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Abstract  
The problem" considered is that of two-dimensional viscous .flow in a straight 

channel. The decay of a .5tationary perturbation from the Couette-Poiseuille flow in 

the downstream i.s sought. ,4 dil~lerential eigenvalue equation resembling the Orr- 

SommetT]eld equation is solved by using a spectral method and an initial-value method 

(the cotrwound matrix method)/'or vahws of the Reynolds number R between 0 and 

2000. The eigenvalues are presented .for several of interesting eases with different 

measures of mass ./-lu.r. These eigenvahws determine the rate of decay for the 

p urturbation. 

Key words  do~nstream, eigenvalue problem, Couette-Poiseuille flow 

I. I n t r o d u c t i o n  

Bramley and Dennis t~-~l and otherst4 ~l obtained the eigenvalues of  a stationary 

perturbation of Poiseuille flow for the viscous flow in a straight channel. In this paper we are 

concerned with the eigenvalue problem that governs the rate of  decay for a stationary 

perturbation of  Couette-Poiseuille flow. We also consider two-dimensional viscous motion in a 

straight channel. We assume that the difference between the base flow and Couette-Poiseuille 

flow decays exponentially downstream. It is then possible to seek solutions to the Navier- 

Stokes equations, far downstream, that are a perturbation to the Couette-Poiseulle profile and 

that decay exponenti~rlly in the downstream direction. The equations can then be linearized, 

yielding an ordinary differential eigenvalue system where the eigenvalues determine the rate of  

decay for the stationary perturbation. 

To compute  the eigenvalues for the stationary perturbation of Poseuille flow, several 

methods have been used. For example, a spectral method by Bramleyt~l and Bramley and 

Dennist~ . an initial value method by Bramley and Dennis t~ . In this paper we compute the 

eigenvalues for the stationary perturbation of Couette-Poiseuille flow in a channel using these 

methods. These eigenvalues are important  for the derivation of  boundary conditions. 

I I .  Equat ions  

The channel width is taken to be h, and the kinematic viscosity v .  Then with length scale 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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h. velocity scale t.' and Reynolds number  R=Uh/v, the dimensionless s t reamfunct ion g, 
satisfies the equat ion 

0 a 
r �9 v :~ (2. ~) R (*'-~--x - = v ' ~  

where x is the (dimensionless) downs t ream coordinate  and y is the Idimcnsionless) transverse 

coordinate.  The origin is at the bo t tom of  the channel.  The flow far downst ream approaches  

the Couettc-Poiscuil le  flov*' and so 

tb--~l~o (y) = ( 3a -- U)!I "z + (V - 2a)y 3 

as x -+oo .  Where  :t. is measure of  mass flUX and I" is sliding velocity. @0(!/) is s t reamfunct ion 

of  Couette-Poiseuille flow. The mot ion of  this flow is due to the relative displacement o f  the 

upper wall with respect to the lower one and a fall of  pressure. Its velocity is not a symmetr ic  

function with respect to t h e c e n t r a l  line. When I ' = 0  and :~=1 it just is Poiseuille flow. For  

this case. it has been considered by Wilson t41 and others u ,1 t,1. So. we only consider  the case o f  

1 ' # 0 .  and suppose l "= 1 for simplicity. 

We nov, look for a per turbat ion solution where 

~(x,u) = Co(U) +cr -~" 

where 

~o(Y) = ( ? c z - - l ) y 2 f f  - ( I  -- '.:'cz)y s 

and e is small. Substi tuting (2 .2) in  (2.1) and neglecting squares o f  e 

w h e r e  

r + 2 x-~4,,, + ;L'r = XR{ - . / ,  ~ (6,, + ;,~-6) + , / 4 " r  }. 

leads to 

( 2 . 2 )  

(2.3) 

( 2 . 4 )  

v*ith boundary  condit ions 

V ; ~ = 2 ( 3 a  - I ) y + s ( 1 - 2 a ) y  2 

~'0"= 6 ( I -  '_,a) 

