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Abstract
The second order Euler-Lagrange equations are transformed 1o a set of first order
differentiallalgebraic equations, which are then transformed to state equations by using
local paramererization. The corresponding discretization method is presented, and the
results can be used to implementation of various numerical integration methods. A

munerical example is presented finally.
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I. Introduction

The equations of motion of constrained multibody system dynamics can be written as
follows!"!

M(q,t)i+¢%5(q,t)A=F(q.4,t) } (1,1a)
P(g,t)=0 (1,1b)

where ¢ is time parameter, g€R" is generalized coordinates vector of system, M(g,t).
K*x R->R*** is generalized mass matrix of system, A€R™ is Lagrange muitiplier vector,
¢(g,st); R*X R->R™(m<n) is kinematic constraint function vector: (j;q(q, t) is derivative
of ¢ with respect to ¢ (Jacobian matrix); F(q,§,t), R"X R"X R->R" is generalized force
vector. Eq. (1.1) is called the second class mathematic model of multibody system dynamics!'® or
Euler-Lagrange equations”. Many numerical approaches for this model are compared in {13].

In this paper, ¢ is augmented into the vector of coordinates, and the second order model is
transformed to first order model with index one firstly. Then the concept of local equivalent
model is suggested. based or which a new discretization technique is presented. The validity of
the approach is tested throeugh-a numerical example. finally.

I1I. Transformation of Second Order Euler-Lagrange Equations to First Order
Ones

Similar to reference [2], (1.1a), (1.1b) satisty the following conditions:
(1) ¢. M. F are smooth sufficiently;

(2) M is a positive and symmetric matrix;

(3) The row rank of ¢, is full.
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In order to simplify the structure of equations. the following matrices are defined based
on (1.1a) and (1.1b)

q F M o
qi= F1= M=
RIESS I
Then (1.1a) and (1.1b) can be transformed to
Mi(g)g:1+éT(g) h=F(q1, 1) } (2,1a)

$(q1)=0 (2.1b)
Obviously, M. is positive, and the row rank of ¢a1=[dq¢,¢:] is full, i. e.. the assumptions
of (1.1a) and (1.1b) can be satisfied. Here. ¢q=08¢/9q, ¢.=08¢/8t, A1 is a new Lagrange
multiplier vector. In order to write in compact form. (2.1a) and (2.1b) are rewritten as follow

M(q)i+9¢T(q)A=F(g,9) } (2,2a)
o(gq)=0 (2.2b)
The following two equations can be deduced from (2.2b)
pag==0 (2.2¢)
$el=—dea(d-4) (2.2d)
The following equations can be obtained through combination of (2.2a) and (2.2d)
M ¢% F

] (2.3)

PR 1 SO

Because M is positive and the row rank of ¢, is full. the equation (2.3) have unique solutions

as follow

§=9(q,9) (2,4)
where,

o M. ¢i - F
o, q)=t5,0 [ | (2.5)

¢ O —¢aa(q-4)
After introducing new coordinates vector x==[g7,4717. (2.4) becomes

z=g(x) (2.6)
where,

am=[ "~ ]
9(2,9)

(2.2b) and (2.2¢) can be changed to

f(x)=0 (2.7)

here.
#(q) ]

I =[ #q(a)q
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(2.6) and (2.7) are first order equivalent equations of (2.2a) and (2.2d) with index one.
III. Local Equivalent Equations and Their Discretization

If x=x(r) is assumed a set of solutions of (2.6) and (2.7), the following equations can be
obtained by substituting x into (2.7):

Df(x)2=Df(x)g(x)=0 (3.1)

(2.8) is implicit condition of (2.6) and (2.7), and can be considered as consistent condition of
(2.6) and (2.7). The following overdetermined equations can be obtained through combination
of (2.6), (2.7) and (3.1).

E=g(x) (3.2a)

f(x)=0 (3.2b)

Df(x)g(x)=0 (3.2¢)
Their initial conditions are

x(ty)=x, (3.3)

which is a typical initial value problem of first order differential/algebraic equations. Here, x,
is called consistent initial value if it satisfies (3.2b) and (3.2¢).
Proposition 1 f(x), g(x)are same as (2.6) and (2.7). Let 4 be a 2nx2p matrix,
where, p=n—m. If 4 is selected such that
AT
[ Df (x,) ]

is nonsingular. there exists a small adjacent field 8¢ of #,, on which (3.2a~ 3.2c) have same
solutions with the following equations under the same initial conditions (3.3).

