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Abstract
I the paper roscarches onoa tree-dimensional - measure-preserving mapping
svstent are made. which o the threesdimensional extension of the Keplerian muapping
With the tormal series mcthod the cxpressions of the mvariant curves and invaraant

tort are obtained . Finallv the seahiline of these invariant mantalds i adsvo discaned
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I. Introduction

Three-dimensional measure-preserving mapping systems have special and rich dy namical
behaviors which are much difTerent from those of even dimensional systems" 7 The hincarized
mapping near the fixed point has one real cigenvalue at least. Addinonally. the product of all
cigenvalues is unit. So there usually enist some eigenvalues whose modules are larger than one.
Therefore the fixed points usually are not linearly stable. which ts much different from that of
two-dimensional case. For three-dimensional measure-preserving mappimg. there usually do not
exist one-dimensional or two-dimensional invariant manifolds in the neighbourhood of a fixed
point. but two-dimensional invariant mantfolds do exist in the neighbourhood of the one-
dimensional invariant manifolds™. Then for the three-dimensional mapping system study on
the invariant manitolds and their stability is of importance. The paper [3] gives a suflicient
criterion of the unstabilizing of the one-dimensional invariant mamfolds. In paper [4] we find
there must exist other structures for unstabilizing of these invariant manifolds. Deeply
discussing on the problem depends on the expressions of the invariant manifolds. In this paper
we will give the precise expressions of these invariant manifolds in tormal series and discuss
their stability in detail

As well=known. a 2n-dimensional Hamiltionian system may be simphihed to an even-
dimensional measure-preserving mapping through Pomcare section and energy section. Then is
the study on odd-dimensional mapping systems unpractical? In fact the three-dimensional
mapping systems have been used to study many complicated system. such as Couette-Taylor
Tuids and the comet’s motion” . In paper [4] we denved a three-dimensional mapping which
reflects the motion of the near-parabolic orbital comet. In this paper we rescarch into the
imvariant manifolds and their stability of that mathematical maodel. The methods may be

extended to other three-dimensional measure-presserving Mapping system.
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II. Mapping System

In paper [4] we have studied a problem on celestial body’s motion—the comet with near
parabolic orbit. A mapping has been derived.

K'= K+p(2 bisinig+Psinwcosg )

f=1

g'=g+2a/(—K)¥  mod(2n) : (2.1)

17
o' =o+p Za.cosig mod (2r) J

=0
where A, g and ) denote the comet’s energy. phase angle and perihelion longitude respectively:
p 1s the parameter of primary body’s eccentricity: a, and b, are constant parameter; y is small
parameter. With neglecting the high frequency terms in perturbation effects for convenience
the simplified mapping is deduced as follows,

K’'=K+uR(g, o)
M:!: { g'=g+27t/(—K/)8/z mOd(Zﬂ) (22)
o' =w+ulatcosg) mod (2x)
where 7 1s parameter and
R(g, w)=8ing+Pcosgsinw (2.3)

When pois zero, system M. degenerates to a two-dimensional mapping which is known as
the Keplerian mapping!®

K’'= K+using
M., { (2.4)
g =g+2n/(—K")¥* mod (2r)

FFor

der| Gk | et [k |-

systems M and M- are both measure preserving. Additionally Af. is the measure-preserving
extension of A
There exist I-periodic solutions for system Af.,
g*=0, n
} (2.5)
K*=—(1/m)*?3
where o1 s a positive integer.
The primary body's period 1s 2z in scaling time unit. The comet’s period will be 2mn
while its energy equals to A*. Then m | resonance occurs. Let 8=D(K’,g’)/D(K,g). the
trace of the matrnix will be

Trace®=243nxucosg/(— K)*? (2.8)

When | Trace8|(k#,g%) 1s greater than two. the corresponding l-periodic solution
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will be unstablel” Therefore we have conclusions as follows. The |-periodic solutions with g*
=0 are unstable hyperbolic fixed points. For the 1-peniodic solution with g° =n, only when
K*<— (37u/4)*® 1 1\ a stable elliptic fixed point.

