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I .  I n t r o d u c t i o n  

Three -d imens iona l  mca~urc-preser~in~ m a p p i n g  ~vstcm~ ha~e ~pecial and rich d~namica l  

behaviors ~hich are much different from Ihose of exert dimensional ~s iemd'  :'. l~he lineari/ed 

mapping near the Ilxed poinl hn~ one real eigen~alue al least. Addi t ional ly .  the product of all 

ei+crlvalues is unit. So there u,,uall) c\p,t  some cigen~alucs  ++hose n+odules are larger than one. 

There fo re  the lixed points  u,,uall', arc not linearlx stable,  v, hich t,, much dil+l+el-ellt from that of  

t\~o-dirnerisior~al cuse | : o r  three-dm'mn~,ional rneasure-prescrv ing  mapp ing ,  there m, uall) do not 

exist one-dilllen,,iom.il or t~.~,o-dinlcnsionci] in~.arianl manifolds in Ihe neiphbourhood of a Ilxed 

point, hut h~o-dimensional invariant 1114nilold~, do exist in the neighbotlrhood of  lhc one- 

dimensional invarianl manifolds !-'1. Then for lhe three-dinlcnsional nlappin7 ,,',t, lcnl ,dud', tnl 

the invar iani  manil\~ld~ 411d Iheir s labi l i t )  it, of  imporlancc. The paper [-~1 ~i~c~ a ,,ufl]cicnl 

cr i ler ion of the unslabi l i / ine of the onc-dimcnsion41 in'~l.irianl m~.iilifoldk. In p4pcr I41 ~c lind 

there nlust exist other .structuret, for unstabi l i / ing of these ill~.lri~.lill manilkflds. Deepl) 

disctissil'ig on the problem depends on the expressions of the invariarl l  ill411ifolds. In Ihi~ paper 

~e ~ i l l  gi~e the precise c'~;piessions Of tllose invarianl rnanil\flds in Iklrmal ,,cries and di,,cuss 

fl~eir smbil i t )  in delail. 

As ~e l l - kno~n .  ,i >,-dimension,iI I l ami l i i on ian  s)siem may bc tdmplil ied to an cvcn- 

dinlensionl.iI nleasure-pret,,crxin 7 mapping through Poincare section and cnerg.', semion. Then is 

the s lud\  oll odd-dimensional n14ppill~ svsteills unpractical'? In l]il.'l lhe lhrcc-dimcnsional 

m a p p i n g  , , \ s tems 114te been used lO s tudy lrl;.llq} compl i ca t ed  s,,Steln. ,,ucll ;.in (_ 'ouel lr  

i'iuM <, and the comet ' , ,  mo l ion  I~ "l. In paper  [4] ~e  de l lved  ~l lhree-dinlcn,,ion41 mapp ing  ~hich  

rcllccts the illOtlOll oI  the near-parabolic orbital COlllel. In lhl~ pc!per x~e ret, curch into the 

in\aricinl n14nifold~, 4nd their t>tabilit) of lh41 nlalhemalic, i l  model. The melhod,, re,l\ be 

exlendcd to olhcr ihree-dinlentdon,il ille;.istire-pret~ker~.i117 i11iippin7 ,~.,~le111. 

Ccnl.:r Ior \ o l l h l l ca l  ~ludlv'- III',III[IIC *q .~pphcd Ph)~lc, and (ompuk, llott,~1%|dlhclll4tlC',, HClIITI~ 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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II. Mapping System 

In paper  [4] we have studied a p rob lem on celestial body ' s  m o t i o n - - t h e  comet  with near  

parabol ic  orbit .  A mapp ing  has been derived, 

7 
K , =  

9 ' = g + 2 ; r / ( - K ' )  s'' m o d  (2~)  ( 2 . 1 )  

"t 

co' = co+/a y-]a~eosig m o d  (2st) 

~vhere K. ,q and ,.~ denote  the come t ' s  energy, phase angle and perihelion longitude respectively; 

y is the pa rame te r  of  p r imary  body ' s  eccentricity: a, and h. are constant  parameter :  H is small 

parameter .  With neglecting the high frequency' terms in per turba t ion  effects for convenience  

the simplilied mapp ing  is deduced as follows. 

