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Abstract
This paper uses the nonlinear prebuckling consisten theory 1o analyse the plastic
huckling problem of stiffened torispherical shell under uniform external pressure. The
buckling equation and energy expressions of the shell are built, the calculation formula
is presenied. Numerical examples show that the method in this paper has better

precision and the calculating process is very simple.
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I. Introduction

Stiffened torispherical shell is a shell of revolution, which consists of spherical shell and a
hoop shell, it is often used in engineering as a head of vessels and submarine, and component
of missiles. The shell must bear uniform external pressure and buckling is one of the main
forms of collapse. In engineering the critical pressure is often estimated by the formula of
stiffened spherical shell and it shall produce some errors obviously. It shall take a Jot of
calculation expenses and times and it is not suitable in the primary design. This paper uses the
nonlinear prebuckling consistent theory to analyse the plastic buckling of this kind of shell, the
calculation formula is presented on the energy principle, the method and formula can solve the
buckling problems of stiffened spherical shell and stiffened torispherical shell.

II. Basic Equations

The basic form of torispherical shell disscussed in the paper is shown in Fig. 1.
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Fig. 1. The basic form of the shell
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The strain relations of shell can be written from Ref. [1]:
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Superscript (1) and (2) are respectively expressed as linear and norlinear part in the strain.
R.and R. are respectively meridional and circumferential of curvature.
Assuming prebuckling state is "¢ and buckling state is “p”. the strain relations before
buckling can be obtwined by taking prebuckling displucement pattern into formula (2.1) and

the strain relation can be shown as when buckling:
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Subscript. “ep” expresses  the  strain consisting of prebuckling and buckling deformation.
Assuming 8, is the circumierential coordinate of the m-th meridional stiffener. Zp is the
distance of centriod of the stiffener area from shell midsurface. leting §=6,, and substituting

Eq. (2.1 and (2.2). we can obtain the strian relations of the m-th meridional stiffener:
Eme=EnpFZnkmos Eymo=ymptZnkymy (2.3)
where.
Emp=1Ep|0=0., e,m¢=e,¢j.a=o,,, Rmo=kelo=0_y kymp=4Fk,olo0=0.

In a similar manner, the strain relations of ¢-th circumferential stiffener:
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2ov==CcstZokors Bper==Epor+ Zokyor (2.4)

where,
ecl=€‘l¢=¢cv Epao=€'l|¢l=¢7c9 kd=kl'¢=¢,, k,cl=k”lq;=¢,_.

@e 1s the meridional coordinate of ¢-th circumferential stiffener, Z. is the distance of centroid
of the stiffener area from shell midsurface. Taking plastic buckling theory and Mises vield
principle, the relations between stress ahd strain in the shell can be expressed based on plastic
shape theory!*:

dog= I f#z (andeg+pa1,dey+a1,degs)
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pa=EJ/E, ¢e=FEV/E

where, E2 and E'? are respectively secant and tangent module in the figure of single stress and
strain, the relations between the moduli and £, and Ey. which are respectively secant and

tangent module in the figure of the stress strength and strain strengthe can be shown as
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The corresponding yield strength is:
01=0,+0;—0u00+ 370
1 __ 1 2 1 3(8,+~)z } (2,9)
6‘—-‘5{(8,4-80) +£ol+ [l+4(l—'2ﬂ)E./(3E)]z}

Ignoring the effects of the trauerse strain and torque, the stiffener is in the single stress state.

For the meridional stiffener:

d¥,=a,.Eds, (2.10)
where
o 4¢, { 1 3 (1—¢s/d) _K;_}
" [3(1—¢l/3)] (1+¢|) 4 (l—¢l/3) K (2 11)
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B=%e— F='vsic-o
For the circumferential stiffener:
d&e=a,Eda, (2.12)
where,
g 40 { 1 3 (0—¢u/d) K}
“T301—¢4/3)] L(14+¢) 4 (1—-¢./3) K
(2.13)
(1 +¢a/3)
Ry~ 1+,

II1. Energy Expression

The total energy of stiffened torispherical shell can be expressed as:

M=V, +V+V,+U (3.1)

where, V,, Vyand V, are respectively strain energy of shell, meridional and circumferential
stiffener, U is potential energy.

Every part of energy can be resolved according to the state and type of strain, the strain
can be expressed in following in this paper:

e=ell 4 eV 4 el eV te,yy E=ketk, (3.2)

where, £§¢) and e{*’ (i=1, 2) are linear and nonlinear item of prebuckling and buckling
strain respectively, &qp is the strain consisting of two kinds of strains.

