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A b s t r a c t  

In this paper, it is discussed that the absolute stabilio' for  zero solution of the 

discrete type Lurie control s)'stem 

x(n+ l )~ 'Ax(n)+bf[o(n)]  1 

o(n)ff icrx(n) ( 1 ) 

in which the nonlinear function f( a ) satisfying conditions as follows 

t (0 ) . . 0 ,  o / (o)>O (,~=0) ( 2 ) 

"~ f(0)-----0, O<~kl.~.f(o)/o~h~<+oo ( o ~ 0 )  ( 3 ) 

It gives the necessao" and sufficient conditions for the absolute stability for  

system (1) under conditions (2). We also obtain the sufficient criteria for  absolute 

stability of  the simplified system of ( I )  under conditions (3). 

Key Words discrete type, absolute stability, necessary and sufficient 

condition, Lurie problem 

I. I n t r o d u c t i o n  

More than forty years ago, the Pro-Soviet Union author, A. I. Lurie proposed the Lurie 

control system and Lurie problemt~10 which have general significance in the nonlinear control 

theory and control engineering, by investigating the stability of automatic operating instrument 
of aircraft, Since that time. many authors have extensively studied Lurie control systems to 

describe in various forms and obtained a lot of results for absolute stability ~'--~l. Unfortunately, 

it was only obtained the sufficient criteria for absolute stability of  Lurie control system or 

necessary and sufficient conditions for some special classes 16-~l. Up to now. there is not a 

complete and constructive result for Lurie control systems to describe in various forms. 

in Refs. [ 9 -  i !], the absolute stability of zero solution is investigated for the discrete type 

Lurie control systems as follows 

x(n-b l )=  Ax(n)  +bf[cr(n)  ] 
} ( I .  1) 

or(n) =crx (n )  1 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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where matrix A = ( a o ) , , , , , E R " " ,  vectors x, b, cC=R", 
satisfying condi t ions  as follows 

1(o)=o,  a/( ,~)>0 ( ~ o )  

or / ( o ) =  o, o<~k~<~f(,~)/,r<~k,<+,,~, 

nonlinear function f ( , r )  

(,~=/= o) 

(~ .2) 

(] .a) 

in [9]. Liao Xiaoxin obtained the necessary and sufficient condi t ions  and some sul'ficient 

algebraical criteria for the absolute stability o f  zero solution o f  system (I.1) under  condi t ions  

(I.2) (called infinite sector condi t ion)  or  condit ions (I.3) (called finite sector condit ion).  The 

criteria arc available under finite sector condit ion,  but they are unavai labe under  infinite 

condi t ion except some special cases. So are results in [10. I1]. 

in this paper, firstly, we establish the dimension reducing principle. By using the principle, 

we obtain the explicitl) necessary and sufficient condi t ion for the absolute stability o f  system 

(I.1) under  infinite sector condit ion.  ~e  also give some sufficient algebraical criteria for system 

(1.1) under  finite sector condit ion.  

I I .  N e c e s s a r y  and S u f f i c i e n t  C o n d i t i o n s  for  A b s o l u t e  S tab i l i t y  o f  S y s t e m  (1.1) 
u n d e r  I n f i n i t e  S e c t o r  C o n d i t i o n  

Wc establish the dimension reducing principle firstlv. Similar to [12]. ~ve obtain the 

Lenlma as l'ollo,a 

L e m m a  1 If 

linear t ransformat ion  

~ here 

R a n k [ c ,  ATc, . . . , (A"-~)Tc]=ml ,  then there exists a 

x = M y ,  such thai svstem ( l . I ) c a n  be t ransformed into 

y ( n +  I) = All(n) + 5 f  (,r(n) ) 

cr(n ) = ~rll(n ) } 

nonsingular  

(2.~) 

A,IC::R m,xm,, 7t20.ER m2x.,,, ~,, el, !IIC-Rm,, ~2, y2ER m~, mz+mi=m, and 

R a n k l e , ,  a,",e,.... ,  

T h e o r e m  1 If ..I is Schur stable, namely spectral radim, R(.4)< I. then the absolute 

stability o f  zero solution of  s \s tem (1.1) is equivalent to that of  subsystem of  (2. l) 

!/L(n+ I ~ = A~,!/,(n~ + 5 , ] ' ~ , , ( n )  ),[ 
(2. 2) 

J ~T (n)= ery~lnt 

P r o o f  Because the t ransl \wmation x=M!/ is nonsingular ,  the absolute stability o f  

system ( I . I )  is equivalent to thal o f  .,,)stem (2.1). It is obvious  that the absolute stability o f  

zero solution o f s \ s t e m  (2.1)implic~, that of  system (2.2). Similar to the proof> ,., ',!';. 111. it ,~, 

easy to proxe that if zero solution o f  sxstem (2.2) is absolute stable, then zero solution o f  

system (2 1) is absolulc .,,table. that is. zcro solution ol + sxstcm ( I . I )  is :,l-,.-,+lute stahlc. The 

p roof  is complete.  

