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Abstract
The displacements of the plate are assumed appropriately to derive the solutions
of the 3-D Navier equations. And the conditions on the plate’s surface are investigated.
In the examples, the boundary-value problems of the plare are solved by applying the
Navier-equation’s solutions and their closed-form solutions are obtained. The results
Sformulated in the presenr paper satisfy exactly the governing equations and can reflect

precisely the boundary effects of complicated distributions on the edge of plates

Key words plate, thick plate, displacement  method. boundary-value
problems. Navier equation

I. Introduction

Generally, as a three-dimensional (3-D) solid, the plate should be analysed with the thick
plate theory. The thick plate theory is multifarious: A customary thick theory originates from
various modifications of the thin plate theory, which is based on Kirchhoff-Love hypothesis,
with shear strains and trasverse normal strains!. The relatively typical and the most
extensively applied in numerical computations in recent are Reissner theory®” and Mindlin
theoryt.

A great number of the plate problems have never been solved satisfactoryly. Hence new
theories and methods are invented successively. It is worth noticing that the theories developed
in the rescent years counting in the higher-order effects of the shear strains have improved
enormously the computational precisiont¥,

The methods mentioned above can constantly only obtain proximal results. In order to
calculate the plate precisely, the 3-D boundary-value problems should be solved.

Navier equations are the governing equations in the boundary-problems that describe the
elastic solids with displacements, and it is of significance find their general solutions. Works 57
sumed up the general solutions. Paper [8] discussed the mechanical method to constitute the
general solutions. All these solutions are successtul in the applications to solve the problems of
the elastic half-space media and contact problems, but it is difficult to use them to solve
plate problems.

The present paper has found the solutions, suitable to the plate problems, of Navier
equations and explained the solving process by using the solutions of Navier equation through
solving some practical problems.
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II. Solutions of Navier Equations

As is shown in Fig. I, Oxyz is the Cartesian rectangular coordinate system. Its Oxy
coordinate plane coincides with the upper plate-surface.

The Navier equation of the isotropic,

linear ealstic solid of the small strain and of

no body force is

0(0,0.0)
- ptey 5 (A p)ty,56=0 (z.1)
// ; where / and u are Lamé constants; i=1, 2,
0,a.0) . Lo
(0.0 7 3; j=1, 2, 3; the summation convention is
(0. a. h} maintained when indexes coincide; w1, u2 and
y z us are the components along the x, y and =

axes respectively of the displacement of a
particle within the plate and are denoted as
u, v and w respectively.

GW(x )

Fig. 1 Plate and its coordinate system

u(xﬂ]’z)"""f( )

W (x,y)

v(x,y,2)=—g(z) 3y

w(x,y,2)=p(2)W (x,y)

Here: u, y and w are the components, which are along x, y and - axes respectively, of the

displacement of a particle within the plate respectively; f(z), g(z) and @(2) are thickwise

distributing functions, which are determined by the differential equations; W(x, y) is a
distributing function of the deflection, which is assumed to be
W(x,y)=Wexp(ax-+0y) (2.3)

where W, a and 0 are arbitrary constants, whose values are related to the boundary
conditions.
The stresses can be expressed as

C L do PW | W
0z==(3»+2#)7; ~i( FPor +o%) (2.42)
dW
ser=i 9 —-9L (2.4b)
dg \aWw
=t ‘T.Tg’)TaTj (2.40)
- do
Toem— /t+),u)f +,1( il OW . 49 ) (2.4d)
atw
Tey= _”(f+g)—a—féy— (2.4e)
Gy = — (A 2) g a, ~AS T+ 142 (2.4f)
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Substituting (2.2) and (2.3) into (2.1) vields

{~torama 1 f2) = ELE + ()| ~00(2) +42E T (2, ) o
(2.52)

{ =t uat1o) —u L G| 2 (2) H2EL T (1, =
(2,5b)

{GrronLEEL k() = k)] @224 08D Ty )y (3.50)

where

Rl=ait (2.6)

The system of differential equations is solved as follows with respect to two cases =0
and- £ #0.

