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I. Introduction 

The equations of motion of constrained multibody system dynamics can be written as 
follows”~ 

where t is time parameter: &I? is generalized coordinates vector of system, MCc?,t): 
Px R+R”“’ is generalized mass matrix of system, KI? is Lagrange multiplier vector, 
cj(q,tj: R”x R-+Rm(m<n) is kinematic constraint function vector: 4*(q7 i) is derivative 
of 4 with respect to q (Jacobian matrix); F( q,q ,f): I?’ x I? x R-+R” is generalized force 
vector. Eq, (1.1) is called the second class mathematic model of multibody system dynamicst”] or 
Euler-Lagrange equationst91. Many numerical approaches for this model are compared in [13]. L- L. 

In this paper, r is augmented into the vector of coordinates, and the second order model is 
transformed to first order model with index one firstly. Then the concept of local equivalent 
model is suggested. based on which a new discretization technique is presented. The validity of 
the approach is tested through a numerical example. finally, 

II. Transformation of Second Order Euler-Lagrange Equations to First Order 
Ones 

Similar to reference [2], ( 1.1 a), ( 1. I b) satisfy the following conditions: 
(1) 4, lv, Fare smooth sufficiently; 
(2) M is a positive and symmetric matrix; 
(3) The row rank of $,, is full. 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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In order to simplify the structure of equations. the followin g matrices are defined based 
on (l-la) and (l.lb) 

Then (1. la) and (1.1 b) can be transformed to 

~l~~l~~~+4~l~q~~~l~Fl(ql~~l) 

4Cq1) =o 

Obviously, Ml is positive, and the row rank of &zl=[$q ,+tl is full. i. e.. the assumptions 
of (l.la) and (l.lb) can be satisfied. Here. 4q=a4/aq, 4t=a4jat, 1~ is a new Lagrange 
multiplier vector. In order to write in compact form. (1, I a) and (2.1 b) are rewritten as follow 

The following equations can be obtained through combination of (Xa) and (K!d) 

(2.3) 

Because M is positive and the row rank of 4<, is full. the equation (2.3) have unique solutions 
as follow 

tl=dq9QJ (2.4) 

where9 

After introducing new coordinates vector XC [qT, QT] T. (2.4) becomes 

Lt=g(x) 

where. 

(Xb) and (Xc) can be changed to 

f(x)=0 
here. 

(2.5) 

(2.7) 
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(2.6) and (2.7) are first order equivalent equations of (2.2a) and (2.2d) with index one. 

III. Local Equivalent Equations and Their Discretization 

If SEX(!) is assumed a set of solutions of.(2.6) and (2.7), the following equations can be 
obtained by substituting .Y into (2.7): 

Df(x)~=Df(x)g(x)=O (3..1) 

(2.8) is implicit condition of (2.6) and (2.7), and can be considered as consistent condition of 
(2.6) and (2.7). The following overdetermined equations can be obtained through combination 
of (2.6), (2.7) and (3.1). 

it=g(x) CL24 

f(x)=0 Cs.zbl 
Df~~~d~~=o (3.2~) 

Their initial conditions are 

4flll =%I (3.3) 

which is a typical initial value problem of first order differential/algebraic equations. Here, so 
is called consistent initial value if it satisfies (3.2b) and (3.2~). 

Proposition 1 f(x), g(x) are -same as (2.6) and (2.7). Let A be a 2n,~>2p matrix, 
where. p- -n--m. If A is selected such that 

AT 

Df txol 1 
is nonsingular. there exists a small adjacent field &, of r,, , on which (3.2a- 3.2~) have same 
solutions with the following equations under the same initial conditions (3.3). 

A*( k-g(x))=0 RN 

f(x)=0 WN 

Df C~)d~l =CI (3.4cJ 

Proof Only if obtaining (3.2a) from (3.4a) and (3.4~). It can be assumed that X=X($) 

is a set of solutions of (3.4a-3.4c) and (3.3). Because Df (x) is continuous, there exists a small 
adjacent field &, of t,,, on which 

AT 

‘Df( )I X 

is nonsingmar, then the following equation can be obtained from (3.4b) 

Df (x)2=0 
Thus, the following deductions.can be made from (3.4a), (3.4~) and (3.5) 

End. 

(3.5) 
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Note For common cases, if there is no (3.4c), the equations (3.4a) and (3.4b) are not 
equivalent with (3.2a) and (3.2b). For esample, the following equations 

*=x+f 
. 
t=1 
x+f=l 

are conflict equations because of D/(x)Q(x)= x+f+l=z#O. But if A’ is [O, 11, (3.4a) and 

(3.4b) are changed to 

They have solutions under consistent initial values. 
Proposition 2 If f(x) and g(x) are difined as (2.6) and (2.7), solutions of (3.4a) and 

(3.4b) satisfy the consistent initial condition (3.4~). 
Proof From (2.6) and (2.7). the following deductions 

are correct. The upper part of right side of (3.6) is 0 permanently from the definition of 
~(cJ~ 4) and the corresponding lower part is included in (3.4b). End. 

(3.4a) and (3.4b) can be discretized to a set of common equations because they are not 

overdetermined equations. The modified Euler method will be used to exampiify the above 
ideas. The marix A depends on initial values of every step associated with difference grids of 
(3.4a), (3.4b). 

