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Abstract

The problem’ considered is that of two-dimensional viscous flow in a straight
channel. The decay of a siationary perturbation from the Couetie-Poiseuille flow in
the downstream is sought. A differential eigenvalue equation resembling the Orr-
Sommerfeld equation is solved by using a speciral method and an initial-value method
(the compound matrix method) for values of the Revnolds number R between 0 and
2000. The eigenvalues are presented for several of interesting cases with different
measures of mass flux. These eigenvalues determine the rate of decay for the

purturbation.

Key words downstream, eigenvalue problem. Couctte-Poiseuille flow

I. Introduction

Bramley and Dennis!'"¥ and others® ¥ obtained the eigenvalues of a stationary
perturbation of Poiseuille flow for the viscous flow in a straight channel. In this paper we are
concerned with the eigenvalue problem that governs the rate of decay for a stationary
perturbation of Couette-Poiseuille flow. We also consider two-dimensional viscous motion in a
straight channel. We assume that the difference between the base flow and Couette-Poiseuille
flow decays exponentially downstream. It is then possible to seek solutions to the Navier-
Stokes equations, far downstream, that are a perturbation to the Couette-Poiseulle profile and
that decay exponentially in the downstream direction. The equations can then be linearized,
yielding an ordinary differential eigenvalue system where the eigenvalues determine the rate of
decay for the stationary perturbation.

To compute the eigenvalues for the stationary perturbation of Poseuille flow, several
methods have been used. For example, a spectral method by Bramley (") and Bramley and
Dennis() , an initial value method by Bramley and Dennis3} . In this paper we compute the
eigenvalues for the stationary perturbation of Couette-Poiseuille flow in a channel using these
methods. These eigenvalues are important for the derivation of boundary conditions.

II. Equations

The channel width is taken to be A, and the kinematic viscosity y . Then with length scale
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h. velocity scale U and Reynolds number R=Uh/v, the dimensionless streamfunction g
satisfies the equation

d g : ‘
R (pimg—¥egy) VH=V'¥ (2.1)

where x is the (dimensionless) downstrcam coordinate and y is the (dimensionless) transverse
coordinate. The origin is at the bottom of the channel. The flow far downstream approaches
the Couette-Poiscuille flow and so

p>9 () = Ba—My*+ (V —2a)y°
Y>>0

as x—>o00. Where z 1s measure of mass flux and I is shdtng velocity. ¢y () is streamfunction
of Couctte-Poiseuille flow. The motion of this flow is due to the relative displacement of the
upper wall with respect to the lower one and a fall of pressure. Its velocity is not a symmetric
function with respect to the central line. When 1'=0 and x=1 it just is Poiseuille flow. For
this case. it has been considered by Wilson!™ and others!' 1% So, we only consider the case of
1'#0. and suppose I'=1 for simplicity.

We now look for a perturbation solution where

Y(x.y)=¢,(y) +ed(y)e ** (2.2)
where
Yoly) = (Fa— 1Y '+ (1 —za)y’ (2.3)

and € 1s small. Substituting (2.2} in (2.1) and neglecting squares of € leads to

¢ +24°" + A= AR{ =95 (¢” + A°¢) + "'} - (2.4)

where

Yo=2(3a—1)y+3() ~2a)y
¥s'=6(1~2a)

with boundary conditions

PU)=¢(1)=¢"(V)=¢'(1)=0 (2.5)
The above equation 1s similar to the Orr-Sommerfeld equation. The main difference is that in
the present equation « is an eigenvalue, not a prescribed wave-number; the equation is non-
linear in «~. which in general will be complex. It can be shown that. if / is an eigenvalue, so is
A¥* (the complex conjugate). We are interested only in decaying modes. since growing modes
cannot satisfy the boundary condition at x= oo Since there is symmetry about the real axis.
as just noted, atlention may be confined to the first quadrant of the /. plane. There is in fact
an infinite sequence of eigenvalues here for each fixed R, which may be ordered by the
magnitude of the real part.
The objective, then, is to calculate » for all R. The corresponding eigenfunctions are of
less interest. Physically. the most interesting problem is to find the eiggnvalue with smallest
real part, since this component of the disturbance persists longest.
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The two methods are described in the next two sections. These methods are fully
described in the relevant references and so only the main details are presented in this paper.