4,(u)=r162 (2.s) 

The above equat ion is similar to the Orr -Sommerfe ld  equation.  The main difference is that in 

the present equat ion ). is an eigenvalue, not a prescribed wave-number :  the equat ion is non- 

linear in }.. which in general will be complex, it can be shown that, if ~;. is an eigenvalue, so is 

A* (the complex conjugate).  We are interested only in decaying modes+ since growing modes  

cannot  satisfy the bounda ry  condi t ion at x = co .  Since there is symmetry  about  the real axis, 

as just noted, at tention may be confined to the first quadran t  of  the s plane. There is in fact 

an infinite sequence of  eigenvalues here for each fixed R, which may be ordered by the 

magni tude  o f  the real part. 

The objective, then, is to calculate 2 for all R. The corresponding  eigenfunctions are o f  

less interest. Physically. the most  interesting problem is to find the eigcnvalue with smallest 

real part. since this componen t  o f  the dis turbance persists longest. 
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The two methods  are described in the next two sections. These methods  are fully 

described in the relevant references and so only the main details are presented in this paper. 

III. C o m p o u n d  M a t r i x  M e t h o d  

The c o m p o u n d  matrix method was developed by Gilbert  and Backus l~l and resurrected by 

Ng and Reid ':1. For  the present it is convenient  to rewrite Eq. (2.4) as a system of  first-orde," 

equations.  Thus.  if we let q~-----[7~b,~', @#, ~ , , , ]T ,  then Eq. {2.4) becomes 

~ , = A ~  (a. ]) 
where 

I O I 0 0 1 
A =  o 0 1 0 ( a . 2 )  

(~ () 0 ) 

c2 0 ct 0 

q = - 2 , ~  - a R , )  'o 

I l l  3 I 4 c , =  a r g o  - ~ R ~  o - 

Now' ]et ~ t  and ~2  be two solutions o f  Eq. (3.1) which satisfy the initial condit ions 

~ l =  [ 0 , 0 , 1 , 0 ]  T and ~ 2 =  [ 0 , o , o ,  I ]T 

and consider  the 4 x 2 solution matrix 

(3.3) 

<,, +;, , /  

(. 't.4) 

The 2 • 2 minors  o f  the matrix t/; are 

p3= ~,0;"-  ~',"~,) 

p.= ~i~,';'-,~;"4'i) ~ U , 4 , ' "  
~ o  =-= ",,-" i 'e '  2 - -  ~ ' n " ~  

Following N g a n d  Reid Iqit can be show that P = ( p ] , p t , p 3 , p , , p s , p e )  e 

of  differential equat ion 

P ' ( y )  = B ( y ) P ( y )  

where B(b,) is the 6 •  6 matrix given by 

(a .s)  

satist~s the system 

(:). 8) 

B ( y )  = 

0 I 0 0 0 0 

0 0 l I 0 0 

0 cl () 0 l 0 

0 0 0 0 l 0 
-- c~ 0 (} cl (} ] 

0 -- C. (} 0 0 0 

(.~.7) 
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and boundary condition 

P ( 0 )  = [ 0 , 0 , 0 , 0 , 0 ,  I J r (3 .8 )  

The termination condition at U = I is p , = 0 .  For given a .and R, we choose an initial guss for 2 

and then modify it until p , (1)=0.  

IV. The Spectral  Method 

Orszag M discussed the advantages of Chebyshev polynomials relative to other sets of  

orthogonal  polynomials. He showed that if the coefficients of  a linear differential equation are 

infinitely differentiable, the approximat ion obtained is of  infinite order in the sense that errors 

decrease more rapidly than any power of I/N as N.-o.oo , where N is the number  of  

Chebyshev polynomials used in the approximation.  We therefore use Chebyshev polynomials 

to obtain a numerical solution of (2.4), subject to boundary conditions (2.5). 