1, k=0
(1) a=t=0
In this case, it can be known from expression (2.3) that W (x,y)= W= constant.
. .
Substituting it into the system of differential equations (2.3) leads togdi;;—)—zo. Thus, the
displacements are
u(x,y,z):v(x,y,z)so, w(x5yaz)=Aoz+Bo (2,7)
where Ao and By are arbitrary constants.
(2) xand 0 being not both zero
The solutions of the system of differential equations (2.5) are
__(A+u)atd\z® g . -
__(Aw)yatd , C
g(2)= _———_—6(/1-*-2#) +72 +(D—A)z+E - B, (2.8b)
_ (A+tp)a*dsz* (., , uC '
Q)(Z)— 2(A+2#) l(a Bl T A+[L )2+F (2.80)
where A1, Bi, C. D, E. F are arbitrary constants.
2. k50
In this case. it can be found from the system of differential equations (2.5) that
f(z2)=(C\+C;z)coskz+ (C,+C,2)sinkz (2.9a)
g(2)=(—A+C+Cyz)coskz+ (—B+C,+C,2)sink= (2.9b)
I S 23T oy 2
p(z)= kz(A+u){AM+“)k9 sinkz —B(A+u)kb*coskz
—Ci(A+p) kPsinkz — Co[ (A4 3u) krcoskz+ (A+4-u) kPzsinkz]
+ Cy(A+p)kPcoskz + C [ (A+p) kPzcoskz — (A+ 3u) k2sinkz]} (2.9¢)

Here 4. B. Ci. Co, Cs, and C. are arbitrary constants.
The constant coefficients of the equations (2.7)~(2.9) are determined by the plate-surface
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conditions and the edge conditions.
III. Homogeneous Plate-Surface Conditions

At first, let us consider the problems of the plate with free plat-surfaces. As is shown in
Fig. 1, the thickness of the plate is /.

The plate-surface conditions are:  Tz::=Uz3=03,=0, when z=0 or z=h. Using (2.4),
in both of the cases z=0 and Z="A, we have

W *W
(»+u)——W /1[ T 957 ]—0 (3.1a)
14
w o—-20) 2 =0 (3.1b)
w
#( P74z flz )a =0 (3.10)
It follows that the situations corresponding to the different values of & are discussed
1. k=0
(1) a=0=0

Substituting (2.7) 1ato (3.1) results in
- g=y==0, w== const,

In this case, there is only rigid displacement along the direction perpendicular to the plate-
surface. This is not interesting, so the latter part of this paper will provide that not both of
7 and 0 are zero.

(2) = and 0 being not both zero

Substituting f%==—a* and (2.8) into the system of equations (3.1) and getting the
coefficients. we have

f(z)=g(z)=Dz+E, ¢(2)=D (3.2)

It can be concluded from the substitution of the above expression into (2.4a)~(2.4c) that
above expressions imply that the shear strains and transverse normal strains are zero. i. €.

'Vu(x9ysz) =V=:(x!ysz) =82(x,y;z)EO

If £/D=—h/2., in view of (3.2) and (2.2), the.in-plane displacements of the particles or.
the middle plane (-=1//2) of the plate are-zero. while the in-plane displacerhents of the other
particles within the plate vary linearly along the thickness. That is, the plate bends with the
middle plane as the neutral surface, and the transverse sections remain plane after the
deformation. Therefore, when E/D= —/h/2. Kirchhoff hypothesis of the thin plate of small
deflection holds precisely:

2, k#0

Substituting (2.9) into (3.1) and arranging the resuits, we can obtain the system of the

linear algebraic equations:

~ (A4n)@*coskh —~ (A+p)8%sinkh (A+tu)kicoskh
{ ~ (A+u) 0 (Atu)k?
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) gepsinn -8 g — (A+u)Ksinkh
o ~Ebgy 0