I1I. Compound Matrix Method

The compound matrix method was developed by Gilbert and Backus!® and resurrected by
Ng and Reid”. For the present it is convenient to rewrite Eq. (2.4) as a system of first-order
equations. Thus, if we let @={¢,¢’, ¢”, ¢’’/]7, then Eq. (2.4) becomes

b= AD (3.1)
where
6 1 0 o
0o n N
A= : (3.2)
0o 0 0 g
cz O C[ O

¢1= — 24"~ ARp}
¢y= AR} ~ PRy — A

Now let @y and &, be two solutions of Eq. (3.1} which satisfy the initial conditions
®,=[0.0.1.0]T and D, =[0,0,u,1])7 (3.3)

and consider the 4 X2 solution matrix

951 ¢z
¢

¥y = o1 g (3.4)
('f)'l” qbl,”

The 2 X 2 minors of the matrix ¥ are

D=01P: — PP pr1=197 — ¢ ¢
Di=¢19) — @Y P =¢85 — 1o (3.5)
Pe=0idY — D'ty De=dT1dY —¢)'¢7
Following Ng and Reid!" it can be show that P= (py, ps, P3» Pes Dss D) T satisfies the system
of differential equation

P (y)y=B(y)P(y) (3.6)

where B(y) is the 6 X6 matrix given by

(
0 0 | 1 0 0
0 c () 0 | 0
B(y) = ‘ (3.7)
O 0 v u 1 0 )
—C, {) {) (o t I J
\ 0 —-¢c. 0 0 0 0
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and boundary condition
P(0)=1[0,0,0,0,0,1)7 (3.8)

The termination condition at Y=1is p,=0. For given 2.and R, we choose an initial guss for /.
and then modify it untl pi{1)=0.

IV. The Spectral Method

Orszag" discussed the advantages of Chebyshev polynomials relative to other sets of
orthogonal polynomials. He showed that if the coefficients of a linear differential equation are
infinitely differentiable, the approximation obtained is of infinite order in the sense that errors
decrease more rapidly than any power of 1I/¥N as N->»oo ., where N i1s the number of
Chebyshev polynomials used in the approximation. We therefore use Chebyshev polynomials
to obtain a numerical solution of (2.4), subject to boundary conditions (2.5).

The Chebyshev polynomials 7,(2) are orthogonal over the interval [— 1, 1] with respect

to the weight function w(z)= (1 —2*%) """

. Let us observe the formula == — 1+ 2y maps [0,
1] into [— 1. 1} and in the process derivatives with respect to y and - are related through the
constant muluplying factor 2. It is convenient to assume from the vutset that Eq. (2.4) and
boundary conditions (2.5) are already formulated in the interval [— 1, 1]. Suppase now that
¢(U)=é((241)))2=9(2) and the Chebyshev expansion of ¢;(2) and its derivatives

d"&/dz’ be

q“ o
%}:20:"7"..(2) (4.1)

where al® =a,,and T,(z) is the nth degree Chebyshev polynomial of the first kind, defined
by T. (costl)=cost), n=0, 1, 2, -~ . The properties of 7',(z) are now used to expressaf?in
terms of a. Two constants ¢, and d. are commonly used in the recurrence relations of
Chebyshev polynomials and are given as

Cu=d"=O (n<l)), Co="14 dl):" } (4 2)
Ca=da=1 (1>0) .
It can be shown that”!
CaG, = 2 pip*—ni)a, (n=>0) (4.3)
;:;(+n:(l'l2
and
24C,.0,$4)= Z p(p-_n-—)[(p_n)-_4][(p+n)2_4]a’ (">0) (4 4)
;:;(Tn‘od'-) .