III. The Calculation of One-Dimensional Invariant Curves

Let (K(ts). g()) be the one-dimensional invariant curves of the system A, according to
its definition it satisfies the following equations
K(o')=K(0)+pR(g(0), o)

g(@)=g(w)+2x/(— K(a))¥* mod (2r) }

(3.1)
o' =w+platcosg(w)] mod (27)
The solutions of above functional equations are expanded in formal series as follows
K (o) =K, (o) +pK1 (o) + 4 Ki (o) + - } (
3.2)
g(@) =go(0) +pg1(0) +4'gs (@) + -
Then following series expaasions are got
K, .
K (o) = K (@) +4 S50 (atcosge) +u S0 (— gising,)
2
dK‘ (a+cosszo)+ Z(§° (a+cosg,)* ]+ (3.3)
. d .
g(o')=g(o)+p :f"f (a+cosyo)+#’[—%(glsmgo)
dg‘ (a+c0890)+ g“(a+COSgo) ] (3.4)
otherwise, 2rn.(— K’)'" is expanded in following form
o s1_ 2= 3 (K +r 15 K1+r1
o/ (- K=o 1= (5 ) [ CR
2R 5.9
where

ri=sing,+Psinwcosg,
ry=CO08g,~Psinwsing,

With (3.3). (3.4) and (3.3) employed in the functional equations and the coefficients of

terms with the same order in y compared. the solutions of any order are obtained
in zeroth order

Ki(w)=—(1/m)*? (3.8)
in the first order

dK
dm°(a+cosgo) =r,

dg“ (a+cosg,) = 3—”(1{,(‘—1"&)— (3.7)
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the ~ anons of above cquattons are

golw)=n—arctg(Psinw)

(= K)*? dg, (@) (3.8)

Kilw)= T la4cosg,(w)] T

m the second ordes

dK, ; . . \
g (o) = (a+cosg,)/(cosg,—Psinwsing,)
) (K™ [_dgy 491 3.9
Kilo)=-" -, = —{— do 9S10Get 40 (a+cosgo) (3.9)
1 d*g, e M5m }_
+ 5 ;1{.;2 (a+COSQO) —'z(_ ‘))7/2 (Kl+r|) s ),
Through contimuing the process the solutions to higher order. such as (Ko g (K g
(A . g ) will be obtained

Those eapressions of lugh order dervatives used above are listed as follows:

dg,/dw= —Pcosw, (1 4+P'sin’w) (3.10)

dig,/dw*= {Psino+*sino (! +c08*w) ]/ (1 +P'8in'w)? (3.11)

d%gy/dw?= [ pcosw+ P*(cosw+cos*w—2coswsin’w) ] (14-P8intw)?
—4P*sinwcosw[Psinw+Psinw (1 +cos’*w) ]/ (1 +P*sinw)?

(3.12)
dK - K, . d : d’
A= 3;)» [(~smgo)(3g"-)+(a+008go)3§;’] (3.13)
d-K, _ Q“A’n)s’z n dg. \* ; dg, dzgg
do- in {( COSgo)(Ea) )—BS”]gOdT do?
dS
+(u+008g0)d—a‘)g§’ } (3.14)
3(9)—‘ = - %;]T\;L (a+cosg,) (1 +# sinw) '’
+ ddl;‘ ii" sing, (14 "sin-w) '
dl\’l T ot - -8s2
+ do (a+¢c08g,) P sinwcosSw (1 +P'sIn"w) (3.15)

With above method the expressions of the one-dimensional mvariant manitolds in the
form ol the power sertes can be obtained.

When poequals zeros the pomts (g= =0 K==l ny ) are the centres of the resonant
cones. As prancreases these centres shifts both along g anis and along K avis. Generally, the
width of the shift along g s of order ety and gets 1ty manmum values at <=z 2. 3z 2. The

width ot the shift atong A iy of order cqr and gels s manaimum values at <=0, 7. Uiy
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interesting that the parameter z affects the shifts of the centres. We find that these shifts
widths increase in both directions with increasing 2. The shift width of I | resonant zone is

larger than that of other resonant zone.
1V. The Calculation of Two-Dimensional Invariant Tori

For the three-dimensional measure preserving mapping system there must exist the two-
dimensional invariant manifolds in the neighborhood of the one-dimensional invariant
manifolds™. Due to the fact that a continuous Hamiltonian system may be discretized into a
measure-preserving mapping through the Poincare section method. the above invariant
manifolds correspond the local invariant integrals of the continuous system.