The expression of every part strain energy is given in following:
3.1 Strain energy of the shell

C -
V£”=?S'{[“u(8“))2‘*'31:(ng))z'f'zllaueﬁ)8‘::)"1" 2“ 033(‘“’0 z]
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where, V¢ = V‘-’) V{9 expresses the strain energy of prebuckling and buckling state
respectively, /=1, 2, 12 express linear, quadratic and higher order item of strain energy, ¥ {{), ¢/
=1, 2, 3) are strain energy consisting of the energy of prebuckling and buckling.
C=FE/(1—u?). Z is the distance of any point from shell midsurface.
3.2 Strain energy of the meridional stiffeners

The strain energy of the meridional stiffeners can be written as V=Y Vo, Vo is

the strain energy of m-th meridional stiffener and can be resolved using Eq. (3.2):
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+20Za+2) (5('1-);"30-""' k,n,e(,l,,),,,,) ldv
Ve = E\ 0n(efBeiine)dv

3.3 Strain energy of the circumferential stiffeners

The strain energy of the circumferential stiffeners can be written as V= 2 Vomy Vom
"

1y the strain energy of e-th cireamferential sutfener and cun be resolved using Eq. (3.2) too.
The energy evpression ol every part of the circumferential stiffener can be obtained through
substtuting subscript ¢ for i and ¢ for ¢ in the cnergy cexpressions of the meridional
suflencers,
3.4 Potential energy

Resolving potential energy using Eq. (3.2). and having:

Us © W& +UE +UE)
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IV. Buckling Equation and Solution

4.1 Buckling equation
Expanding Fg. (3.1 (u,,0..0, 1. the energy increment of buckling can be obtained:

A[]=an+j~!a:11 +3'75311+-»- (4.1)

Because the shell is balanced in (4,.v,,w,) and there is /7 =0. The buckling equation

al shelt can be obtained from Trefftz Theory:

&I =8V,+U,)=0 (4.2)
where,

V= V= 2V + Vi + V)
L/p:' CSV[(aH(ew‘*'/‘al:f;ﬂ)ﬂl. + {01300 +l‘01_€ew)'p2’+ 'l—;'_uf..lﬁ,w,]dv
+20 a,,.[t,,..,/a”,..,,Jdu+ T\ veiteBialdy
4 4 < 14

Laps Eety Lapo dNd 2emes Zecr can be obuuned by the prebuckhing analysis.



Plastic Buckling of Stiffened Torispherical Shell 1009

4.2 Displacement function

Because the effect of meridional stiffeners shell shall produce asymmetric deformation
before buckling. the shell is a kind of shell of revolution and subjects to uniformly external
pressure, the circumferential displacement pattern can be expressed by trigonometric function
and the meridional pattern can take a finite combination for some functions. Neglecting

meridional and circumferential deformation, the prebuckling displacement pattern can be
written as:

w-(¢,9)=Z¢uwu+xw(9)2¢uwu (4.3)

where, ¢asand ¢asare basic functions, weyand wp, are generalized coordinate to be found. Xy
(9) can take a trigenometric function and let X o(0)=cosN0 in this paper, N is the numbers
of meridional stiffeners. The basic functions can be taken as arbitrary function which satisfies
the boundary condition and deformation feature of the shell.

The displacement of prebuckling sate increases an infinite small amount when buckling
and this increment can be expressed as:

)
I 4
ty= [pu]{u} =3 dustia
. kel
s
vp=[pe]{v}= T duv, | (4.4)
. g=1
Q
wy= [pu]{w}= 3 duntm J

according to the feature for shell buckling. the basic function is taken as:
ds1=exp[ —P¢*]8insc,pcosnd
¢o1=exXp[ —Pe*)sinic,psinnd (4.5)
duvr=exp[ —Pp*] [co8c1p—8in’c,pcosng]

where,
a=(2m—1)n/2%, ¢c;=ma /g .
the numbers >f circumferential waves when buckling,

n
m the nubmers of meridional 1/4 waves when buckling,
f-——the attenuation coefficient along meridional direction when buckling.

4.3 Solution procedure
Substituting (4.3), (4.4) and (4.5) for the formula (4.2), the buckling problem of stiffened

torispherical shell can be changed into following optimization with constraining problem:

=, p

'P,,=minP(m,n,ﬂ,x.) }
S.t. 6H|x=x‘=0

(4.8)

V. Computing Examples

In order to check if the method is correct, some typical problems are calculated. The
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following are some calculated results.
Example 1 Ciamped spherical shell
The clamped spherical shell is subjected to uniform external pressure, with dimensions R
=32cm, r=0.15¢cm, @=60°. E=09.629Gpa. T¢=254973MPa. =0.32. respectively. The
basic data of stress-strain curve of the material are shown in Table 1. the calculation results
by some methods are shown in Table 2, the change of buckling pressure with m and n is listed
in Table 3

Table 1 Initial data of state-strain curve of the material

ex10° | 2.67] 3.0 | 35 | 4.0 | 45 | 50 | 6.0 [ 7.0 | 80 | 9.0 | 1000 11.0{ 2.0

a(MPa) [196.133215.746[240 . 263257 .425272.625284 393301 . 554314 . 107|325 .890(333. 426|341 271349, 117356 . 962

Table 2 Buckling pressure of a clamed spherical shell

mcthod m n P"(kpl)/ﬁ
spherical - 13 1864.636/—
wenmher ange 2 7 2047.727/5.2%1
chasti 2 7 2013.7%/5.5262
plastic 3 8 1413.432/17 .401