The Chebyshev polynomials T , ( z )  are orthogonal  over the interval [ - 1 ,  1] with respect 

to lhe weight function w ( z ) =  (1--zZ) -~': . Let us observe the formula . . - = - 1 + 2 / ]  maps [0, 

1] into [ - I ,  I] and in the process derivatives with respect to ,y  and - are related through the 

constant multiplying factor 2. It is convenient to assume from the outset that Eq. (2.4) and 

boundary  conditions (2.5) are already formulated in the interval [ - I ,  I]. Suppose ,now that 

ch(U)=4~((z+l )) /2=~(z) and 

dq~/dz q be 

the Chebyshev expansion of ~ ( z )  and its derivatives 

d"~ ~ ,  aCq,T.(z) (4 1) 
d Z q  - -  

where a_~~ T, (z )  is the nth degree Chebyshev polynomial of the first kind, defined 

by T,, (cos0)=cos0,  n = 0 .  1, ~, "" . The properties of T n ( z )  are now used to expressa~q~in 

terms of a,,. Two constants c~ and d,, are commonly  used in the recurrence relations of  

Chebyshcv polynomials and are given as 

c , , = d , , = 0  ( n ~ o ) ~  co==q d o = ;  "1. 
(4 .2 )  

i c ~ = d . = ]  ( , ~ o )  

It can be shown that tzl 

and 

c.a'~ ~ ' =  ~_~ p(pZ-n:)a, (n~o) (4.3) 
p - n  + 3  
P = n (1"11o,[2 

24c~a(. ' '= ~,, P (P: -n=)[ (p - -n ) : -4] [ (p+n) : - -4]a ,  (n~O) (4 .4 )  
p - m + 4  
p - n ( m o d : )  

where a=/ , (mod2~ means that a - h  is divisible by 2. Using the properties'~zT",(z)=')',+~(z) 
-'t-T,_l(z) and 4z='l'o(Z) = T o _ , . ( z )  W27",(z)--l-'1',.,(z) . we can find that the nth Chebyshev 

codficients  of  2z~b (z) and 4 z ~  (z) are re~pecuvely 

c._ ~a._ ~ + a,,. ~ ( n ~ 0 )  (4. ,5) 

and 
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c . _ , a . _ , + ( c , , + c . _ ~ ) a . + a . , ,  ( n ~ o )  (4.6) 
The similar results hold for 2z~U(z) and 4zz~rr(z) in terms of a ,  ~:~ instead ol a,. 

The above expansions ;ire substituted into (2.4)and the coefficients of T,,(z) may be 

equated. We shall now restrict the summation and truncate the Chebyshev series at Tx_t(z). 
This gives 

B _ I  

1..L y-] p (pZ -nZ) [ (p -n )Z -4] [ (p+n)Z -4]ae  
24j... +, 

n - n ( m O d 2 )  

N _ I  

+ E  
l l - - t l  + 2 
p-n (mod : - )  

{ [ +  2 : + 1  2R(6a_l)+_~42R(l_2a)(c ,+ c, ,_,)]  

. p(p:--n:) +~43.R(1 - 2 a )  E d ._ tp(P:-  (n -  2):) +c .p(P z 

- ( n +  2) ~') ] } a ,  

N - !  

�9 4-~6)tR y - I ,  Ic ,p(p:- tn--FI):)+d,_lp(p=-(n-1)Z)]a~ 
p - n  -I- I 
p - n 4 1 ( m o d 2 )  

>,,.- 3-8 

+ A3R { ~4 [ (6a-  l )c"a"'{'c"-la"-l"{-cne"*l] 

(c: 

= o,  O<~n<~N - I (4.7) 

for 0~<n~<N-I .  It" the expansion (4.1) and the pronerfies 7 ' , , ( - t -1)=( ,+_1)"  and 

T;. (___l)= ( +  l )n - 'n  2 are used on the boundary conditions ~ ( _ . + I ) = 4 / ( - - F I ) = 0 ,  we 

obtam 

N - I  N _ I  

Y ~  a n = ( ) ,  Y~, ?l~Qn = 0 
n~O n~O 

N_!. N - I  

5C. ( -  l ) "a .= o, Y: ( -  l ) " - 'n:a.= o 
~ - 0  I I - 0  

} (4.8) 

It is desirable to be able to calculate all the eigenvalues (real and complex) for a particular 

Reynolds number. Eq. (4.7) w'tth n=0 .  1, "'" , N - 5  together with the boundary conditions (4. 