B (44 42)sinieh ~2E8) (gt ) coskh  — (A-+u)kisinkl
0 —-(i—;—-ﬁl(ezk+k3) 0

(Adp) R*hcoshh — (A+2u)ksinkh  (A+p)k*sinkh

0 0
—ukicoskh — (A+u)kPhsinkh (A4u) RPcoskh
—uk? (A+u)k?
—ukrcoskh — (A+u)kChsinkh (A+un)kPcoskh
—uk* (A+p) &
(/1+/1.)k2hsinkh+(/1+2u)kcoskhq/ N 0
(Ad2u)k B 0
—pkisinkh 4 (A4p)RPhcoskh C, 0
. cs = _0) (3.3)
—pktsinkh+ (A4p) Ehcoskh C, 0
0 “Ne, ! N7

The system of equations (3.3) has non-trivial solutions, if and only if the determinant is,
zero. So

(A+u)tkisinkh][ — (kh)*+sinkh] =0

nw . .
Its roots are k=T(n=i l,£2,-¢}), The integer n can take the values of natural
number. i. e.

= (=2, (3.9
Substituting (3.4) into (3.3), we find
Cx-—_:(.%)ZA, B=Cy=C,=C,=0 (3 5)

Substituting: the expressions (3.5) into expressions (2.9) gives

F(2)=(%)" Acoshz

g(z)=—(%—)z/100w4

v(z)=0
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[t could be seen that, when k“-—h~. the plate has only the in-plane deformation along
the direction parallel to the plate-surface. However, when 4% ¢ , only the component o,,=0
among the six independent components of the stress.

Summing up, the general term of the independent column series of the displacement
column {u v w}7T are

{ ann(x,y) O mo(%,4) _ Omn \? W ma(%,y)
- ax - 9% ( ka ) cOskyz 9%
W mo(X5Y) W mo(%,y) @mn \2 W ma(X,y)
S - 3y P ) COSknz dy
Wmo(x’y) 3 0 T 0

(m=1,2, f==1,2,) {(3.7)

where W mo(%,y) can be chosen in
cosamxChany, cosanxshamy, sinamxchamy, sinamxshamy
and Was{x.y) can be chosen in

COSBmaxChlnayscOSBmaxShbmnys Sin Buxchlmnys SiNPmaxshinay

Here: B2, + 0%, =k:=

nm \?*
7 ) s @msBmasOmn can take complex values.
1

In view of (3.7), the displacement solution satisfying the homogeneous conditions (3.1) on
the surface of the piate can be given by

mwml mel
= = Omﬂ z aIan(th/)
_,RZ.J: glcmﬂ( - ) COshyz Z-mm el

v(x Y,z )__ZA ano x y) ZB a[Vmu(x y)

oy = ay
il Amn kn-— ann(x9y)
+§.:1:T:uc”"( 2 ) oo8 91
w(x,y, z)=ZIAmnWmn(xyy) (3.8)

The arbitrary constants @m, PBmns Omns Amp  Bmo and Cme should be determined
further by the edge conditions. For the purpose of this determination, the given functions of
the distributed forces on the edges are generaily expanded into double trigonometric series.
Then Bmn or 0,, are usually taken as imaginary values to transfer hyperbolic functions into
trigonometric functions. In such a case, z or (} in (3.6) should take imaginary value.

IV. Nonhomogeneous Plate-Surface Conditions

Next, we consider the plate problems with loads on the surface of the nlate.
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We will discuss only the common situations of the plate-surface loads. That is. the plate-
surface loads are exerted normally to the plate-surface. The investigation herein suits the loads
arbitrarily distributed over the plate-surface.

The stress conditions on the plate-surfaces are

z2==03 Oz~ =—q(Xyy), O2z=02zy=0 (4.1)

z=h: Oz25=0z: =20 2y =0 (42)

The function ¢(X,¥) may be an arbitrary function of x and y, except the confinement

that it must be absolutely integral in the area of the plate-surface. According to Fourier

theory. g{x,y)can be expanded into one of the sine-sine series, sine-cosine series. cosine-sine

series and cosine-cosine series. Nothing of the generality is lost when we discuss the sine-sine
series. Then. when the area of the plate-surface is a rectangular of @ X 5. we have

o0 oQ
) L MAX . MY
g(x,y)=3 3 gmaSin—=sin bJ (4.3)
mel n=1
where
4¢P W mMAT . BAS
q"‘"=55§ogoq<r’s)sm 5 Sin 5 drds (4 4)

