Y and U being not both zero 
The solutions of the system of differential equations (2.5) are 

where Ai, BI, C, D, E, Fare arbitrary constants. 

2. k#O 
In tllis case. it can be found from the system of differential equations (2.5) that 

~(~)=(C,+C~z)coskz+(~~~~*~)sin/~~ 
g(~)=( -A+C,+Czz)coskz+( -B+Cz+C4z)sinkz 

Here A. B. CL. C2, C’s, and C’a are arbitrary constants. 
The constant coefficients of the equations (2.7)-(2.9) are determined by the plate-surface 
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conditions and the edge conditions. 

III. Homogeneous Plate-Surface Conditions 

At first, let us consider the problems of the plate with free plat-surfaces. As is shown in 
Fig. I, the thickness of the plate is 11. 

The plate-surface conditions are: ~~~=u~*==cT~g =0, when z=O or ,z=h. Using (2.4), 
in both of the cases .z=tI and z=h? we have 

It follows that the situations corresponding to the different values of h are discussed 
1. k=o 

t 11 a=u=o 
Substituting (2.7) into (3,l) results in 

ucv*o, 3= const$ 

In this case, there is only rigid displacement along the direction perpenoicular to the plate- 
surface. This is not interesting, so the latter part of this paper will provide that not both of 

% and 0 are zero. 
( 2 ) x and.0 being not both zero 
Substituting 02= -a2 and (2.8) into the system of equations (3.1) and getting the 

coefticients. we have 

f (2) =g(.z) =D?+d?, p(z) =D (3.2) 

It can be concluded from the substitution of the above expression into (2.4a)-(2.4c) that 
above expressions imply that the shear strains and transverse normal strains are zero. i. e. 

y&,Lw) =?&(~,!I,~) =&zt~,L/,z)=o 

If E/D= yh/z,, in view of (3.2) and (2.2),.theVin-.plane displacements of the particles or, 
the middle plane (z=/1/2) of the plate are-zero. while the in-pl.ane displacements of the other 
pttrticIes within the plate vary Iineariy aIong the thickness. That is, the plate bends with the 

middle plane as the neutral surface, and the transverse sections remain plane after the 
deformation. Therefore, when E/D= -/z/2, Kirchhoff hypothesis of the thin plate of small 
detlection holds precisely: 

2. k#O 
Substituting (2,9) into (3.1) and arranging the results. we can obtain the system of the 

linear algebraic equations: 

- (A+p) e%os/zh - (~+~)e2sinH2 (A-kp)kQos&h 

- (a+p)e2 0 CA-+plk2 
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v2ksinkh (A-!-p) -----+12kcoskh - (,l+p) k%inkh 

0 - ‘$k!(Pk 0 

i 

q (kP+k3)sinkh -F(d2k+k3)coskh - (A+p)k%inkh 

0 -v(Pk+k3) 0 

(J,+p)k2hcoskh- (A+?p)ksinkh (A+p)k2sinkh 

s95 

0 

-pkzcoskh- (,4-l-p)k3ksinkh 

-pk2 

-,#coskh- (,l+p)k3hsinkh 

-pk2 

(,l+p)k2hsinkh+(,li-2p)kCmk~ 

lJ,+wl k 

-@sinkh-/- (,l+p)k3hcoskh 

0 

--pk2sinkh+(,l-!-p)k3hcoskh 

0 

0 

(,I+@) k3coskh 

Ca+pl k3 

(,4,-!-p) k3coskh 

(3.3) 

The system of equations (3.3) has non-trivial solutions, if and only if the determinant is, 
zero. So 

(A+p)4k8sinkk[ - (kh)2+sin2kh]=0 

Its roots are k=T(n=& 1,&Z, a**) e The integer 11 can take the values of natural 

number. i. e. 

k+ (fz= I ?2, a..) (3.4) 

Substituting (3.4) into (3.3), we find 

&+$2,$ Bd22=C2=C?.,=0 (3 5) 

Substituting the expressions (3.5) into expressions (2.9) gives 

f(z) =(;)2Acoskz 

g(z)=- % (I ) 2 ACObfW 

QJ(2) =o 
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lt could be seen that. when he?. the plate has only the in-plane deformation along 
the direction parallel to the plate-surface. However, when A+ 0 , only the component ozz=O 
among the six independent components of the stress. 

Summing up, the general term of the independent column series of the displacement 
column {24 2J ZU}~ are 

0 , 

where Vm,,(x9y) can be chosen in 

cosamxchamy, cosamxshamy, sinamxchamy, sinamxshamy 

and IVm”(x.y) can be chosen in 

cos~~~xchO~“y,cos~~“xsh~~~y~si~~~xch~~~y, sin~m,,xsh~mdJ 

Here: ~~n+O~,,==k~ = ‘; a,,,,/?,,,,,?Omn can take complex values. 