8) can be expressed in the form 

(MC, + ,,I?C ~ + A:C, + 2C~ + Co) D = 0 (4.9) 
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where C, ( i=0 .  I, 2. 3, 4) are square matrices of  order N. This can be transformed to the 

generalized eigenvalue problem 

where 

(E-2tF~ , Y = 0  (4. lO) 

/is c cl i ) ( e l  ~ ~ ~ / E =  I 1 0 0 0 0 F =  
I 0 0 I 0 

0 I 0 o I 

and x r =  () .3D r ,  ) .2Dr, 2 D  r ,  D r)  

The generalized eigenvalue problem given by (4.10) is solved using simple column 

operations and QR algorithm of  Wilkinson Igl. 

V. N u m e r i c a l  R e s u l t s  

A large volume of numerical date is obtained and we try to present the main results in a 

way as concise as possible. The majority of  these results are obtained by using the compound 

matrix method as stated in Section II1. Because by using this method we can obtain accurate 

results. But. this method requires a reasonable initial approximation for ;.. Finding an initial 

value for ). can be a problem when ;. is complex because ). can be anywhere on the complex 

plane and therefore easily missed. With complex'~, it is possible to use the spectral method to 

either calculate ;. or at least obtain a good enough initial approximation for use with the initial 

value methods. The main results are given in following Tables 1 - 6 .  Real eigenvales 2 may be 

presented in graphical from. Figs. 1 - 3 ,  respectively, give the positive eigenvalues for : t=0,  0.5 

and 1. Fig. 4 give the first several positive eigenvalues for ~ =  10. It will be seen that in both 

cases there are values of  R below which there are no positive real eigenvalues. These values 

(called R,) are presented in Tables 1 - 6 ,  respectively. 

Table  1 

R 

0 
0.25 
0.5 
1.0 
1.5 
2.5 
5.0 

10 
25 
50 

I00 
250 
500 

1000 
~00 

R, 

The  f irst  t h r e e  b r a n c h e s  eig 

t 

4. 21239+ 2. 25073i 
4.22380+ 2.3353i 
4.23519+ 2.216081 
4.25787 + 2.18044i 
4.28044+ 2.14378i 
4.32517 + 2.06726 i 
4.43440 + I .  85533i 
4.6.4290+ 1. 30467i 
3.22,247:9.80471 
2. 28037 : 11.72536 

e n v a l u e s  w i th  p o s i t i v e  real  

,l[ 

7.49768+ 2. 76868i 
7.50326+ 2.76386i 
7. 50885+ 2.75895i 
7.52005+ 2.74883i 
7.53130+ 2.73828i 
7. 55391+ 2.71575i 
7. 61108+ 2.64913i 
7.72355+ 2.44715i 
6.68Z14+ 1.497~;2i 
5.65550+ 1. 39696i 

1.48,560:10.07397 
0.70176 
0.36374 
0.18368 
O. 09208 

14.607 
4.04950 

4.08188 :,~.44360 
1. 51283 : 3. 57906 
0.75341:2.40803 
0.37621:1.44507 
O. 18804 ; O. 78598 

98.764 
4.28484 

tort  for 0~<R~<2000 and ~ =0 

10.71254+ 3.10315/ 
10. 715"/3+ 3.10109i 
10. 71895+ 3. 09893i 
10. 72546+ 3. 09434i 
10. 73208+ 3.18937 i 
10. 74565+ 3. 07834i 
10.78199+ 3.0,132,8i 
10.86985+ 2,94104/ 
LI. 29275+ 2.29286i 
1.1.51583+ 1.77596i 
~0.53017+ 2.45074i 
7. 55767+.1. 88303i 
4.85975+ 1.03L13i 
2.55022:3.27058 
1.18945,2.06525 