K ' =  K+ #R (a ,  co) f 
M3: ~ g ' = g + 2 a / ( - K ' )  ~'2 mod(2~r) (2.2) 

k cot= co+#(a + cos.q) mod(2=) 

~ here :~ is pa rame te r  and 

R(.q, w) = s i n a + P c o s g s i n c 0  (2.3) 

When p is zero, system ),1, degenerates  to a two-dimensional  m a p p i n g  which is known as 

the Kepler ian mapp ing  I'q 

Fo[ 

K ' =  K + / , s i n g  

M,: { ~ ' - - ~ 2 : r ; ;  K T M  
..V - - ~ T  I t - -  ] mod(2n) 

d e t l  a(K,g,eo) = d e t ,  a ( K , g )  =1 

(2.4) 

~,vslem,, ~,! and .U- are both measure  preserving. Addi t ional ly  M, is the measure-preserv ing  

exten,qon of  ).f.. 

There exist I-periodic solutions Ibis system M:, 

g*= O, a: / (2 .s)  
K * = - ( x / m )  ~ ' 3  ~. 

s~ here m is ,I positixe integer. 

The prmlary body ' s  period is 2n in scaling time unit. The  comet ' s  period will be 2ran 

x~hile its energy equals to K*. Then m I resonance occurs.  Let O = D ( K ' , g ' ) / D ( K , g ) ,  the 

trace of  the matr ix  v, ill be 

Tracee= 2 +  3=#eos.q/(- K )" '  (2.0) 

When [TraceOI(K*,g*) is greater than two. the corresponding l-periodic solution 
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will be urn, table n. Therefore we have conclusions as follows. The I-periodic solutions with g" 
: 0  are un,q,ble h3perbolic fixed points. For the I-periodic solution with g*=x,  only when 

K * < -  (3~r/.t/4) t'5 ~' Ts a stable elliptic fixed point. 

III. The  Ca lcu la t ion  of  O n e - D i m e n s i o n a l  I n v a r i a n t  C u r v e s  

Let (K0v). g0v)) be the one-dimensional invariant curves of the system M,. according to 

its definition it satisfies the following equations, 

K (cot)= K (co) +~R(9(co), co) 
g (co') = o (co) + 2 = / (  - K (cot)) ~,, 

co' = c o +  u. la  + c o s a  (co) ] 

m o d ( 2 n )  } 
rood  (2zO 

(3 .1)  

where 

rt = singo + Psincocosg~ 
r , =  cosao - -Ps incos i ng ,  

With (3.3). (3.4) and (3.5) employed in the functional equations and the coefficients of 

terms with the same order in I~ compared, the. solutions of any order are obtainea 

in zeroth order 

in the first order 

dK~ (a+cosgo)=r,, 

K o ( c o )  = - ( l / m ) " '  

dg~ 3~ (Kt + r i )  (3.7) ,/,..,, (a+cOsg,)= l-- g'_~ B,= 

(3 .6 )  

The solutions of above functional equations are expanded in formal series as follows. 