In view of (3.7), the displacement so!ution satisfyin g the homogeneous conditions (3.1) on 
the surface of the piate can be given by 

The arbitrary constants em, /!Imn, f9,,,n, .AmO, Btno and cm,t should be determined 
further by the edge conditions. For the purpose of this determination, the given functions of 
the distributed forces on the edges are generaily expanded into double trigonometric series. 
Then pm,, or (I,,,,, are usually taken as imaginary values to transfer hyperbolic functions into 
trigonometric functions. In such a case, Y or 0 in (3.6) should take imaginary value. 

IV. Nonhomogeneous Plate-Surface Conditions 

Next, we consider the plate problems with loads on the surface of the nl:ite 
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We will discuss only the common situations of the pktk-stuface ~cxds, That is. the plate- 
surface loads are exerted normally to the piate-surface. The investigation herein suits the loads 
arbitrarily distributed over the plate-surface. 

The stress conditions on the plate-surfaces are 

z==o: Ozz= -q(x,y)7 ~zz=~zy=O (4.1) 
z=h: ~~~=~z~==oz,,=o (42) 

The function q(x,g) may be an arbitrary function of .Y and y, except the confinement 
that it must be absolutely- inte@ in the area of the plate-surface. According to Fourier 
theory. ~(x,Y) can be expanded into one of the sine-sine series, sine-cosine series. cosine-sine 
series and cosine-cosine series. Nothing of the generality is lost when we discuss the sine-sine 
series. Then. when the area of the plate-surface is a rectangmar of GX~. we have 

where 

I. Distributing functions of deflection 
Comparing (4.1) v\;ith (4.3) makes it clear that in (2.3) 2 and U can be replaced with ;G! and 

i(j respectively. The parameters z and 0 are real in ;X and i(I. Appropriate combination results 
in 

W(x,y)=sinaxsinOy, sinaxcos0y9 cosaxsin6y, cos~-~xcosOy (4.5) 

where If/(.\-, ~)=sin~.vsin()~~ matches the expression (4.3j well. and it is known from (2.2) that 
such a solution suits solving the problems of simply supported rectangular plate. The other else 
terms can be chosen for the other else support conditions. 
2* Thickwise distribution function 

Here. the discussion is confined for OX b rectangular plate with all the four edges being 
simply supported. 

In view of (2.4). when z and 0 in (Xj are replaced with jg and 2). h should also be 
replaced with ih. In such a case. (2.3) becomes (4.5). and (2.9) should become 

Corresponding to the genera1 ioad term qV,,??, the pammeters X, 0 and & are -%, F ~ 
0 

and n Jm' respectively,. Likewise the procedure to the situation of the 

homogeneous plate-surface condition is repeated for the estabhshment of the system of linear 
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algebraic equations about ,&,,, Bm,,, Crmn, Cz,,,“, C~*,,P Cdmt~. which are found and 
substituted into (4.6) to give 

-chkmJd~k~nh) Jshkmz} C 
m=l,Z93,-*. 

(4.7o) 
n=l,2,3,*** J 

Consequently. the displacement of the simply supported rectangular plate can be 
expressed as 

This is similar to Navier method of the classical plate theory. The difference is that the 
solution here can satisfy Navier equations rigorously, but Navier method can not. 
Nevertheless, it can be seen from the exampIe analysis in the next section that. when the 
thickness of the plate tends zero> the solution of the present paper tends the same result as that 
of the solution of Navier method. 

V. Examples 

Here, in order to explain the procedure of the 3-D analysis of the plate problems, two 
types of examples, the semi-infinite plates without plate-surface load and the simply supported 
rectangular plates with plate-surface-.load, are provided. 
1. Semi-infinite $ates without plate-surface load 

The. semi-infinite plate takes up the space: O<x<=, -tw<g<=, O<z</z . No load 
is exerted on the surfaces of the plate. At the location of ix-+-, displacements vanish, i. e. 

X+-z tl+o, z!+o, w-+0 (5.1) 

At the edge of .Y=O, two typical cases of distributed force are investigated respectively as 
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follows. 
( I ) Linearly varying normal stress 
The boundary conditions at .Y=O are set as 

where MO is the bending moment per unit length of plate, and takes a given value: IIZ and 0 
also take given values. When ??: is an integer, the semi-infinite plate can be taken as a semi- 
infmite strip with a width of u along g-axis and with two opposite edges being fixpinned. 

According to the boundary condition (5.1) and (5.2), noticing ez= -z’. and using (3.2) 
and (2.3) we can constitute the solution. Thus, it is reasonable that 

f(z) ==g(z) =l.lz+J?z 

v(z) =Ll 

Substituting (5.3) into (2.4d) yields 

(5.3) 

u --2p a?z - (5)’ (&+E)exp( -TX) sin? 

And then substituting the above expression into (5.2) gives 

Substituting the above expressions and (5.3) into (2.2). we obtain the displacement solution 

z4X,Y,ZJ (5.4o) 

lt can be concluded from putting z=h/z in (5.4a) and (5.4b) that the in-plane 
displacements in the middle plane are zero. This means that in the present case the middle 
plane of plate is the neutral surface of the bending deformation. 