850.254 
3.30,195 
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respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Tab le  2 The  n e x t  t h r e e  b r a n c h e s  e i g e n v a l u e s  wi th  p o s i t i v e  real  

=0 

R 

0 
0.25 
0.5 
1.0 

1.5 

2.5 
5.0 
10 
25 
50 

100 
R, 
Ar 

hi 

13.89996 + 3.35221i 
13.90201+ 3.35112i 

l 13.90410+ 3.34995t 
I 13.90838+ 3.34735, 

13.91278+ 3.34~2i 
13.92202 + 3 .,'33754 i 
13.94771+ 3.31450, 
14.01158+ 3.24348, 
14.31544+ 2.80139i 
16.4J647+ 2.39431i 

, 17.11561+ 2.66385i 
I 

,,ll 

17.07336+ 3.55109i 

17.07480+ 3.5504,ti 
17.07626+ 3.54971t 

17.07929+ 3.54802, 
17.08247+ 3.54605i 
17.08925 + 3.54119i 

17.10878+ 3.52398i 
17.15942+ 3 .,16823i 
17.40443+ 3.11019i 

18.64087 + 2. 35802i 
16.71284;31.76841 

75. 069 
20.68461 

part  for 0 ~ R ~ 1 0 0  and 

20. 23852+ 3. 71677 i 
20.23957+ 3.71635i 
20.24066+ 3. 71585i 
20. 24293 + 3.71464i 
20.2,4535+ 3.71318i 
20.25059+ 3.70945i 
20. 26615 + 3. 69552i 
20. 30779 + 3. 64857 i 
20. 51837 + 3.3,1105i 
21.45211+ 2. 25358i 
22. 79124 + 2.67424i 

TaMe 3 The  f irst  three  b r a n c h e s  e i g e n v a l u e s  wi th  p o s i t i v e  real  part  for 0~<R~<2000 and 

:~ =0.5 

R ~I A1 at  

0 
0.25 

0.5 
1.G 
1.5 
2.5 
5.0 

10 
25 
50 

100 
250 

500 
I000 
2000 

Re 

4.21239+ 2.25073i 
4.18133+ 2. 25046 i 
4115063+ 2.24967' 
4.09037 + 2. 24659i 
4. 03161+ 2. ~161i 
3.91864+ 2. 22643i 
3.66284+ 2.1633'1 i 
3. 25798+ 1. 96956i 
2. 59468 + 1. 37601i 
1. 95130+ 0.37690' 
1. 32497 ; 0.82,16 
0. 55342 : 0.32225 
0. 27822, ; 0.16066 
0.13930: 0. 08047 
0. 069/2:0. 04013 

55.173 

1.8245 

7.49768+ 2. 76868i 
7.46657 + 2.76844i 
7.43574 + 2. 76772 i 
7. 37493 +2. 76493i 
7. 3152,,1 + 2. 76040i 
7.19924+2.7,1656/ 
6.92856+2.68799/ 
6.46417 +2.49559i 
5. 49462 + 1.6,1631i 
4.10187 + I .  08876i 
2. 99759 + 0.92741i 
I .73936:1.40179 
0.90988:0.67717 

0.45849;0.3364 

O. 22966: O. 16807 
196.29 

1.97037 

10.719-54 +3.10315i 
10.68140 + 3.10293i 
10.65049+3.102291 
10.589~+ 3.09975i 
10.52906+3.09561i 
10.41119+ 3.08282i 
10.13167 + 3.03719i 
9.63396 + 2.83,111 i 
8.48659 + 1.905931 
6.87312+1.69632i 
5.25462+0.92413i 
2.985,17 + 0.64521i 
1.83556:1. 59553 
0.95164;0.773,1 
0.47848:0.38484 