K(co) = K0 (co) +/~K1 (co) + u ' K =  (co) + -.- 
(3.2) 

g (co) = go (co) +~a~ (co) + u ' g ,  (co) + " "  

Then following series exp~:a~ons are got 

K(co')  K(co)+U ~ - ~  ' =FdKo = ff'P [--dc~-- (--glsingo) 

dKl 1 d'Ko.(a+cosgo), ] + . . -  (3 3) +-d--c~- (a+cosgo)-~ 2 dco = 

g(co,)=g(co)+l~__~_(a+coggo)-- tr dgo -t-U L--~-~ (gtsingo) 

dg= "~ d t 
+ - ~ -  ( a + c o s g 0 ) + - ~  ~ g : ( a + e o s g 0 ) "  ] + . . -  (3 .4)  

otherwise, 2~z ( - K t )  ': is expanded in following form 

2n/ ( -  Kt) 3'== ( - Ko)"t2= { 1- T\--~---o 1 3  [ K l + r l ~  1~+[15[Kl+r~t.8~___K_~b] 

3 IKt+r,\ ']  = , 
-T~-Ud-o jjU ... .} (3.s) 
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go (co) = n - arctg  (Psinco) ] 

�9 .o ,  [ a + c o s g o ( ~ O )  ] d qo(~o) K , ( ~ o ) -  ( - ' < "  ~ '~  
3n do2 

in lhc ncu'ond o l d c I  

gt (~ .  = d K_~ ( a +  cosgo)/(co sgo-- Psincosingo) 

(-Ko) ~'~ ~'_ dgo , dgi 
K,(o))  . . . .  3.,t - - t  dco - g ~ s i n g ~ 1 7 6  

} + I d2go ( a + c o s o o ) ~ _  -4i--K,O ~ ' - ( K l + r i )  - -  

�9 , < l ~ . ,  ~ 

r l  

(3.8) 

(3.9) 

k 
Thl 'ouTl ' l  con t i i l u inQ the I~tocc~ ", the , ,o lut lonS to hi.,_'hcr order ,  stich ;.is (K.. ,g).  (IQ, g )  . . . . .  

. g  ) ~ l l l  bc ~,bt,l inctl 

f h o , c  ~.\l~rc',',lon', o1' h igh o rde r  ch.'ri ' ,ali\c,, ust.'d abo~.c arc- l isted as lo l lm~s:  

dg;.'d~o= - P c o s c o / (  1 + P ' s i n ' a ~ )  

<t:go/dJ ~ = [Ps i  na~+  P3s ina , (  ! + cos '~o)  ] / ( 1 + P t s i n t c o ) "  

dSgo/d.,  3= { p c o s o ) +  P~ ( c o s c o +  cos3co - 2coscosin=co) ] ( l + P t s i n * a ~ ) 2  

- 4 P 2 s i m o c o s t o [ p s i n c o +  pSsinco(  1 + cos~co) ] / (  l +PZs inZco)  s 

r.  '.01 
. . . . .  + (a + cosgo)-d~ J do) ?;n ( -- sing~ d~- 

= - "' ( - - c o s g o )  da) 3 s i n g o  dco dr z d(,): 3n 

dg, 
(/( l l  

d K  l 
d . , :  (a+cosgo)(l-l-Psin:a,) :'~ 

dKi 
+ dco 

dgo singo ( I +*':sin's)) -": 
dco 

(3. io) 
(3.11) 

(3. l~-) 

(3.13) 

(s.14) 

d K i  
+ dca (a+cosgo)P's incocosco(I- l -PTsin~aO-s 'z  ( 3 . 1 5 )  

\V i th  a b o \ c  tuc thod the cxplc~,~,lolln o1' the ol lC-di l l lc l ln lo l l ; . I j  inxat ' lan t  tn;.Inil 'olds in the 

IO1"111 O1" the poxxcr ~,CI'IC',, Cdll  bC o h | d i n C d .  