where ¢ =h(mod2) means that a—h is divisible by 2. Using the properties 227, (2) =ie,1(2)
+T,1(2) and 4z2°7 ,(2) =T ,_2(2) + 274 (2) + T 9.2(2) . we can find that the nth Chebyshev
coctlicients of 229 (z) and 421\;5 (z) are respecuvely

Cn_18a_1+ a4, (n20) (4.5)

and
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c,,_,a_,,_,+(c..+c,._|)0..+a..z (n>0) (4.6)

The similar results hold for 2z9”(z) and 42°0”(2) in terms of a!® instead of a..
The above expansions are substituted into (2.4) and the coefficients of 7T.(z) may be
equated. We shall now restrict the summation and truncate the Chebyshev series at Tu,x(z).

This gives
1 N-1
5T p(P*=n) [(p—n)*—4]{(p+n)"—4]a,
aoA(modz)
phek ! ! 3
+ T {[+ 7+ R Ga=1) + 2R —2a) (cat ca) |
p=n(mod?)
-p(pz—n:)+g3zARu—2a>[d,_,p(p:—(n—2)2)+c,p(pz
— (n+2)") 1 }e,
N—l o a2
+l_‘5m ) (Cap(p*— (1)) +du1p(p'—(n—1)) 10,
;:::’l‘(modl)
+%AR(1~2a)n(n—1)a,.——;—/1R(1—2a)a..c..+%/l‘a..c..
+/]~3R { —6'1—4'[(ea—l)Cnan+Cn-lan-l+Cnan+l]
+—3—-(1—2a)[c G2+ (c24Ca_1)ap+cha ]}
256 n_2%n_2 n n_1l n nln.a
=0, O<H<N—~l (4.7)
for 0g<ngN—1. If the expansion (4.1) and the pronerties 7,(+1)=(F1)" and
T.L(+1)=(F1)""'s* arc used on the boundary conditions P(+1)=¢'(+1)=¢. We
obtamn
N1 N-IL
Ea,.=(), Enza,,-_—
A=0 ne0
Nol Vo1 (4.8)
2 (=1)"=10, 3 (—1)""'na.=0
ne=0 =0

It is desirable to be able to calculate all the eigenvalues (real and complex) for a particular
Reynolds number. Eq. (4.7) with n=0, I, - | N—5 together with the boundary conditions (4.

&) can be expressed in the form

(AC+AC,+1Cy,+AC,+C) D=0 (4.9)
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where C. (i=0. 1, 2. 3, 4) are square matrices of order N. This can be transformed to the

gencralized eigenvalue problem

(E-AFYX =0 (4.10)
where
c, C, Ci C, —-C, 0 0 0
I o o o o I o o
= F =
E o I o0 o o ol o
o o I o o o o [I
and XT=(A*D?, A*D?, AD?, D7)

The generalized eigenvalue problem given by (4.10) is solved using simple column
operations and QR algorithm of Wilkinsoni®.

V. Numerical Results

A large volume of numerical date is obtained and we try to present the main results in a
way as concise as possible. The majority of these results are obtained by using The compound
matrix method as stated in Section IIl. Because by using this method we can obtain accurate
results. Bul. this method requires a reasonable initial approximation for .. Finding an initial
value for . can be a problem when / is complex because . can be anywhere on the complex
plane and therefore easily missed. With complex’' /. it is possible to use the spectral method to
either calculate /. or at least obtain a good enough initial approximation for use with the initial
value methods. The main resuits are given in following Tables 1 —6. Real eigenvales / may be
presented in graphical from. Figs. 1— 3, respectively, give the positive eigenvalues for «=0, 0.5
and 1. Fig. 4 give the first several positive eigenvalues for x=10. It will be seen that in both
cases there are values of R below which there are no positive real eigenvalues. These values
{called R.) are presented in Tables 1 — 6, respectively.