Let A=KR(g. ¢ ) be the invariant torus of the system M., we try to expand it in the
formal series of small parameter o and get null results. In paper [8] we have estimated the half
width of m | resonant zones in mapping system and find it being of order y¢'*. The fact implies
that the function A( g. i, p) should be expanded in the formal series of p' -

K(g, o, n)=Ki(g, o)+u'""Ki(g, 0)+uK:i(g) @)+ (4.1)

According to the definition of the invariant torus the smooth function K (g. e, y) satisfies
following functional equation

K(g, o, 1)=K(g, o, pu)+uR(g, o) (4.2)

Substituting the formal series solution (4.1) and the expression (2.2) into the Eq. (4.2) and
comparing the coefficients of the same order terms in both sides of the equations. one gets that

in zeroth order

Ko(g, (D)=-(]/m)”’ (4.3)
in the %lh order
0 ?),,ZK aK°+K1( 9+——vy m)_ i1(gy @) (4.4)
- 0

Because (4.3) is tenable any new information is not got from above equation.

in the first order

=i [ G+ Gt tatoosg) J+ x5
+K,(g+—K—)ﬁ, w)=K.<g. @) +R(g, o) (4.5)
then
Ry K% =R @) -0

the above differential equation has the solution in the following form

1 - K, . .
5 Kilg, a;)=(—MQ_(-cosg+Pﬂlngsmm)+U(m) (4.7)
where U(es) 1s a function awaiting determination.

Let us make variables transformations as follows,
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E=K-K(w)
n¢ p=g—g() (4.8)
W=

where (K(cs). g(1)) is the expression of the invariant curve.

It is casy to prove that the mapping M, =rM.n ' is measurc preserving. Therefore to
o(y) order the M4 is also measure preserving in the new variables (K., §. w).

Being expanded in the vicinity of the onc-dimensional invariant manifold, Eq. (4.7)

approximates to an elliptic equation as follows

SKi+59(0)7'=9(0) +U (0) (4.9)

where
g(w) = (- K,)**/T+PBinw/37

The elliptic area 1s

A(0)=2x[1+U(0)/9(®)] o/ q(o) (4.10)
Approximately the variations of ¢/ and ¢ satisfy the relation
(—K,)*"* g'() oy — _99(@)
dm’=[ 1+ 3”0 o) u ]6&), ¢ (@)= 40 (4.11)

For system M, is measure-preserving, the equation A{@’)8w’= Ale))ow be satisfied. The
function () is derived from above relation.
— 2
U(w)=¢q"*(0)/[aq(w) — (= K,)**/37] — q(w) (4.12)
where ¢ s an integral constant,

With the analytic expressions of the invariant tori we know well their geometric
characters. When the parameter  is greater than one. the section area A() gets 4ts maximum
values and minimum values at =0, 7 and m=n 2, 37 2 respectively. When 0 <z < 1, the area
gets its maximum values and minimum values at «»=n 2, 32 and «=0. r respectively. The
ratio of the maximum area to the minimum area is

Amnx/Amln=(a”‘1/;\/ ]+P!)/(aﬁl) a>1 (l4.13)
Amlx/Amlnz(]—a)/(l/A/ 1+P“‘a) 0<a<1 (4.14)

We find that the mvariant tori have similar structure with respect to different resonant
zones. Its shape looks like a water pipe. The degree of the pipe's thickness varies with . The
Egs. (4.13) and (4.14) describe the characters of the pipe’s shape.