1. Distributing functions of deflection

Comparing (4.1) with (4.3) makes it clear that in (2.3) 2 and 0 can be replaced with iz and
il respectively. The parameters z and {} are real in iz and i0. Appropriate combination results
n

Wi(x,y)=sinaxsinfy, sinaxcosfy, cosaxsinfy, cosexcosly (4.5)

where W(x, y)=sinzysinfy matches the expression (4.3) well. and it is known from (2.2) that
such a solution suits solving the problems of simply supported rectangular plate. The other else
terms can be chosen for the other else support conditions.
2. Thickwise distribution function

Here. the discussion is confined for a X b rectangular plate with all the four edges being
simply supported. -

In view of {2.6). when # and 0 in (2.3) are replaced with iz and 0. &4 should also be
replaced with k. In such a case. (2.3) becomes (4.5). and (2.9) should become '

f{z)=(C,+Cyz)chkz+(C;+C,z)shkz (4.6a)
9(2)=(—A+C:i+Coz)chkz+ (—~B+C,+C,z)shkz (4.6b)

(p,(z)=W{A(a+u)k92shkz+B(A+p)k92chkz

~Cy(A+p)Eshkz+Cy[ (A4 3u)k*chkz— (A4p) kzshkz)
—C (At p)kichkz+C,[ — (A4-p)k*zchkz+ (A4 3u) k*shkz]} (4.6¢)

Corresponding to the general load term g¢.., the parameters z, { and % are ﬁﬂ, nr

a b
2 N 2
and @ (in—) T (-—) respectively. Likewise the procedure to the situation of the
U

homogeneous plate-surface condition is repeated for the establishment of the system of linear
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algebraic equations about Amns  Bmas  Cimny, Camns Cimns  Cumn. which are found and
substituted into (4.6) to give

Gmn 1
2kmn (kmnh ) "'Shzkmnh

Jan(2)=gme(2)=

{[ (Atp) (Runh)’+ush® (kpah)  kmaht+ChkmahShkmah
p(A+p) ks u

kmah+chkp.hsh kb | shik,.h
+ (A1) mn S Jshinz |

(m=1,2,3,"') (.72, b)

n=1,2,3.,+

z]chkmh

g Gmn i
¥ Er ey L) T A

+chkpahshkmah) — (A41) kuazsh?kpehlChbpnz
FL—(A+p) (Ranh)*+ (A+2u)sh*kph+ (At ) Bnnz ( Bpah
m==1,2,3,

-Chhmahshkmsh)Jshkmz}  ( ) (4,7)

n=1,2,3,
Consequently, the displacement of the simply supported rectangular plate can be
expressed as

(<o) oo

u(x,y,2)=—73_3" ";” fmn(z)cos % sin "’g” (4,8a)

mel nal

T fma(z)sin 22X Ty (4.8b)

v(x,y,2)=— 22

m=1 n=l

o0 o0

e ax

w(x,Y,2) ==Y Y @ma(2)sin 222 sin L \ (4.8¢)
m=1 n=l b )

This is similar to Navier method of the classical plate theory. The difference is that the
solution here can satisfy Navier equations rigorously, but Navier method can not.
Nevertheless, it can be seen from the example analysis in the next section that, when the
thickness of the plate tends zero, the solution of the present paper tends the same result as that
of the solution of Navier method.

V. Examples

Here, in order to explain the procedure of the 3-D analysis of the plate problems, two
types of examples, the semi-infinite plates without plate-surface load and the simply supported
rectangular plates with plate-surface-load, are provided.