Table 1 The first three branches eigenvalues with positive real partfor 0SR<2000 anda =

R Al AL Az
0 4.21239+ 2.25073¢ 7.49768+ 2.768681 10.71254+ 3.10315¢
0.25 4.22380+ 2.3353s 7.50326+ 2.763861 10.71573+3.10109¢
0.5 4.23519+ 2.21608 7.50885+ 2.75895¢ 10.71895+ 3.09893¢
1.0 4.25787+2.18044 7.52005+ 2,74883¢ 10.72546+3.09434s
1.5 4.28044+ 2.14378¢ 7.53130+ 2.73828¢ 10.73208+ 3.98937:
2.5 4.32517+ 2.067265 7.55391+ 2 715756 10.74565+ 3.07824¢
5.0 4.43440+ 1 .85533¢ 7.61108+ 2.64913: 10.78199+ 3.04328¢
10 4.64290+1.30467¢ 7.72355+ 2.44715¢ 10.86985+ 2.941041
25 3.22247:9.80471 6.68234+ 1.49752¢ 11.29275+ 2.29286i
S0 2.28037:11.72536 5.65550+1.396%61¢ 11.51583+ 1.77596
100 1.48560:10.07397 4.08188:4.44360 10.53017+ 2.45074¢
250 0.70176 1.51283:3.57906 7.55767+1.88303¢
500 0.36374 0.75341:2.40803 4.85975+1.03113¢
1000 0.18368 0.37621:1.44507 2.55022:3.27058
2000 0.09208 0.18804:0.78598 1.18945:2.06525
R. 14.607 98.764 850.254
A 4.84950 4.28484 3.30495
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Table 2 The next three branches eigenvalues with positive real part for 0 <R<100 and

7 =0
R A1 A1 Ax
0 13.89996+ 3.352214 17.07336+ 3.55109i 20.23852+ 3.71677i
0.25 13.90201+ 3.35112i 17.07480+ 3.550441 20.23957+ 3.71635¢
0.5 13.90410+ 3.34995s 17.07626+ 3.549711 20.24066+ 3.715851
1.0 13.90838+ 3.34735: 17.07929+ 3.548021 20.24293+ 3.714641
1.5 13.91278+ 3.34442i 17.08247+ 3.54605% 20.24535+ 3.71318i
2.5 13.92202+ 3 837541 17.08925+ 3.54119/ 20.25059+ 3.70945i
5.0 13.94771+ 3.31450¢ 17.10878+ 3.52398: 20.26615+ 3.69552i
10 14.01158+ 3.24348s 17.15942+ 3.46823s 20.30779+ 3.648571
25 1431544+ 2 .80139: 17.40443+3.11019¢ 20.51837+ 3.34105¢
50 16.41647+2.394311 18.64087+ 2.35802¢ 21.45211+ 2.25358i
100 : 1711561+ 2.663851 16.71284.31 76841 22.79124+ 2.67424i
R, ‘ 75.069
Ac 20.68461