Table 3 The effect of varying the m and n on the buckling pressure (kPa)

memberange clasti plastic
n m — ——
P, B P, 7} P, B
1 5204291 0.01628 5116 .914 0.01699 1897.293 0.01929
7 2 2047.727 5.5489 2013.796 5.5262 1414 511 17.401
3 2515.013 10.532 2473.335 10.489 1413.629 30.107
4 3722.310 10.830 3660.626 10.786 1494 239 10.365
1 4164 002 0.04178 4093.786 0.04161 1598.092 0.01929
8 2 2054 .984 5.5226 2020.954 5.2269 1414.903 20.088
3 2953.959 9.0449 2905.024 9.0461 1413 432 17.401
4 4428 .389 4.2918 4355.035 4.2924 1671.347 4.173
1 3428503 0.01656 3370.840 0.01656 2433.634 0.01929
9 2 2168 .937 4.8666 2132 .946 4.8673 1413.923 17 .401
3 3475.183 7.1849 3417.519 7.1859 1441.774 6.9228
4 5084 .062 1.9896 5004.137 2.4873 1860.027 2.1154
Table 4 Buckling pressure of a clamped torispherical shell
1]
method P..(kPa) n m B
sphenical 6381.111 4 2 8.346
clastic 4915693 4 4 13430
plasuc 2015 .465 5 4 11.358

Example 2 Clamped torispherical shell
The geometry form of torispherical shell is shown in Fig. 1(a), and some parameters are r,
=8cm, L=32.1cm, (=0.28cm, R=20cm, H=11.2cm, ®;=30", u=0.32, respectively. The
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physical properity of material is the same as Example 1. The buckling analysis results are
shown in Table 4, a series of the results by changing ri/H is listed in Table 5.

Table 5 The effect of varying the r,/H on the buckling pressure (kPa)

torispherical equivalent spherical
ri/H sphericai
P, n m P, n m
0.0 13040.433 4 2 13040.433 4 2 12096.711
0.35 11235.393 S 3 11776 .905 S 2 11009.763
0.50 8271.302 5 3 9548.662 4 2 9215.710
0.714 4915.693 4 4 6381.111 4 2 6490.198
0.75 4257.148 4 4 5664.098 4 2 5824.393
0.85 2657.627 5 4 3280.660 4 2 3591.441
0.9 1949 .443 6 4 1916.972 4 2 2239.623
0.95 1513.683 7 6 632.411 4 2 837.558
0.99 1062.619 12 3 26.217 4 2 49.050

On the condition that H and R are definite, the torispherical shell may have different
external outline. An extreme form is the radius of hoop shell which equals to zero and
the radius of spherical shell obtains minimum. Another extreme form is the radius of spherical
which obtains maximum and the radius of hoop maximum (equals the height A of
torispherical shell) too. Between the two forms, the shell may have many kinds of radius
combinations for spherical and hoop shell. Because the radius of spherical and hoop shell has
following relation:

L=(R*4+H*—2Rr))/2(H —r\)

When radius r, of hoop shell is given the radius L of spherical shell may get. After R and H is
definite, the buckling pressure of torispherical shell will decrease rapidly along with increment of
radius of hoop shell as shown in Table 5. When r./H equals 0, P,, is maximum and r,; H cquals],
minimum. In the range of 0 and 0.9. the buckling pressure of torispherical shell is lower than
that of equivalent spherical shell. When equals 0.9, the buckling pressures of two kinds of are
almost equals, and then the pressure of torispherica!l shell will increase along with the increase
of ri/H and is greater than the equivalent spherical shell. But for this case. the radius of
spherical shell is very large and the shell will tend to a flat, the buckling pressure is very lower,
it is impossible to use this kind of shell as a head of vessels subjected external pressure in
engineering. Following conclusion can be obtained by above analysis, the buckling pressure of
torispherical shell is lower than that of equivalent spherical shell in the range of engineering
applying. It will give a danger result if using the method of equivalent spherical shell to design
torispherical shell.

Example 3 Clamped stiffened torispherical shell

In oraer to check the method, a buckling experiment of stiffened torispherical shell is
completed, the stiffened form of the models is shown in Fig. 1(b), for the model 1, the width
of stiffener is 5.5mm, the height of stiffener is 7.3mm, for the model 2. the width and height
are 5.5mm and 7.4mm, respectivly other parameters are the same as Example 2. The
experimental results and buckling pressure calculated by the method in this paper are listed in
Table 6.
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Table 6 Buckling pressure of stiffened torispherical Shell

number of model method P.,(kPa) n m B refative error with experiment
clasin 9215.799 7 3 8.346 209.1%
1 plasit 3166.077 3 4 5.3123 6.2%
experiment 2981.222 - -
clastic 9487.395 3 8.351 2078%
2 plastic 3258.353 4 5.322 5.7%
caperiment 3082.624 - -
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