AT (&= g(x))=0 (3,42)
f(x)=0 (3.4b)
Df(x)g(x)==0 (3.4c)

Proof Only if obtaining (3.2a) from (3.4a) and (3.4¢). It can be assumed that x=x(¢)
is a set of solutions of (3.4a~3.4c) and (3.3). Because Df(x)is continuous, there exists a smatll
adjacent field 8;, of #;, on which

- AT .I
I‘Df(x) -
is nonsingular, then the following equation can be obtained from (3.4b)
. Df(x)&=0 (3.5)
Thus, the following deductions can be made from (3.4a), (3.4c) and (3.5)
[ AT ]-l[ ATg(x) ‘] [ AT J-l[ ATg(x) }
&= =
Df(x) 0~ "Df(x) Df(x)g(x)
AT AT

s Loy 7=o

End.
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Note For common cases, if there is no (3.4¢), the equations (3.4a) and (3.4b) are not
equivalent with (3.2a) and (3.2b). For example, the following equations

R=x41
f=1 }
x4t=1
ére conflict equations because of Df(x)g(x)=x-+t+1=2#0. But if A" is [0. 1], (3.4a) and
(3.4b) are changed to
i=1

Xti=1

They have solutions under consistent initial values.

Proposition 2 If f(x) and g(x) are difined as (2.6) and (2.7), solutions of (3.4a) and
(3.4b) satisfy the consistent initial condition (3.4c).

Proof From (2.6) and (2.7). the following deductions

R T Y.

baed P 9(q,4) $aa(§-9) +daw(q,q)

are correct. The upper part of right side of (3.6) is 0 permanently from the definition of

Df(x)g(x) =]

(g, 4) and the corresponding lower part is inciuded in (3.4b). End.

(3.4a) and (3.4b) can be discretized to a set of common equations because they are not
overdetermined equations. The modified Euler method will be used to examplify the above
ideas. The marix A depends on initial values of every step associated with difference grids of
(3.4a), (3.4b).

If x,=[q%,4%17, for k=0,1,2,+- ,x,1 can be obtained from the following equations

{ AL (x—=xe—h/2(g(x) +g(xx))) =0 (3,7a)
f(x)=0 (3.7b)

They are nonlinear algebraic equations with 2» variables. If Newton iteration method is used
to (3.7b), and direct iteration method is used to (3.7a), the following computing technique can
be obtained
ATde=—AT(x]=xc—=h/2(g(x:)+9(xc))) (3.8a)
Df(x;)8s=—f(x:) (3.8b)

x3+1 =X +(3 S=O,1’2’---,l; x(;=xk) x:=xk+l;k=0,1’2; ces

IV. Selection of Ak and Steps of Computation

Because the row rank of $a is full. the solution space of @qu=0 is p=n~—m dimension,
whose base vectors can be assumed to be V=V, V,, s, V,] . The following equation
can obtained by left multiplying (2.2a) with /7

VIMg=V"F (4.1)
(4.1) and (2.2d) can be combined to:
| VM VTF

ST

—~dea(4-4)
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Proposition 3 The coefficient %atrix of (4.2)

VM
[ ] (4.3)
ol
is nonsingular.
Proof Let nw€ER® satisfy
VM . VTMu _
[, k=L, ]=o
be buu

then u is located in the null space of ¢gq, i. e., there exisis y€R? such that 4=FVy, thus

VIMVy=0
i. e.,

Vy)*™MVy=0

Because M is positive and symmetric, #==}"y=0 can be obtained. End.
Note Because M is positive and symmetric, M7V is orthogonized to ®$¢” under the
sense of . la="". Thus, B=VTM is one of selections such that the condition number of

® ]

L,
Deduction 1 (2.3) and (4.2) are sets of equivalent differential equations.
Deduction 1 demonstrates that p(g,¢) in (2.4) can be obtained from (4.2). The matrix A
in (3.7a~3.7b) can be selected according to proposition 3 and

Df(x)=[¢¢qq :]

18 smaller.