~,Vhcn I' equal ' ,  /c ro .  t i le poln l , ,  ( g = : : .  A = - I I  m} ) arc Ihc CCIl|lCs o f  Ihg rcnonant  

/o11C,,..&,., I' II1CI'C;A',C',. thc,,c CCnt]C,, shl l l , ,  bo th  , l lo i lg  g axi:., ant i  a l ong  A. axis. Gcncla l l .~.  t i le 

\~ id ih  o f  the nhil'l :1]o11~2 g i,, o f  o l d c l  , , ( I )  ,Ind ~Cl ~, il,, n~axnnurn xalucs al  ,.j=.':, 2. 3r. 2. The  

"o,R_hh of {hc ~,llilI ;.llOll~ ~ is oI ofdcf ,.i!i} , | l l d  g~.'ln Its illd\lllll.lill %;.111.Ir ;.It ~'~=(J. ~. It iS 
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interesting that the parameter  x affects the shifts of  the centres, We find that these shifts 

widths increase in both directions with increasing ~. The shift w'idth of  1 1 resonant zone is 

larger than that of  other resonant zone. 

IV. The Calculation of Two-Dimensional  Invariant Tori 

For the three-dimensional measure preserving mapping system there must exist the two- 

dimensional invariant manifcdds in the neighborhood of the one-dimensional invariant 

manil\~ldsl-'L Due to the fact that a continuous Hamiltonian system ma? be discretiZed into a 

measure-prcscrxing mapping through the Poincarc section method, the above invariant 

manilblds correspond the local invariant integrals of the continuous system. 

Let K=K( g. ,.~, i t) be the invariant torus of  the system M,. we try to expand it in the 

lormal series of  small p;:lramcter II and get null results. In paper [8] v,c have estimated the half" 

width of  , t  I resonant zones in mapping system and find it being of order Id :. The fact implies 

th~,t the function K( g. ,,. I+) should be expanded in the formal series of+i t :. 

K(.q, co, u)=Ko(g, ~)+/~"2Kt(g, co)+uKt(g, co)+..- (4 .1 )  

According to the definition of the invariant torus the smooth function K {g. ~,,. It) satisfies 

follov.'ing functional equation 

K ( g ' ,  co', u ) = K ( g ,  co, U ) + u R ( , q ,  co) (4 .2 )  

Substituting the formal series solution (4.1) and the expression (2.2)into the Eq. (4 .2)and 

comparing the coefficients of the same order terms in both sides of the equations, one gets that 

in zeroth order 

Ko(g, co)= -- ( l /m)" '  (4.3) 
1 

in the -~-th order 

( _ K o ) 5 , z K t  + K l  g +  (_Ko), ,~,  a~ = K t ( g ,  co) (4.4) 

Because (4.3) is tenable an~ ne~ inlbrmation is not got from above equation. 

in the first order 

3n n2 OtK -',~," K,j 0K, 
,,z ( -  Ko) ~'t de 

2:t +Kt(94 <_K,),a, co )= Kt (..q, co)+R(9, r (4 .5 )  

then 

3zr OK, 
K ,  --~O --  R (#,  w) ( - K o )  , , t  

the above differential equation has the solution in the follovr form 

1 K~ (9, o) ,=  ( - K " ) v '  -2 3:r ( - cosg+Psinos inco)  + U  (w) 

v, here (_'(~.,) is a function a~,aiting deterrnination. 

Let us make variables t ransformations as follows. 

(4.0) 

(4.7) 
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R ' = K - K ( C O )  

~r I = o -  g(c~) 
~----r 

where (K(,,J). g(,J)) is the exprcssion of the invariant curve. 

h is easy to prove that the mapping -~3 = nM,g ' is measure preserving. 

,(/t) order the ~1' 3 is also measure preserving in the new variables (K,. ~. ,J). 

Being expanded in the vicinity of the one-dimensional invarianl 

approximates to an elliptic equation as follows 

The elliptic area is 

where 

1 z 1 1 ~K, + ~-q(co) g = q ( ~ )  +U(co) 

q(cO) = ( - K0) s ' = d l  +p=sin=cO/3~r 

A (co) = 2rt [ 1 "4- U (co) Iq  (co) ] t~l  q (cO) 

Approximatcly the variations of ~./and ,J satisfy the relation 

[ ] r = 1 + 3 n  q= (co) ~" r q '  (cO) = 
dq(m)  
d~ 

(4.s)  

Therefore to 

manifold, Eq. (4.7) 

( 4 . 9 )  

(4. to) 

( 4 . 1 1 )  

~:o[ svsterrl .d~/3 
function ((~,~) is derived from above relation. 