Lcmma 1 and Theorem I construct  the reducing dimensiop principle. It i, obvious  lha! 

the rcducing dinlen,,,iOll princq'flc i~, Irtle undcl ll111Lc .',color coll,.ll[ion. (~Hlll';.l~,lin~ ',',ith Rcl. 

[I 1]. the principlc in this paper i:, c,,plicit and mole  con~cmcnt  for al-,phcation 
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For  the m, dimensional system (2.2), due to R a n k l e , ,  tq r : e , ,  . . . ,  ( . 4 ~ t t - l ) t ' e , ] = m ,  , 

there exists a nonsingular transformation t':l, z t = N - l / g t ,  such that system (2.2) can be 

changed into the form 

z l (n+l )=az , (n )+f l f (a )  } 

~,= e'z~ (n) 
(2.3) 

in which 

N - , =  

i 1 am1-1 0 i 

0 0 
0 0 

�9 ". 17l t a l  . ~  

ct  s o f t  

". i 
1 ~ m t  

�9 " 0 I . d  

e f a ~l 1-1 

i~T3mt-2 
I ~ a ' l l  

~r3,, 

eT 

a=N-'A,IN= Ii ~ o 

I 
� 9 1 7 6  

0 0 

�9 "" 0 ~ a o  

�9 "" 0 - - r  

�9 " 0 - - d t t  

. .  . . . .  

�9 " l - -  a m t - - I  

B = N - ' ~ , =  (flo,fl,,~,, "'" . f l , . , - l )  r ,  e = e { N =  ( 0 , 0 , 0 , - . .  , 0 ,  1) r 

a s ( i = 0 , 1 , 2 , . . . , m r -  1) are the coefficients of the characteristic polynomial of  the matrix ,~tt. 

namely 

d e t  ( X 1 - / q , , )  = ).ma'l-am,--l;tm'--l+ "'"-]-ao 

where I is a m,-th order identity matrix. 

Lemma 2 Under infinite sector condition, the necessary condition for absolute stability 

of systm (2.3) is 

f l , = O  ( i = 0 ,  l , . . - , m z - -  1) 

that is, the necessary condition for the absolute stability of the zero solution of system (2.2) is 

5 1 = 0 .  

P r o o f  For system r l e t . l l a l=ha ,  in which k ~ 0  is arbitrary. Let 

F (k )  = a +  k f l e  r = 

0 0 ..- 0 - a o + k i l o  

1 0 ..- 0 - - a t + k i l l  

o I . . .  o - a t + k B ~  

�9 o .  . . . . .  . 

0 0 "'" 1 - a r n l - l + k ~ m l - I  

If the zero solution of system (2.3) is absolute stable, for arbitrary given linear function f ig)  

=ka(k~o) satisfying condition (1.2), the zero solution of  system (2.3) is globally 
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asymptotically stable. Thus F(k)is Schur stable for arbitrary given h > 0 .  

The characteristic equation of  F(k)is 

(am1 1 k " " +  d e t [ , , ! . l - F ( k ) ] = 2 , , , , +  - - . 8 . , , - a ) , , l , n , - t +  (ao-kPo)=O 

For liq. (2.4), characteristic roots At satisfy I,,l, t l < l  ( i =  1 , 2 , . . - , m t ) .  

relation between the roots and the coefficients of Eq. (2.4), we have 

a t=  - (Orm,-1--kj~m,-1) 

(2 .4 )  

According to the 

lq'l 1 

Y'], ~.,~.j = a , , , , -  ~ -  h B , , , -  2 
i . j=l 
( i< i )  

~ 1 7 6  

m l  

H / t , =  ( - I  ) , , , , (a0-  h#0) 
I [ - I  

Therefore (z~,-kfl,) ( i=0,  I, "", m , - I )  are bounded. Because of arbitrarity of/~, we get fl, 

= 0 ( i = 0 ,  I, 2, ' " ,  m , - l ) .  Forthmore we know / i l = 0  from the relation between system (2.2) 

and (2.3). The proof  is complete. 

From the proceeding in the proof  of Lemma 2, we know that if the zero solution of 

system (I.1) is absolute stable, then by a nonsighlar transformation, system (I.1) can be 

changed into.the form 

]+ Jr,o, 
y~(n+  1) .~,~ ,, ..u, (n)  / i ,  

(2 .5)  yl (n)  
, , = [ ~ T ,  o] [ 

y: (n) ] 

Using the same method in the proof  of Theorem 1, we can prove that if AI~, A:z are 

Schur stable, the absolute stability of zero solution of systems (2.5) is equivalent to 

asymptotical stability of the zero solution of the linear system 

y t ( n + l )  =~z,y~(n) (2.6) 

According to the above discussing, we get the result. 

T h e o r e m  2 If A is Schur stable, under infinite sector condition, the necessary and 

sufficient condition is that there exists a nonsigular transformation x =  7"y, such that system 

(I . I)  can be changed into system (2.5). 

Now, we give a result to be convenient for application. 