1. Semi-infinite plates without plate-surface load

The semi-infinite plate takes up the space: 06<Cx<{co, —oo<{y<{ee, 0Lz<Ch. Noload

is exerted on the surfaces of the plate. At the location of x->oo, displacements vanish, i. e.

x—>00, 4=>0, 0->0, w—>0 (5.1)

At the edge of x=0, two typical cases of distributed force are investigated respectively as
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follows.
( 1) Linearly varying normal stress
The boundary conditions at x=0 are set as

12M hy . may

x==0; Og,= 7e 2 (z-—-?)sm _0“ (5.23)
12M h mn

Oay=—""73 °(z-2—)cos ay (5.2b)

where M, is the bending moment per unit length of plate, and takes a given value: m and a
also take given values. When m is an integer, the semi-infinite plate can be taken as a semi-
infinite strip with a width of a along y-axis and with two opposite edges being fixpinned.
According to the boundary condition (5.1) and (5.2), noticing §*= —a*, and using (3.2)
and (2.3), we can constitute the solution. Thus, it is reasonable that
f(z)=g(z)=Dz+E
@(2)=D

W(x,y)=exp( mzx)sin mfaru (5.3)

Substituting (5.3) into (2.4d) yields

muy

Orz= —2;1( man )2 (Dz+E)exp(—-ﬂ10£—x) sm-—a—

And then substituting the above expression into (5.2) gives

D=”% n(zlzz .)Z
E=3;LAI{20( r:n )2

Substituting the above expressions and (5.3) into (2.2), we obtain the displacement solution

u(x,y,z)='—-§%3—° —m‘}]—r—( )oxp(——-—-—— sm—”—'—(’:—y- (5 ,42)
6M, a / h mmrx mmy .
v(x,y,2)= P G )exp(—T)cos - (5.4b)

_ _8My a \* _max. . mry .
wW(x,y,2)= Tha(———mn)exl)( - )sm——a (5.4¢)

It can be concluded from putting z=h/2 in (54a) and (5.4b) that the in-plane
displacements in the middle plane are zero. This means that in the present case the middle
plane of plate is the neutral surface of the bending deformation.

As can be shown, the same result can also be obtained with Levy-method of the small
deflection theory of the thin plate. Hence. no matter how.thick the plate is. the characteristics
of the plate's bending deformation will coincide with Kirchhoff hypothesis when no transverse
shear and no in-plane traction (compression) are acted. -

( 2 ) Square-wavelike varying normal stress
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Suppose that the plate at x=0 has the following boundary conditions:
As x=0, — oo y<loo, .

—as1ﬁw (0<2<.§)
a,,=] ) (5.5)

mmy

asm——- (—g—<z<h)

M,,= H cos””“/ (5.6)

where ‘H, ¢ and « have definite values; m is a natural number; and M., is a torque per unit

width of plate, i. e.
B h
Mz’=8 (2—_9')0',ylz=0d2
[y 4

When the plastic region of the body which is connected to the plate has completely
developed, the boundary condition takes the form described by (5.5).
Now, we use (3.8) to find the solution. The displacements are then expressed as

mgx)sinln%‘l—/
D () o () e e
.eXp[ —-Jt,,/ (—Z—)Z%- (%)zx] sinm—gy (5,7a)

v(x,y,z)=_(Dz+E)_'%’f_eXp( mftX) Cosmzy

u(x,y,2) == (Dz+E )" -exp

+ ‘:T A (_?n/h)z(_-) ez

.exp[ —nJ (%) +(ﬂ;-) ]cosw (5.7b)

( max muy

w(x,y,2)=Dexp

)sm (5.7¢)

where D, E and A, are unknown constants, which are determined as follows.
Substituting (5.7), (2.4d) into (5.5) and expanding the right side of (5.5) into cosine series
with regard to x, we find

2E +Dh=0, A,=0 (n=2, 4, 6, --)
(R Y (Y +6) v () v

=29 sin =& (n=1,3,-) (5.8)
nw 2

In view}of (2.4e) and (5.6), we have

(*) Z (T n;() J() )()—Hn (5.9)

u...

T
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Equations (5.8). together with equations (5.9), yield

Here

S= ) 1 v (5,10)

h.
(%, 2 _% x=1§--- I ,ﬂ—fz\“ (—Z}- Z

If the sum of the first two terms is used to replace the sum of the infinite series. the error
will be less than 5% in usual case.

The infinite series in (5.7a) and (5.7b) converge rapidly, since the general terms decay
according to exponential law as the value of 1 increases. Hence. the sum of the infinite series
can be replaced with the sum of the first two terms in most cases.