U (r = cq ' t '  (r I [aq  (co) - ( - K 0 )  ' " / 3 n ]  - q (co) ( 4 . 1 2 )  

whcrc r ~s an integral constant. 

With the antdytic expressions of the invariant tort we know well their geometric 

characters. When the parameter ;, is greater than one. the section area A(~,J) gets,its maximum 

values and minimum values at . ; = 0 .  n and . ~ = n  2. 3~z 2 respectively. When 0<~.<  1. the area 

gets its maximum values and minimum values at . ; = n  2. 3 e 2  and . J=0 .  n respectively. The 

ratio of the maximum area to the minimum area is 

A=., , /Amln=(a- l l ,4r-~-f i~) l (a- l )  a> l  ('4.13) 
Am.. lAm~,---  ( 1 - a ) , i ( l l ~ z ' - a )  0 < a < l  (4 .14)  

We find that the invariant tort have similar structure with respect to different resonant 

zones. Its shapc looks like a water pipe. The degree of the pipe's thickness varies with uJ. The 

Eqs. (4.13) and (4.14) describe the characters of the pipe's shape. 

V. T h e  S t a b i l i t y  o f  t h e  m/1 R e s o n a n t  Z o n e s  

When the parameter I' is small, t h c m  I (m = 1. 2 . . . . .  6) resonant zones are stable. There 

are one-dimensional and t~o-dimensional invariani manifolds formularized by Eq. (3.2) and 

Eq. (4.1) l\~r the system M,. With increasing the parameter p the invariant loft will be 

destroyed from exterior to interior successively. When p is larger than a critical value p<. 

is measure-preserving, the equationA(coQ3ca"=A(uBdv~ be satisfied. The 
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the one-dimensional invariant manifold will be destroyed and the counterpart  roll 
zone wilt be unstable. 

The changes on ,,, along the invariant curves are derived from the expression (3.2). 

When 

where 

resonant 

Aco--- co' - co= U (a - 1/~/1 + p ' s in~co)  + o(p")  ( 5 .1 )  

P~P~= ~/ l/a'--1 , there exist solutions for A~,~=0 

co*=/9, ~+p, ,,-p, 2,~-/9 (5.2) 

/9----- arcsin~/i/a ~_I /P In this case the (8~=9(,,,*). K'=K((,J*). ~,~*) are the 
fixed points of the mapping M,. It is easy to prove that these fixed points be unstable. That  is, 

assuming P~Po= ~/ l/a 2 -  l the invariant curves degenerate into the unstable fixed points. 

in the terms of  expression (4.14). we find that. when the parameter  is equal to the critical 

value, the .4 ...... tends to infinite at , , ,*= 3rr 2. This means that the diffusion phenomenon occurs 

on the section plane. 

In a addition to above discussions, there exists other different unstable mechanism for the 

case 7 > I. 

The characteristic matrix of  the mapping O = d ( K ' ,  # ' ) / a ( K ,  g). The absolute value 

of  the trace of  the matrix O are derived as follows 

I aR(g,co) / ( - K  co))5'z I (5 .3 )  L =  l T r a c e t g l  = 2 + 3 n #  Og -/  - p R ( g ,  

Substituting the expressions of  the invariant curves (3.2) into above equation one gets that 

L~.co) = [ 2 -  3np.mS'S~/-I-k-p:'si~nZcol (5 .4 )  

The critical parameter  t' is estimated according to the fact that the suptemum of the 

function L(~,,) being greater than two results in unstability. 

4 ), ,o=[( --'It (5.5) 

It is well-known that the Liapunov Characteristic Numbers  (LCNs) is a g o o d  indicator to the 

regular or stochastic motions. With the LCNs method we calculate the critical value 

numerically and compare  these computat ional  results with our theoretical estimations (Table 

I). 

