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C I R C U L A R  S A N D W I C H  P L A T E S  
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Abstract  

In this paper, a solution of axisymmetric large amplitude vibration is presented 

for a circular sandwich plate with the flexure rigidity of the jbce layers taken into 

account. In soh,ing the problem, the modified iteration method is proposed. Then our 

resuhs are compared ,'ith those from paper [1]_ 
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I. In troduct ion  

Many people are interested in the problem of sandwich plates, but most people study only 

linear problem. For nonlinear problem, only a few people have done some works; because of 

the difficulty of solution. Liu Renhuai I2, 31 has done many useful works for the problem of large 

deflection of sandwich plates. But, the papers on large amplitude vibration of sandwich plates 

are few to read. Author fq had initial discussion to axisymmetric large amplitude vibration of 

circular sandwich plates of, neglecting the flexure rigidity of the face layers. In this paper, we 

will make further study to the problem of large amplitude vibration of circular sandwich plates 

with the flexure rigidity of the face layers taken into account. Because the problem is boundary 

layer type, it is quite difficlut to solve. In solving the problem, the modified iteration method is 

proposed and the highest derivate term is disposed specifically, therefore the problem is 

simplified largely, and the results with higher precision are given. 

II .  N o n - D i m e n s i o n a l  Trans format ion  of" the F u n d a m e n t a l  Equat ions  and 
Boundary  Condit ions 

The fundamental equations of axisymmetric large .amplitude vibrat ion of circular 

sandwich plates have been given in paper [1] 

m r w , u + 2 D s ( r  ( ( r w , , ) ,  , / r )  , , ) , ,  - 2 h , , ( r ~ y . , o w , ~ ) , r - C ( r ( ¢ + w , , )  ) , , ~ O  1 

) 
D ( ( r ¢ )  / ' , , , . , r ) , , - C ( ¢ + w , ~ ) = o  

The stress-displacement relation is given by 

Or,o- (rJoo) . , - -  E w  , ~ / 2 = o  

(2.1a,b,e) 

(2.2) 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Then the boundary conditions of edge clamped but free from slipping are given by 
when r = a 

w ~ 0 ,  if2=0, w ; r ~ 0 ,  erda='0 

when r = 0 

(2.3) 

we obtain 

therefore 

(eL ~ - ( 1 +e/2)L ~ -coV~.L +~/ )w 

-;,(p( (psw, , ) ,dp) ,do+fps~,  p),dp=o (2.6) 
( (p~s),p/p), ,+pw,~lp--o (2.7) 

and the boundary conditions can be written as " 
when p = 1 

P 

w = 0 ,  2oj ~ ~ PwdP--eP( (Pw,p) ,p /P) ,p+kPSw,p+pw,p=O 
0 

w,~----0, S = 0  ( 2 . s a , b , c , d )  

when p = 0 

P 

w=w~,  Aco~ PwdP--eP( ( Pw ,a) ,p/p') ,a+ApSw,a+pw,p=O 
0 

S<oo ( 2 : 9 a , b , c )  

Equations (2.5)--(2.9) are the non-dimensional fundamental equations and boundary 
conditions of axisymmetric large amplitude free vibration of circular sandwich plates. 

III .  S o l u t i o n  o f  t h e  M o d i f i e d  I t e r a t i o n  

According to equation (2.5) 

For the widly-used sandwich plates in engineering, we know 

2<1 ,  h,/hu<<l 

e<<l 

Obviously, because there i s  a small paremeter before the highest derivate term o f  
equation (2.6), the problem is boundary layer type. As we know, it is more difficult to solve 
the problem, because the coefficient of the highest derivate term is a small parameter. 