If xo=[qT9gz]T, fork=u,l,2,*.* ,&+I can be obtained from the following equations 

f 

~~(x-x~-~/2(~(x)+~(x~)))=o Cual 

f(x)=0 Cs.i'b) 
They are nonlinear algebx-die equations with 2~ variables. If Newton iteration method is used 
to (3.7b), and direct iteration method is used to (3.7a)..the fo.llowing computing technique can 
be obtained 

A;&= -&(xi &Xlc -W2M~L J +d~kl) 1 &W 

Df (xl)&= -f (xi) (3.8b) 
&+l ‘zx;+& s=o,l,z,*~~,l; x;=xk$ xi=xk+,;k=O,l,2; *** 

IV. Selection of Ak and Steps of Computation 

Because the row rank of $q is full. the solution space of ~~zJ=O is p=n-m dimension, 
whose base vectors can be assumed to be V=lVr; V2, e-0 , VP] . The following equation 
can obtained by left multiplying (2.2a) with VT 

VTMq=VvF c 4,. 11 

(4.1) and (Xd) can be combined to: 

(4.2) 
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Proposition 3 The coefficient knatrix of (4.2) 

(4.3) 

is nonsingular. 
Proof Let .&I? satisfy 

[ yM -juq;~ ]=o 
q 

then u is located in the null space of +q, i. e., there exists &Rq such that u=~Y, thus 
VTMVy=o 

i, e., 

(vy)=Mvy=o 

Because J4 is bositive and symmetric, u=Vy=t) can be obtained. End. 
Note Because J4 is positive and symmetric, iI!fTV is orthogonized to tiqr’ under the 

sense of Il. ll,+~-~n’l. Thus, B=VTM is one of selections such that the condition number of 

is smaller. 
Deduction 1 (2.3) and (4.2) are sets of equivalent differential equations. 
Deduction 1 demonstrates that q(g,Q) in (2.4) can be obtained from (4.2). The matrix Ak 

in (3.7a-3.7b) can be selected according to proposition 3 and 

i. e.. 

where Xk= [c~T,@T]~ , (A)=,.=k is value of A at POitIt xk. Let &=[6?$, ara)T and substitute 
(4.4) into (3.Sa-3.Sb), then (3.8a) and (3.8b) become 

where, (x), is a vector composed of first rr components of X. and (X)Z is another vector 
composed of last 11 components of X. Due to (x)l=q, (x)z=@, (g(x)),= Q, (g(~))~= 
P(q,g), (~(x))I=$J(~), (i(X))z=&rQ 9 the equations 1, 3 and 2.4 of (4.5) can combined 
to the following equations 
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(4.7) 

q;+,=q:+db, ~:+1=4:+dzs (s=091,2, -'), q;.=qk, !t;=tjk. 

The computation steps can be described as follows 
For the kth step: L?ky @k are known. let qh=qk? C?h=Qk. For s==o ~ I~z~... 
(1) Calculation of ~,~,~~~~,~q~,~qq(~.~). at q*,@*, 
(2) Calculation of base vectors V from &x=0. 
(3) Obtaining qi from (4.2), 
(4) Obtaining qL+l, 0: +I from (4.6), (4.7), 

(5) If IId+ -qLll<c and \/!?:+I -4: II<&, then let q~+~=q~+~, qk+i==qi+, and 

go to the tk+l)th step. 

V. §election of Matrix V 

5.1 Orthogonizatick method 
The QR orthogonal decompositionl”l of 4: can be written as 

where, [U, VI is orthogonal square matrix, R is upper triangle matrix, V have p orthogonal 
columns. The matrix V can obtained from the following equation 

5.2 Gauss elimination method 
Because the row rank of $q is full, the following results can be obtained through row 

pivot Gauss elimination of &z, i. e.. 

where, P is elimination matrix, Q is multiplication of element column transformation matrices. 
V can be selected as 

V=Q[eI,-v,epl 

thus 

&V==O , because P is nonsingular. 
The Gauss elimination method can maintain sparsity of matrices and have simple 

computation structure. The orthogonization method have an advantage of smail condition 
number of matrices. 
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VI. Numerical Example 

91 I 

A planar manipulator with two links is shown in Fig. 1, the lengths and masses of h&s 
are 6 I=lm, lt=2m, t711= lkg9 VIZ== lk.g, respectively. The vector of coordinates is 

The generalized mass matrix of the system is: 

hi= 

The vector of generalized forces is: 

F=[O -mlg 0 0 -mg OIT 

The constraint equations are: 

The initial conditions are: 

Ch=[Q,5 0 0 2 0 QIT 

%)=ro 0 0 0 0 O]T 

Because the analytical results are impossible to obtain, the approximate numerical results 
from QR method(4j with /r=O.OOIs are regarded as nearly exact values used to compare with 
those obtained through the method presented in this paper. The Fig. 2 is a resuh from QR, 
method. and the Fig. 3 is deviation of UI from the values shown in Fig. 5 through the new 
method with /z= 1 o-~s, error toierance EPS= IO-‘. 

Time (s) Time (s) 
Fig. 3 The deviation of gI from the 

Fig. 2 The’history of L/I 
values in Fig. 2 
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h1. Conclusions 

The second order Euler-Lagrange equations are transformed to a set of first order 
differential/algebraic equations, which are then transformed to state equations by using local 
parameterization. The corresponding discretization method is presented. Some features of this 
algorithm are: 

a. r is augmented into q to simplify the structures of equations; 
b. In the main iteration steps (2.2) and (2.3), the equations (4.2), (4.6) and (4.7) have same 

coefficient matrices. therefore. they can be calculated one time at evey computation step; 
c. Because vpM is orthogonized to &A-‘, when* v is an approximate orthogonal matrx, 

the stiffness of equations depend on dq only; 
d. The method presented in this paper can be implemented by various discretization 

technique. such as Runge-Kutta method. 
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plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 