In the case of plane deformation, one component among u, 9, w is zero, so the expressions
for displacements are much more simple. For instance, if w=0. we can put D=E=0 in (3.7).
Relieve the confinement by (5.6) and remain the boundary condition equation(5.5), the results
tQuS become

- (=1 ! (2f—-Dmz

u(x,y,2) =~ S [( 21—1)2+ (g)zcos h
2

h

exp[ 7——nl~/ (21}1—1 )2+ (%’)zx }sinlﬂ;ﬂ’

v (x,4,2) =_u%§ (2'1“_1)1’ (21 —~h1)7tz
sl o T
w(x, Y, 2)=0

2. Simply supported rectangular plate with plate-surface loads

Here takes the case where the upper surface of the plate is acted with a concentrated
force. The other else cases with arbitrary distributed loads on the plate-surface can be easily
formulated by using the results provided here.
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Suppose that a concentrated force P is acted on the upper surface of «X4b rectangular
plate. It follows from Ref. [9] that

Q= sin 25 sin 277 (5,11)

The expressions for the displacements can be obtained immediately upon substituting of
(3.11) into (4.6) and (4.7).

In the case of the thin plate, owing to the thickness is small. the results of the classical
thin plate theory approach to those of the present paper’s. In fact, put A—>0 in (4.6c), then

mn JT7m\e n\E T, (5.12)
u(hemad (3) + () ]
The flexural rigidity of the plate is
EhR® -
D=t (65.13)

where E is Young’s modules and v is Poisson’s ratio. They are related to lamé’s constants
as follows:

E A+2u
u“2(1+1’)’ ),‘f-[.l _‘2(1—‘1") (5,14)

Substituting (5.13), (5.14) and (5.11) into (5.12) leads to

4Psin™€ sin 1‘12_’7_

a
2 272
o<~ ]
a b.
Substituting the above expression into (4.7¢) gives the deflection at the point (v, ¥) of the
plate, on whose surface a concentrated force P is acted at the point  (x=¢, y=7). as

Pmn (Z) ~

w(x,y ’)~——£—-x’ S 1 in M€ gin 770
2Ys 2 abD:r"’Z:Z[(m)2 (n 2]zsn a b
m=l =l —~— + *)
a b
sin B2 5in %2Y.
a b

. . a b
The maximum deflection wmax occurs at the center ( x=--, Yy=") of the plate. When the

concentrated force P is also located at the center (g =%, 77=—(;-) of the plate,we have

1
Wmax =W 'y=b~ggg;77 P [(ﬁ)z+(%)z]z (5,15)

xX= 7 m=l,3,"'"",39"' a

ro]e

The same results were obtained by Ref. [9], which solved the same problem with Navier
method. From this fact it can be concluded that the solution of Navier method is the limit case
of the present paper’s result as #—0. This makes it clear that the classical plate theory based
on Kirchhoff-Love hypothesis is reasonable when the plate is thin.
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VI. Discussion and Conclusion

The precise solutions of closed form, which suits to the plates of any thickness, are
obtained by proceeding from Navier equations of three dimensional elastic body.

The solutions obtained in this paper satisfy exactly the governing equations, and can
reflect the thickwise distribution of sresses or displacements on the edges of plates. This is the
main difference between the method of the present paper and that of the other else plate
theories.

The expressions (3.8) can suit to the plates acted with complicatedly distributed stresses on
the edges. For a given distributing law of the edge stresses, the distributing function of the
edge-stresses can be expanded into trigonometric series to find the solutions.

The solution constituted from (4.3) and (4.6) can be used to analyze the problems of
arbitrary distributed plate-surface loads. The method is here again by expanding the
distributing function of the plate-surface loads into trigonometric series.

The case contains both arbitrary distributed plate-surface loads and edge stresses can also
be analyzed by using the superposition of the solutions constituted from (3.8) and those
constituted from (4.3) and (4.6).

When the plate is very thin and it has simultaneously the bending deflection and the
inplane compression, the couplihg effects between the two types of deformations are intensive.
Then. it is unallowable to superpose the in-plane deformation due to the in-plane compression
and the bending deflection. Otherwise. large error will be caused.
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