~=~=, ¢=0, ~,0<oo (2.4) 

Imitating paper [1], and introducing the non-dimensional variables 

P=.r/a, uJ=ff)/ho l~ 3hla2"~ ° = ~ ( m a 4 / D ) t  I 

D 2D, fl=3(1-v~)-2- / (2.5) 2-- - -  Ca z , e = ~ ,  
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
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D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Therefore, we solve the problem by modified iteration method. In the first order approximate, 

we neglect the highest derivate term in equation (2.6) and the nonlinear terms in equations 

(2.6)-(2.9),  and neglect the boundary condition (2.8c) t31 , we obtain the following boundary 

value problem 

(( l +e/2)LZ +co~2L-co] )w~=O (3 .1)  

( (p=s , ) ,~ /p ) ,  ~ +f iwl  , ~ / p = o  ( 3.2) 

when p = 1 

~ 1 ~ 0 ~  

p 

2c0~ ~ PwldP-eP((PW~,p),a/P),p-I'Pwl,a=O, $ 1 = 0  (3. ~a. ,b ,c)  
o 

when p = 0 

P 
wj=wm,  2co~! PwIdP-eP((~Ow!,p),p/P),p-t-Pwa,,=O, S l < e  ,~ 

0 
( 3 . 4 a , b , c )  

The solution of equation (3.l) can be written as 

0 3 1 = L O  m ~ AJI)P ~j (~.~) 

where 
2 

2'v~!)= 

a~-- - ( ~ /  ~ ~: + 4 ~  ( I +~/2,)+~FL)/2 ( l +e/~) 

where # t ( i = 1 , 2 ) i s  the coefficient which is to be determined 

Substituting equation (3.5) into (3.3a, b) and (3.4a), we obtain 

A # = 0  

where 

by the boundary conditions. 

(3.6) 

A--- al~ al2 al,~ 

(~21 a2Z ~23 

all of the elements of the matrix A are given by 

(101~0~02 ~ - a 0 z ~ l  ~ t / l . ~ a 2 : t ~ O  
J 

co j 

aj,~ y-] a, (i----- 1,2) 
j.0 2:]O'! ) : 

~ '_16ejZ(j2_l)q_2j (2j+2)a[ 
a2,= ~--] ~c°~ 2(j_]_l).2.,q(j!)~ .4=0 

( i =  1,2) 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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Because # is not a zero vector, we obtain 

d e t  A = 0  (3.7)  

Solving eqffation (3.7), we obtain o9~, which is the first order approximate value of 

fundamental frequency, and #~ (i= 1, 2) can be determined by (3.6), therefore, w, can also be 

determined. Substituting equation (3.5) into (3.2), doing integral, and appling the boundary 

conditions (3.3c) and (3.4c), we obtain 
• c,~ 

s ~ = ~  5-7, a~'~ v '~j (,s.8~ 
J '=0  

where 
J 

B~ '>-  fl S~, i ( i - i + 1 3 A ~  '~ AJ-~->¢+~ ( i =  1.2, . - -)  
j ( j + l )  

• , i = 1  

~D 

By' 
j = l  

In the second order iteration, we have the following modified 
equations and boundary conditions 

( ( 1 + e / Z ) L ~ + c ~ : ; t L - c g z ) w 2 - e L Z w l  

+). (P(  ( P S l w , , p )  , p lP ) ,p )  , p i P -  ( P S , w , , p ) , p / P =  0 

when p = I 

P 

2co~ pw,#p-ep( (pw~,p) ,~/p),~+2pS~w,,,,+pw~,,,=o, U 3 2 ~  O~ 
0 

when p = 0 

characteristic value 

(3..q) 
(3.~o) 

S ~ =  o 

( 3 . 1 1 a , b , c  

p 

2co2~0 P ~ z d P - e P (  (Pwz,p)  , p / P ) ,  p "t-).PSazot,p+Pwz,p = O, S ~ o o  LU2 ~-- UJm~ 

( 3 . 1 2 a , b , c )  

where co is the frequency of nonlinear vibration, that is obtained by being modified the first 

order approximate value of fundamental frequency, the boundary condition (2.8c) is still 

neglected p{. 
Substitution of equations (3_5) and (3.8) into (3.9), we obtain the solution of equation 