VM 0

ba VM ]x=xk (4.4)

2]

where xp=[qT,4%1", (A):usris value of 4 at point x.. Let e=[8T4, 8T,)7 and substitute
{4.4) into (3.8a~3.8b), then (3.8a) and (3.8b) become

VIM 0 — VM (xe=xx—h/2(g(xs) +g(x:)) s

0 VIM | O —VIM (x5 —xe—h/2(9(%:) +9(xx)))2

b 0 |Lls, I (= F(xe))s (4.5)
$ae§  pa v¢ (—f(xs))2

where, (x), is. a vector composed of first n components of x. and (x)s is another vector
composed of last » components of x. Due to (x)i=gq, (x)2=¢, (g(x))i= 4, (g(x))s=
®(2,9): (f(%))1=0(q), (f(x)):=¢qq. the equations 1, 3 and 2. 4 of (4.5) can combined
to the following equations

[ V;M :L 13=[—VTM<Q;—Qk—h/z(q;—Qk))] (4.6)

—o(qs)
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[VTM] P [“VTM(Q;‘qk"h/z(q;“Qk))]
28 =

ba —(¢a9q’ - 015 = (daq’)s
QQ+A=<1H'51“ q..:+l=q's'+6“ (S=07192,"'.)3 q:).=Qk, Go={qx,

(4.7)

The computation steps can be described as follows

For the kth step: Qs & are known. let ¢o=qk, $0=¢x. For s=0,1,2,..

(1) Calculation of M,F,¢,¢a,dedsbaa(§-4). at qs,ds,

(2) Calculation of base vectors V' from ¢qex=0,

(3) Obtaining d: from (4.2),

(4) Obtaining gt.1, ¢s+t from (4.6), (4.7),

(5) If |ghu=gll<<e and |gi.1—¢il<e, then let ge.1=@qi.1, dra1=q}., and
go to the (k- [)th step.

V. Selection of Matrix V

5.1 Orthogonizatidn method
The QR orthogonal decomposition"! of ¢ can be written as

si=1U, 1| ]

where, [U, V] is orthogonal square matrix, R is upper triangle matrix, ¥ have P orthogonal
columns. The matrix ¥ can obtained from the following equation
ur N 0
]V:[RT,ol[ ]=o‘
z ) 1
5.2 Gauss elimination method
Because the row rank of ¢q is full, the following results can be obtained through row

mV=m%M[V

pivot Gauss elimination of ¢a. I. e..

€,+1T
PpeQ= : e==(0 =+ 0 1 0 - 0]

e.T

where, P is elimination matrix, Q is multiplication of element column transformation matrices.
V can be selected as

V=Q[eh ""76;]
thus

epii”
PyQ= : [e1, 5] =0
enT .
¢eV =0, because P is nonsingular.
The Gauss climination method can maintain sparsity of - matrices and have simple
computation structure. The orthogonization method have an advantage of small condition
number of matrices.
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VI. Numerical Example

A planar manipulator with two links is shown in Fig. 1, the lengths and masses of links
are [,=1m, l,=2m, m=1Kg, m;=1Kg, respectively. The vector of coordinates is

Q=EX1 23 4 x»

Yz

0.1F

The generalized mass matrix of the system is:

- My

The vector of generalized forces is:

F=[0

The constraint equations are:

The initial conditions are:

x1— ({1/2)cosb=0
yi=(13/2)sinb=0

y

Fig. 1

fxy )

(x,, U7)

Two link manipulator

—mg 0 0 =—myg 0]7

Xy —=1,0080,—(l,/2)c080,=0

Uz—leinex-ﬂ(lz/Z)Sian:O

gy={0,5
ZG=[0 0 0 0

0 0 2

0 0]*

0 0J*

Because the analytical results are impossible to obtain, the approximate numerical results
from QR method™ with 41=0.001s are regarded as nearly exact values used to compare with
those obtained through the method presented in this paper. The Fig. 2 is a result from QR
method. and the Fig. 3 is deviation of ¥ from the values shown in Fig. 2, through the new
method with A==10"2g, error tolerance EPS=10"".

Ervor: Ay(m)

. 0.4

£

=000

5 —0.4

: i

= —0.8p

>

2 1 L 1
0 1 2 3

Time (s)

Fig. 2 The history of y1

8,001
0,000
-0.00i 1
—0.002 L 1
e 1 2 3
Time (s)

Fig. 3 The deviation of y; from the

values in Fig. 2
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VII. Conclusions

The second order Euler-Lagrange equations are transformed to a set of first order
differential/algebraic equations, which are then transformed to state equations by using local
parameterization. The corresponding discretization method is presented. Some features of this
algorithm are:

a. 1 is augmented into ¢ to simplify the structures of equations;

b. In the main iteration steps (2.2) and (2.3), the equations (4.2), (4.6) and (4.7) have same
coefficient matrices. therefore, they can be calculated one time at evey computation step;

c. Because J'TM is orthogonized to ¢eA™", when ¥ is anapproximate orthogonal matrx,
the stiffness of equations depend on ¢q only;

d. The method presented in this paper can be implemented by various discretization
technique, such as Runge-Kutta method.
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