V. The Stability of the m/1 Resonant Zones

When the parameter p is small. the m 1 (m=1, 2, ..., 6) resonant zones are stable. There

are one-dimensional and two-dimensional invariant manifolds formularized by Eq. (3.2) and

Eq. (4.1) for the system M. With increasing the parameter p the invariant tori will be
destroyed [rom exterior to interior successively. When p is larger than a critical value p..
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the one-dimensional invariant manifold will be destroyed and the counterpart m/l resonant
zone will be unstable.
The changes on v along the invariant curves are derived from the expression (3.2).

Ao=0'-w=pla~1//1+ p'sinie) +o(y’) (5.1)
When P2Po= ./ 1/a*—1 . there exist solutions for Am»=0
w*=8, a+B, s—B, 27—8 (5.2)

where f= arcsin./j/q*—] /P . In this case the ( g¥=g(0"). K*=K(»"*). w*) are the
fixed points of the mapping M.. It is easy to prove that these fixed points be unstable. That is,
assuming P2P.= A/ 1/a*—1 the invariant curves degenerate into the unstable fixed points.
In the terms of expression (4.14), we find that. when the parameter is equal to the critical
value. the ... tends to infinite at «»* =3x 2. This means that the diffusion phenomenon occurs
on the section plane. _

In a addition to above discussions, there exists other different unstable mechanism for the
case 2> |. .

The characteristic matrix of the mapping ©=3(K*, ¢’)/3(K, g). The absolute value
of the trace of the matrix @ are derived as follows

L=|Trace®|=|243nu (-siqo—(gg—’m—)/(-—K—uR(g, @) )%"* (5.3)

Substituting the expressions of the invariant curves {3.2) into above equation one gets that
L(w)=|2— 3num* /14 P'sin‘o| (5.4)

The critical parameter p is estimated according to the fact that the supremum of the
function L() being greater than two results in unstability.

. 4 '
eo={(5mms) 1] (5.5)

It is well-kknown that the Liapunov Characteristic Numbers (LCNs) is a good indicator to the
regular or stochastic motions. With the LCNs method we calculate the critical value
numerically and compare these computational results with our theoretical estimations (Table

1.
(4=0_01, a=1_1)

Table 1
Resonant zones 2/1 3/1 4/1 s/1 6/1
Computational results 13.4 6.5 4.3 2.7 1.8
Theoretical results 13.3 6.7 4.1 2.7 1.9

The maximum shift of the centres for the resonant zones are formularized as follows
SK=u(a—1)P/3am"3+o(u?) (5.6)
dg=arctglP+uPla—1/ N 14P)% (3am®®) (1 +P)¥ Fo(u") (5.7)

Interestingly the parameter x also affects the shift of the centres of the resonant zones and

influences our estimations. To discuss the problem in detail we take the 2/1 resonance case for
example. With LCNs methods we calculate the relations between the critical values and the
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parameter 7 (Table 2). When the value of ‘the parameter 2 comes close to one, oK tends to
zero and the critical value s 134 which 1s agreeable with our theoretical reuslts, But when
parameter ¥ incrcases. the shift atong ‘the K direction oAl increases too large and the critical

value deviates from our theoretcal estimations.

Table 2 (u=0_01)
Par a 1.1 2.0 : 3.0 : 3.5 4.0
T T R T B R TS
8K 446X07 | 479x10 | 9mxi0 | 8.exiu7 | g.34x10
ag 1.50 1.50 S 1.4.8 J ' 71.7457 e '1.42 -

VI. Conclusion Remarks

In the paper the expressions of the one-dimesional and  two-dimensional invariant
manitolds corresponding to mi 1 resonant sones are obtained through the formal series method.
According to the analyue expressions the geometrie characters of the invarant curves and tor
are discussed in detawil. We also study the stabihity of the s 1 resonant zones and obtain the
suflicient criterions of the unstabihzation of the resonant sones. The fact that there exist
several structures for the unstabilization of the invanant curves is confirmed. As parameter 7 1s
smaller than one, or is greater than and comes close to one, the computations are agreeable to
our theoretical results. With 7 increasing we conjecture that the overlap ol the nearby resonant
sones oceurs, This effect may decrease the stabihity of the resonant sones and results in the
deviaton in our theoretical estimations, This 1s an open and interesting problem. 1t will be

discussed i detwal in the future paper.
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