(3.9), that is 

w 2 = w ~ -  ] ,~t(~)~o2~2_ .... X-~ B(2~p"y 3 is) .,~ C~ p- ~ j  . . . .  ~ j + w ~  y-] ( 3 . 1 3 )  
Y=O " y = o  y = n  

where 

l r = l  ~ " ,  
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bl = ( ~/ co"j, z -{-4o.) ~ ( 1-]'-e/t) -- Co2~) /2 ( 1 -lt'8/~) 
b~= - ( ~ /  4.: ', co ,a:+4o,-( ~ +e /a )  +co~) /2(  ~ +e/),) 

B(2) B~ 2) = 0  [~ 

~+"- 1 6 ( l + e / ~ O ( j + 2 ) z ( j _ F 1 ) 2  4 ( 1 + e / ) O ( j + 2 )  ~ + 

co z R(2) 
+ 16 ( I +~,./)~) ( j + 2 )  z ( j + l  )" --5 

jD(~)_ 6 4 e ( j + 3 ) 2 ( j + 2 ) z ( j +  1): z o )  

c~)= cI=:= o 

R(2) cod). t",(2) = ~ s t'-'(~) 
.-,~+z 1 6 ( l + e / ) o ) ( j + 2 ) = ( j + l ) .  _, 4 ( I + e / A )  (jq--2) '-'-'5+~ 

~z C~ :) q 16(l_.]_e/2)(]_l_2)z(j..{_l)z 

. ¢ + z  3"+1 

= '~A ">°(" " ~ 4 i ( i + l ) A ~  j )~( ' )  E~ 2) ~ v 6 ) 5 ( j + 2 ) ( j + l ,  , ~s-~+~q- • , - t J j - ~ +  1 

i = 1  "l=~ 

( j = 0 , 1 , 2 , . . . )  

where ~ ( i=1 ,  2) is the coefficient which is to be determined 

Substituting equation (3.13) into (3.11a, b) and (3.12a), we obtain 

C~e=o 

by boundary conditions. 

(3.14) 

where 

~--[~t, ~2, 17_ ~ 

Col Coz f °'{-w~g° ] 
f 

(7,= ] Ct,  C,~ f l - { 'w~g!  
J t. 

the elements Cz,~ and fz, g~ ( /=0,  1,.2; m = 1, 2) of matrix C can be written as infinite power 

series, here we will not list one by one. 

Because ~ is not a zero vector, the determinant of  matrix C m u s t  equal zero, that is 

d e t  C = o  ( 3 . 1 5 )  

Equation (3.15) can be written as the following algebra equation 

w ~ = P ( c o ) / Q ( c o )  (3 .16 )  

where P(o)) and Q(co) are the infinite power series, their expressions are omitted. 

Let w ~ = 0  to equation (3.16), we can obtain the second order modified iteration solution 

of  linear vibration. If  let h~/h = 0  in preceding discussion, we obtain the results of  paper [1]. 

Equation (3.16) is the analytic relation for amplitude-frequency response. We can obtain 

the value of ¢o corresponding to any amplitudew,~, by solving equation (-3.16), and calculate 
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T a b l e  1 K = 0.01 