Table 3 The first

three branches eigenvalues with positive

real part for 0< R<2000 and

2 =0.5
R A1 A Ax
0 4.21239+ 2.25073¢ 7.49768-+2.76868i 10.71254 +3.10315i
0.25 4.18133+ 2.250461 7.46657+2.76844i 10.68140 +3.10293¢
0.5 4.15063+ 2.249671 7.43574+2.767723 10.65049 +3.10229i
1.0 4.09037+ 2.24659% 7.37493+2.76493+ 10.58933+3.099755
is 4.03161+ 2.24161+ 7.31524+2.76040¢ 10.52906+3.095615
25 3.91864+ 2.22643¢ 7.19924+ 2746561 10.41119+3.08282¢
5.0 3.66284+ 2.16334s 6.92856+2.68799i 10.13167 +3.02719i
10 3.25798+ 1.969561 0.46417 +2.49559: 9.63396 +2.83411¢
25 2.59468+1.27601: 5.49462+1.64631¢ 8.48659 +1.90593i
50 1.95130+0.27690+ 4.10187 +1.088761 6.87312+1.696321
100 1.32497:0.8246 2.99759+0.92741s 5.25462+0.924135
250 0.55342:0.32225 1.73936:1.40179 2.98547 +0.64521¢
500 0.27822:0.16066 0.90988:0.67717 1.83556:1.59553
1000 0.13930:0.08027 0.45849:0.3364 0.95164:0.7734
2000 0.06972:0.04013 0.22966:0.16807 0.47848:0.38484
R, 55.173 196.29 417.32
A 1.8245 1.97037 2.0424

As in [2]. [3]). [5]. we present several tables that give the computed eigenvalues. Tables I, 3,
S and 6 give the first three branches eigenvalues with positive real part and 0< R <2000 for
=0. 0.5. | and 10, respectively. The next three branches eigenvalues with positive real part for
2=0 and 0.5 are given in Tables 2 and 4, respectively. The complex eigenvalues occur in
complex conjugate pairs but only the one with positive imaginary part is given.

From above tables and figures, we can conclude that each branch of eigenvalue is
complex as 0< R< R. and its conjugate also being an eigenvalue. At R=R.=R,, each branch
of complex solutions and its conjugate coalesce on the real axis and. then for R larger then R,
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they split into two branches of real solutions. These two real solutions may be coalesce at R=
R .. Then. for larger value of R these two solutions split into a complex solution and its
conjugate. and again they remain complex for R..<R<R . Then at R=R. . the complex
solution and its conjugate again coalesce on the real axis. and the cycle also may be repeated.
For example, for the second branch eigenvalus of =1 (see Table 5). R.:=2593. ,..=3.60473
and R .=126.375. / .=1.62096. But in each of cases. for large values of R. we have not
present the cigenvalues that have large modulus. This is because these cigenvalues hard to be
exactly obtained.

Table 4 The next three branches eigenvalues with positive real part for 0 < R<2000 and