As can be shown, the same result can also be obtained .with Levy-method of the small 
deflection theory of the thin plate. Hence. no matter how-thick the plate is, the characteristics 
of the p1ate.s bending deformation will coincide with Kirchhoff hypothesis when no transverse 
shear and no in-plane traction (compression) are acted. 

( 2 ) Square-wavelike varying normal stress 
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Suppose that the plate at -Y=O has the following boundary conditions: 
As x=0, -c=<il<-: 

(5.6) 

where I?, o and 0 have definite values; JR is a natnral number; and MzI is a torque per unit 
width of plate, i. e. 

When the plastic region of the body which is connected to the plate has completely 
developed, the boundary condition takes the form described by (5.5). 

Now, we use (3.g) to find the solution. The displacements are then expressed as 

zJ(x,y,z)=-(llz+E) rnzg y exp(-qy COST 

(5.7a) 

where D, E and A,, are unknown constants, which are determined as follows. 
Substituting (5.7), (2.4d) into (5.5) and expanding the right side of (5.5) into cosine series 

with regard to .Y, we find 

zE+Dh=o, A,,=d (n=2, 4, 6, -es) 

In view of (2.4e) and (5.(j), we have 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



Three-Dimensional Analysis on Plates 901 

Equations (5.8). together with equations (5.9) yield 

.s 
An== Cn=l, 3, 5, A..) 

(n=Z, 4, 6, a--) 
Here 

If the sum of the Crst two terms is used to replace the sum of the infinite series. the error 
will be less than 5Oh in usual case. 

The infinite series in (5.7a) and (5.7b) converge rapidly, since the general terms decay 
according to exponential law as the value of IZ increases. Hence. the sum of the infinite series 
can be replaced with the sum of the first two terms in most cases. 

in the case of plane deformation, one component amona m zl* r~, zu is zero? so the expressions 
for displacements are much more simple. For instance, if w=O. we can put D= E=O in (5.7). 
Relieve the confinement by (5.6) and remain the boundary condition equation(5.5), the results 
t 4 us become 

2. §imply supported rectangular plate with plate-surface loads 
Here takes the case where the upper surface of the plate is acted with a concentrated 

force. The other else cases with arbitrary distributed loads on the plate-surface can be easily 
formulated by using the results provided here. 
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Suppose that a concentrated force P is acted on the upper surface of uX~ rectangular 
plate. It follows from Ref. [9] that 

The expressions for the displacements can be obtained immediately upon substituting of 
(5.1 I) into (4.6) and (4.7). 

In the case of the thin plate, owing to the thickness is small. the results of the classical 
thin plate theory approach to those of the present paper’s In fact, put /z-+0 in (4.6~1, then 

@bmlk)- p(~+p)~~~~~~~~)z,zh3 
The flexural rigidity of the plate is 

(5.12) 

where E is Young’s modules and v is Poisson’s ratio. They are related to lam&s constants 
as follows: 

E Ji.+f&U 
/J= 2(l+v) ’ A+p 

-TZ(l -VI (5.14) 

Substituting (5.13), (5.14) and (5.11) into (5.12) leads to 

Substituting the above expression into (4.7~) gives the deflection at the point (.y, U) of the 
plate, on whose surface a concentrated force P is acted at the point (x=$, ~~7). as 

. rnzx .rvr.y 
sin T sin - 

b 

The maximum deflection r.emax occurs at the center 

concentrated force P is also located at the center ,$ 

t 
a b 

xc=--, lJ=T 
2 J of the plate. When the 

of the piate,we have 

The same results were obtained by Ref. [9], which solved the same problem with Navier 
method. From this fact it can be concluded that the solution of Navier method is the limit case 
of the present paper’s result as I? +O. This makes it clear that the classical plate theory based 
on Kirchhoff-Love hypothesis is reasonable when the plate is thin. 
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VI. Discussion and C!onclusion 

The precise solutions of closed Form, which suits to the plates of any thickness, are 
obtained by proceeding from Navier equations of three dimensionai eiastic body. 

The solutions obtained in this paper satisfy exactly the governing equations, and can 
retlect the thickwise distribution of sresses or displacements on the edges of plates. This is the 
main difference between the method of the present iaper and that of the other else plate 
theories. 

The expressions (3.8) can suit to the plates acted with complicatedly distributed stresses on 
the edges. For a given distributing law of the edge stresses, the distributing function of the 
edgevstresses can be expanded into trigonometric series to find the solutions. 

The solution constituted from (4.5) and (4.6) can be used to analyze the problems of 
arbitrary distributed plate-surface loads. The method is here again by expanding the 
distributing function of the plate-surface loads into trigonometric series. 

The case contains both arbitrary distributed plate-surface loads and edge stresses can also 
be analyzed by using the superposition of the solutions constituted from (3.8) and those 
constituted from (4.5) and (4.6). 

When the plate is very thin and it has simultaneously the bending deflection and the 
inpiane compression. the coupling effects between the two types of deformations are intensive. 
Then. it is unallowable to superpose the in-plane deformation due to the in-plane compression 
and the bending deflection. Otherlvise. large error will be caused. 
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