w~, 0 1 2 3 

t;x/h = O. O~ 9.4230 9.6279 10.2139 11. 0537 

hl/h~ O. 05 9.4606 9.6670 10.2529 11. 0928 

relat, er ror  0.40N 0.40N 0.38N 0 .35~  

hz/h= O. 10 9.5017 9.7158 10.2920 I1.1318 

relat, error  0 .83~  0 .90~  0 .76~  0 .70~  

h~/h= 0.15 9.5450 9.7549 10. 3408 ~ 1.1807 

relat, e r ror  1.28N 1 .30~  1 .23~  1.14% 

hl/h= 0120 9.5893 9l i939 10.3799 11. 2197 

relat, er ror  1 ,73~  1 .70~  1.6a/~ i . 4 8 ~  

T a b l e  2 K = 0 . 0 3  

wm 0 i 2 3 

h~/h = 0 .,00 8.2611 8,4658 9.0029 9.7646 

hz/h = 0,10 8.3343 8.5342 9.0811 9.8428 

relat, error 0.88N 0_80% 0 .86~  0 .79~  

hl/h=O.lO 8.4087 8.6123 9.1592 9.9209 

relat, error 1 .76~  1_70~ 1 .71~  1 .57~  

h~/h=O .15 8.4833 8.6807 9.2373 9.9990 

relat, error  2.627o 2.47% 2 .54~  2 . 3 4 ~  

ha/h=0.20 8.5574 8.7588 9.3057 10.0772 

relat, error 3 .46~  3 .34~  3.25% 3 .10~  

T a b l e  8 K = 0 .05 

w,. 0 1 2 3 

hl/h = 0.00 7.4396 7.6357 8.1631 8.8662 

h~/h = O. 05 7.5287 7.7236 8.2607 8.9639 

relat, er ror  1.18% 1.14~g 1.1,8~ 1.09N 

/a lh =0 .10  

relat, error  

ha,/h~O .15 

relat, er ror  

7,6185 

2 .35~ 

7.7080 

3 4 8 ~  

7 _8213 

2.37~ 

7.9092 

3 4 6 ~  

8.3486 

2.22~ 

8.4365 

3.24~ 

9.0615 

2 .16~  

9.1592 

3.20N 

h j/h = 0.15 7.7966 7.9971 8,5244 9.2471 

relat, error  4 58% 4.52N 4.24N 4.12N 
i _  
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Table  4 K = 0 . t  

w~ 0 1 2 3 

hx/h~O.O0 6.1256 6.3271 6.8447 7.4697 

hi/h=0.05 6.2256 6.4248 6.9424 7.5771 

relat, error 1.61Uo 1.52Uo 1.41~ 1.42¢o 

h~/t~=O.lO 6.3270 6.5322 7.0400 7.6846 

relat, error 3.18% 3.14Uo 2.77Uo 2.80N 

hx/h~-O.15 6.4284 6.6299 7.1475 7.7920 

relat, error 4.71Uo 4.57~ 4.24~ 4.14~ 

D~/D=0.20 6.5290 9.7275 7.1475 7.8994 

relat, error 6.18Uo 5.95N 4_24Uo 5.44~o 

the values of  AJ 2), Bj.~, CJ 2) by given formula, Thus elements C,,~ and fz, .qz of matrix C 

are determined, and the values of" ~1~ ~i can be determined by equation (3.14). So far, 

the solution of  the second order modified iteration of  boundary value problems (2.6)-(2.9) is 

determined completely. 

We complete the numerical calculation for discussed circular sandwich plate with edge 

clamped but free from slipping, the results are given in Tables 1 - 4 ,  and the results are 

compared with those from paper [1], where /~ =D,,G~hoa is the shearing parameter which is 

given in paper [1], and the Poisson ratio v=0.3 .  

I 

IV.  C o n c l u s i o n  

We have discussed the problem of  axisymmetric large amplitude free vibration of circular 

sandwich plates with the flexure rigidity of the face layers taken into account, by the modified 

iteration method. According to the preceding analysis and results, we know: 

1. In this paper, the flexure rigidity of  the face layers taken into account, the only 

approximation is to be neglected a boundary condition of face layers, and, so is paper [1], 

therefore, the results are more accurate than those of  paper [1]. 

2. Because the highest derivate term with a small parameter  is disposed specifically, the 

solution of  the problem is easier. 

3. The relative errors which are caused by neglecting the flexure rigidity of the face layers 

are increased gradually with the increase ofh,/h value. When 0.1 <h~/h <0.2, the largest relative 

error is less than 6.2%, therefore, when h,/h is smaller, we can apply the approximate theory in 

paper [1]. 

4. When K is smaller, the results of paper [1] are near those from this paper, therefore, 

the effects of  the flexure rigidity of  the face layers not only vary with h~/h, but also vary with 
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vary with w,~, but the variety is very small. 
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an analytic solution only when the polytropic index of detonation products equals to three. In 
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index) for estimation of the velocity of flying plate is established. 
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Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
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cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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