7=0.5

R A e [ P
Q 13 89996+ 3.35221 17.07336+ 3.55109/ ;r 20.23852+ 3.71677¢
0.25 13.86880+ 3.35201s 17.04219+ 3.55089: : 20.20733+ 3.716581
0.5 13.83783+ 3.35140: 17.0118+ 3.55031: ) 20.17628+ 3.71601:¢
1.0 13.77643+ 3.34901» 16.949%14 3 548017 20.11460+ 3.71377¢
1.5 13.71577+ 3.34510+ 16.88866+ 3.54423: 20.05344+ 3.71007s
2.5 13.59663+ 3.3329¢ 16.76862+ 3.53238: 19 93272+ 3.69844s
5.0 13.31125+ 3 .27893¢ 16.47909+ 3.479371 19 64011+ 3.64599¢
10 12.79155+ 3.08485! 15.94374+ 3.28406: 19.09307+ 3.44939i
25 11.52371+2.11583: 14 58882+ 2.29525: 17 .67265+ 2.451561
50 9.76966+ 2.04289: 12.71889+ 2.27322¢ 15.70259+ 2.440907
100 7.49648+ 1,24868: 10.10028+ 1.682067 12.85479+ 1.94463:
250 4.45834+ 0.510147 6.37132+1.04679¢ 8.47196+0.957767
500 2.84549+ 0411714 3.77060+ 0.44898¢ 5.41394+ 0.48462¢
1000 1.60382:1.40363 2.31280+ 0.09734: 3.09662+ 0.402817
2000 0.81488:0.69156 1.23620:1.09066 1.73423:1.58971
R, 716.39 1092.35 1544 .37
Ac 2.08841 2.12184 2.14902
Table 5 The first three branches eigenvalues with positive real part for 0< R<2000 and
r=1
K Al A1 A
0 4.21239+ 2.25073¢ 7.49768+ 2.768687 10.71254+ 3.10315¢
0.25 4.13953+ 2.26605 7.43025+ 2.77238: 10.64731+ 3,10423i
0.5 4.06879+ 2.278061 7.36413+ 2.77405¢ 10.58301+ 3.10349s
1.0 3.93363+ 2.29318s 7.23577+2.771674 10.45716+.3.09684s
1.5 3.80680+ 2.29807+ 7.11250+ 2.762341 10.33496+3.08372¢
2.5 3.57733+ 2.28364¢ 6.8809 +2.72553¢ 10.10138+ 3,03978¢
5.0 3.12956+ 2.161511 6.38394+ 2 .55160¢ 9.57884+ 284117
10 2.60931+ 1.80932¢ 5.68659+ 1.98122¢ 8.77758+ 2.11704¢
25 2.13872+0.85471¢ 3.99606:3.50936 6.56289+ 1.499647
S0 1.44953:1.03477 2.56145+1.03812s 5.22028+ 0.61330¢
100 0.74513:0.49014 2.04604+0.37869) 2.72817+ D,SZ??ZI'
250 0.29972:0.19375 0.90994:0.70903 1.72534+ 0.10246¢
500 0.14997:0.09672 0.45773:0.34951 0.92598:0.77532
1000 0.07500:0.04834 0.22916:0.17420 0.46552:0.38307
2000 0.03750:0.02417 0.11462:0.08703 0.23302:0.19104
R 36.046 18.755 272.482
A 1.73512 4.81965 1.57878
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Table 6 The first three branches eigenvalues with positive real part for 0<R<2000 and 1=10

R 21 Ay Ax
0 4.21239+2.25073¢ 7.49768+ 2.76868: 10.71254+ 3.103154
0.25 3.49891+ 2.3803: 6.83919+ 2.754134 10.07626+ 3.04631¢
0s 3.00962+ 2.30292¢ 6.31629+ 2.58960+¢ 9.53695+ 2.836581
1.0 2.45788+ 2 011314 5.61056+ 2 011971 8.7417+ 2.02122:
1.5 2.19221+1.73831¢ 5.27161+1.10079¢ 9.25562:7.19156
2.5 2.0007 +1.31996: 4.25990:3.00621 4.77162:4.2599
5.0 2.12834+1.16566¢ 1.50206:1.28753 6.0948:7.30865
10 1.79663+ 0.99479i 0.75407:0.58234 2.31387:2.8449
25 1.63573+0.8150¢ 0.30199:0.22826 0.80192:0.92176
50 1.51219+0.70873i 0.15102:0.1138 0.38829:0.46098
100 1,39278+0.62013s 0.07552:0.05686 0.19279:0.2305
250 1.25286+ 0.51819 0.03021:0.02274 0.07697:0.0922
500 1.16037+0.45272¢ 0.01510:0.01137 0.03847:0.0461
1000 0.99256+0.006691 " 0.00755:0.00568 0.01923:0.02305
2000 0.96206+ 0005641 0.00377:0.00284 0.00966:0.01153
R. 1.697 1.386
Ac 5.3756 8.52505
R R
2000 2000 \\
1000 \ 1000f
250} 500
100 2501
50 100
0 A 0 ) 4
] 3 5 ] 2 3
Fig. 1 Graph of positive real eigenvalues Fig. 2 Graph of positive real eigenvalues
against Reynolds number for x=0 against Reynolds number for x=0.5
250 \ 250
150 \ \ 100
100 50
50 k]
30 i0
10t 5
ol . A -
1 3 5
Fig. 3 Graph of positive real eigenvalues  Fig. 4 Graph of the first several posmve
against Reynolds number for x=1 real eigenvalues against Reynolds

number for =10
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