417.32 
2.04~ 

As in [2], [3]. [51. v,e present  several  tables  that  give the c o m p u t e d  eigenvalues.  Tables  I, 3, 

5 add  6 give the first three branches  e igenvalues  with posi t ive real par t  and  0~< R~<2000 for :t 

= 0 . 0 . 5 ,  I and  10, respectively.  The  next three b ranches  e igenvalues  with posi t ive real par t  for 

y = 0  and 0.5 are  given in Tables  2 and 4, respectively.  The  complex  eigenvalues  occur  in 

complex  con juga te  pairs  but only  the one with posi t ive imag ina ry  par t  is given. 

F r o m  above  tables and figures, v,e can conc lude  that  each branch o f  e igenvalue  is 

complex  as O<~R<R. and its con juga te  also being an e igenvalue.  At  R = R . = R , ,  each branch 

o f  complex  so lu t ions  and its con juga te  coalesce  on the real axis and ,  then for R larger  then R. 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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they split into two branches  o f  real solut ions.  These  two real so lu t ions  may be coalesce  at R = 

R . .  Then.  for larger  value o f  R these two so lu t ions  split into a complex  so lu t ion  and its 

conjuga te ,  and  again the',' remain  complex  for R : < R < R , .  Then at R = R , ,  the complex  

solution and its con juga te  again  coalesce  on the real axis. and  the cycle also may  be repeated .  

F o r  example ,  for the second branch e igenvalus  o f  2 = l  (see Table  5), R . : = 2 5 . 9 3 .  ; . , :=3 .60473  

and R ,=126 .375 .  ). ,-=1.62096. But in each o f  cases, for large values o f  R, we have not  

present  the e igenvalues  that  have large modulus .  This  is because these e igenvalues  hard  to be 

exact ly  ob ta ined .  

T a b l e  4 The  n e x t  t h r e e  b r a n c h e s  e i g e n v a l u e s  w i th  p o s i t i v e  r ea l  p a r t  for  O<~R<~2000 a n d  

=0.5 

i 
0 

0.25 
0.5 
1.0 
1.5 
2.5 
5.0 
10 
25 
50 

100 
250 
500 

1000 
20O0 

Rc 
2c 

13 89996+ 3.352211 
13.86880+ 3.35"201, 
13.83783~ 3.35140, 
13.77643+ 3.3490D 
13.71577+ 3.34510J 
13.59663+ 3.3329i 
13.31125+ 3.27893i 
12.79155+ 3.08485J 
11.52371+ 2.J1583i 
9.76966+2.04289i 
7.49648+ 1,24868z 
4.45834+ 0.51014i 
2.84549+ 0.41171i 
1.60382:1.40363 
0,81488:0.69156 

716.39 
2.08841 

17.07336+3.55109i 
17.04219+ 3.55089~ 
17.0118+3.5503D 

16,94961+3,54801i 
16.88866+ 3.544231 
16.76862+ 3.53238J 
16.47909+ 3.47937i 
15.94374+ 3.284061 
14.58882+ 2.29525i 
12.71889+ 2.27322i 
10.10028+ 1.68206i 
6.37132+ 1.04679i 
3.77060+0.44898i 

2.31280+ 0.09734i 
1.23620:1.09066 

1092.35 
2.12184 

20.23852+ 3.71677i 
20.20733+ 3.71658i 
20.17628+ 3.71601i 
20.11460+3.71377i 

20.05344+ 3.71007~ 
19.93272+3.69844i 
19,64011+ 3.64599i 
19.09307+ 3.44939i 
17.67265+ 2.45156i 
15.70259+2.44090i 
12.85479+1.94463i 
8.47196+0.95726i 
5.41394+0.48462i 
3.09662+ 0.40281i 
1.73423;1.58971 