Table  1 

Resonant zones 2/1 3/1 4/1 

Computational results 13.4 6.5 4.3 
Theoretical results 13.3 6.7 4.1 

( / ~ 0 . 0 1 ,  a ~ l . 1 )  
i 

5/1 6/t  

2.7 1.8 
2.7 1.9 

The maximum shift of  the centres for the resonant zones are formularized as follows 

r l )P/3nmW3+o(l~ z) ( 5 . 6 )  

~g= arc~gP4rl~P(a - 1 / d T ~ - ~  ~'-) z/ ( 3rimS,3) ( t + p") 3' : + o ( w )  (5 .7 )  

Interestingly the parameter  :~ also affects the shift of  the centres of  the resonant zones and 

influences our estimations. To discuss the problem in detail we take the 2/I resonance case for 

example. With LCNs methods we calculate the relations between the critical values and the 
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p a r a m e t e r  2 (Table  2). When  the value o f . t h c  p a r a m e t e r  :~ comes  close It) one. ,iK lends It) 

zero and the cri t ical  value is 13.4 which ~s agreeable  with our  theoret ical  reuslts. But when 

p a r a m e t e r  :~ incrcases,  the shift a long t h e  K di rec t ion  ,)At increases too  large and the crit ical 

value dexia les  IrOlll ~tlr lhcorcl ica]  eSl i l l la t ions .  

T a b l e  2 ( / ~ = 0 . 0 1 )  

P,I r 

( r i  P= 

~3K 4.46 x 10-~ 

,3g 1.50 

1.1 2.0 3.0 

13.4 I1.1 

4 . 7 9 x  10 -~ 9 . 3 7 x  10 -3 

1 ,-7 so I  .4s 

V I .  C o n c l u s i o n  R e m a r k s  

3.5 / 4 .0  

/ 6, 
I $.  93 X 10--; 8.34X 10-' 

In the papcr  1]1C cxprcss ions  o f  tile Olle-dlllleMon;.ll :.llld t \ \o-dl l l lCnsJt / l la]  i l l \ a f l a n l  

111alli[olds co1rcspt)i lding It) m I ir /one.,, are ob ta ined  th rough  the formal  series l l lc lhod.  

Accord ing  It} the , ina l \  [ic cxp rcs smn~  lhc geollIc[ric charac te rs  t)t" lhe ill\;ir;;ln[ ct, r \ e s  and tori 

arc di~,cussed i11 dclai l .  Wc al~o ~,tud\ the s tahi l l t \  o f  the m I rcsonant  / oncs  and ob ta in  the 

sufl]cicnt cr i te r ions  o t  the urlstabiliz:Hion of  the resonant  zone~,. The fact th;.it there exist 

sexoral strt lclt lrcs Io l - the  tlllst~.lbill/iltiOll Of the ill~.ill'i~.lllt ctl1-xe,, is COlll'il'lllCd. k ' ,  par ; l l l le tcr  >: is 

s111;.lJJcr than Olle. or is greater  lJl/.lll ,lilt[ Ct)llle', ClOse to Olle. the co111r'qltLltiOllS ;.ire agreeable  to 

our  Ihco1etic~l] rc~,ults. With  :/ incrc,t,,lng ~c  c tmjccture  that the oxer lap  of tile nearb.\ rcSollallt 

/ oncs  occurs.  This cfl'cct 111;.l\ dccreasc  the ntabil i l \  o f  the resonant  / o n e s  and rest, Its in the 

devia t ion  in otlr theorct ical  e , , t imations.  This is an open and interest ing prob lem.  It \~ill be 

discussed i11 detail  in the I'tllUrC paper .  

A c k n o w l e d g m e n t  Thc au tho r  thanks  Prof. Sun Yl~ui and P r o f  ( h e n  Shig~,ng for helpful 

discussions.  
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