Theorem 3 If A is Schur stable, under infinite sector condition, the necessary and 

sufficient condition for absolute stability of zero solution of system ( I. 1 ) is 

cr . ,4 'b= 0 ( i = 0 ,  1 , 2 , . . - , m -  I) 

Proof Necessary Because the zero solution of  systems (I.1) is absolutely stable, so is 

that of systems (2.2) and (2.3). It i m p l i e s , O j = 0 ( i = 0 ,  l , . . - , m l - l ) ,  i.e. ,B=0,  / i t = N 0 = 0  . 

According to the theory of  matrix, 
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.Stllli, IcHI 

:1 l id 

crA'b=~,~'b=erd]~jbl=O I i =  0 , 1 , 2 , . . . , m -  1) 

The absolute stability of  system (I . I)  is equivalent to that of (2.1). Since 

crA'b.=er,7Pb=er,~l,~t=o ( i = 0 ,  I , . . . , m t -  1) 

[e,, .~r ~ , . . . . ,  (a,"l '-*)"e~]"L=o 

R a n k [ v , ,  a r , v , ,  -.-, ( R ~ ' - l ' ) r e ~ ] = m t  

d e f t e r ,  ~ { , e , , . . - ,  ( , ~ ' - l ) r e , ] 4 : 0  

~vc can get bl =0.  So the system (2.1) has the form of (2.5). Due to Theorem 2. Theorem 3 

is true. The proof  is finished. 

Because the system (I.1) has special structure when its zero solution is absolutely stable 

under infinite sector condition, it is difficult to obtain available criteria for absolute stability by 

constructing Liapunov function. In the procedure to prove above theorems, we also prove that 

the Aizerman conjecture [2] is true under this specific case. namely, the absolute stability of  

zero solution of (I .I)  is equivalent to the globally asymptotical stability of zero solution of its 

linearized system x ( n + l ' ~ = = ( . 4 + k b c r l x ( n ) ( k ~ L , )  being arbitrary. For continuous type 

Lur iecont ro l  system [5]. if orb=,,, crAb=o.then the criteria in [5] is unavailable, which is 

pointed out by [14] when .4 being identity matrix and crb---- 0. but the problem can be solved 

by using the mothod in this paper. 

I I I .  T h e  A b s o l u t e  S t a b i l i t y  of  Zero S o l u t i o n  o f  S y s t e m  (1.1) under  Fin i te  S e c t o r  
Condi t ion  

Without loss of  generality, suppose b , ~  ~ (or. interchanging the situation of equation and 

variable). If crb~.~,, we construct the transformation as follows 

x~ Lx ( 3 . 1 )  
( T  

[ 
X ~ I I  . A I )  - 

. , . . . ,  ~ m t _ l )  
where x ~ l ~ = c o l ( x [  I~, 

and L =  

b,, o ..- 0 --bl 

0 b,, ... 0 - b ~  

, . .  , , ,  , ~ 1 7 6  

0 0 "'" b= -b,,,_~ 

CI C 2 - . ,  Cm_ I Cm 

By the transformation (3.1). the system ( I . I ) c a n  be changed into 

x t l ) ( n +  I ) = Bx ~l ~(n) +ha(n) ). 
1 o(n+ I ) = grzct  ~(n) +ptr(n) -- P / (o r  (n) ] 

in which 

(3.2) 

h =  c o l ( h ~ , . . - , h = _ l ) ,  gffiffi c o l  (g l ,  . . - , g , _ l )  
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B h ] = L A L - ' ~ A ~ " .  B={bui , , ._~  . . . .  I~ 
gr p. 

System (3.2) is called the simplified system of  system (I. I. The simplified system has 

many advantages: :~.~ the transformation (3.1) is simple. ~f-~'. there doesn't exist restriction for 

the system (I.1) except c r b ~ o  . :,~ there don't  exist extra variables and the coefficient 

column matrix of the nonlinear term is the simplest. 

Similar to theorem 4 in [9]. it is not difficult to obtain the result. 

T h e o r e m  4 If therc exist constant numbers t ~ 0 ( i = l , 2 , . . - , m )  such that 

m - I  

, ax +,- 
,.,:J,,,,-, . ~ Ib,jl t, 19 ,1<1 

Y-]. t--~J Ih~l + m a x  ] P - P k l ~ l ~ < l  
J - t  1~ k==/~,l, kl  

hold. then the zero solution of s,,stem (I.11 is absolutely stable. 

T h e o r e m  5 For system (3.2). if b~j~:9, h ~ 0 ,  # ~ 0  . then the necessary and 

suff'icicnt condition for absolute stability of zero solution of 13.2) is that leading principal 

minors of the matrix l - - J / ~ )  are positive. 

P r o o f  Nece.~sarv Let f ( c s ) = k J ( ~ t l ~ k ~ , k z ) ,  the linearized system of system(3.2) 

(3.3)  

B3 Theorem 916 in [13], v,e know that the leading principal minors are 

to the given conditions, there exists vector r = c o l ( t ~ , . . . , t , , ) ( t ~ O ,  
i = 1 , 2 0  . . . . rn)  such that A ~'' t < t  . namely, satis~'ing the conditions of Theorem 4, 

therefore the Tileorem 5 is true. 

I am grateful to professor Shu Zhongzhou for his disection, professor Hong Jingfeng for 
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