1544.37 
2.14902 

| 

T a b l e  5 T h e  f i r s t  t h r e e  b r a n c h e s  e i g e n v a l u e s  w i th  p o s i t i v e  r ea l  p a r t  for  0~<R~2000 a n d  
y = [  

H 

0 
025 
0.5 
1.0 
1.5 
2,5 
5.0 
10 
25 
50 

100 
250 
500 

1000 
2000 

R~ 

t , , 

).l 

4.21239+ 2.25073i 
4.13953+2,26605i 
4,06879+2.27806i 
3.93363+ 2.29318i 
3.80680+ 2.29807i 
3.57733+ 2.28364i 
3.12956+ 2.16151i 
2.60931+ 1.80932i 
2.13872+ 0.85471i 
1.44953:1.03477 
0.74513;0.49014 
0.29972;0.19375 
0.14997:0.09672 
0.07500:0.04834 
0.03750:0.02417 

36.046 
1.73512 

7.49768+ 2,76868i 
7.43025+2.77238i 
7,36413+2,77405i 
7.23577+2.77167i 
7.11250+ 2.76234i 
6.8809 + 2.72553i 
6.38394+2.55160i 
5.68659+ 1.981221 
3.99606:3.50936 
2.56145+1.03812i 
2,04604+0,37869i 
0.90994:0.70903 
0.45773:0.34951 
0.22916:0.17420 
0.11462;0.08703 

18.755 
4.81965 

),i 

10.71254+ 3.103151 
10.64731+ 3.10423i 
10.58301+ 3.10349i 
10.45716+.3.09684i 
10.33496+3.08372i 
10.10138+3,03978i 

9.57884+2.84117i 
8.77758+2.11704i 
6.562,89+ 1.49964i 
5.22028+0.61330i 
2.72817+ 0.52722i 
1.72534+ 0.102~16i 
0.92598;0.77532 
0.46552:0.38307 
0.23302;0.19104 

272.482 
1,57878 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



Eigenvalues  o f  Couet te -Poiseui l le  F low 993 

Tab l e  6 T h e  f i r s t  t h r e e  b r a n c h e s  e i g e n v a l u e s  wi th  p o s i t i v e  r e a l  p a r t  fo r  0~<R~<2000 and  x =10 

R 2t Al A! 

R 

4.21239+ 2.25073i 
3.49891+ 2.3803i 

300962+2.30292i 
2.45788+ 2.01131i 

2.19221+ 1.73831i 

2.0007 + 1.31996i 

2.12834+ 1.16566i 

1.79663+ 0.99479i 

1.63573+ 0.8150i 

1.51219+ 0.70873i 

1,39278+ 0.62013i 
1.25286+0.51819i 

1.16037+ 0.45272i 

0.99256+0.00669i 

0.96206+ 000564i 

7. 49768+ 2. 76868i 

6.83919+ 2. 75413i 

6. 31629+ 2.58960i 

5.61056+ 2.01197i 

5. 27161+ 1.10079i 

4.25990;3.00621 

1.50206 ;1.28753 

0.75407:0. 58234 
O. 30109:0. 22826 
0.15102; 0.1138 

O. 07552; O. 05685 
0.03021:0.02274 

0.01510 ;0.01137 

O. 00755 ; O. 00568 

0.00377 ; 0.00284 

1.697 

5.3756 

I0.71254+ 3. i0315i 

i 0. 07626 + 3. 04631i 

9. 53695 + 2. 83658i 

8.7417+ 2. 02122i 

9. 25562 ;7.19156 

4.77162; 4,2599 
6.0948 ;7.30865 

2. 31387 ; 2.8449 

0 . 8 0 1 9 2 : 0 . 9 2 1 7 6  

O. 38829;  O. 46098 

0 . 1 9 2 7 9  : O. 2305 

O. 07697 : O. 0922 

O. 03847 ;0. 0461 

O. 01923:0.02305 

O. 00966 ;0.01153 
1. 386 

8.52505 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 


