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A b s t r a c t  

This paper uxes the nonlinear prehuckling consisten theorr to analrse the plastic 

buckling problem 0I st!ffened torispherical shell under uniform external pressure. The 

huckling equation anti energy expressions of the shell are huih. the calculation formula 

is presented. Numerical examples show that the method in this paper has hetter 

precision and the calculating process is verr simple. 

Key words stiffened shell of revolution, torispherical shell, uniform external 

pressure, plastic buckling 

I. I n t r o d u c t i o n  

Stiffened torispherical shell is a shell of revolution, which consists of  spherical shell and a 

hoop shell, it is often used in engineering as a head of vessels and submarine, and component  

of missiles. The shell must bear uniform external pressure and buckling is one of  the main 

forms of  collapse. In engineering the critical pressure is often estimated by the formula of  

stiffened spherical shell and it shall produce some errors obviously. It shall take a lot of  

calculation expenses and times and it is not suitable in the primary design. This paper uses the 

nonlinear prebuckling consistent theory to analyse the plastic buckling of this kind of shell, the 

calculation formula is presented on the energy principle, the method and forpaula can solve the 

buckling problems of stiffened spherical shell and stiffened torisphcrical shell. 

II .  B a s i c  E q u a t i o n s  

The basic form of torispherical shell disscussed in the paper is shown in Fig. I. 
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Fig. 1. The basic  form of  the  shel l  
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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The strain relations of  shell can be written from Ref. [1]: 

e" = I~(t") -t- ~ i '  = {u t "l" "--~1 } ' t -  { 0" 5 (/gz'{" Yz) } = 1 z 1 

: {V '+ . , , , ,+  w } + { - < ( +  + 

--<"- <"=f" +,("  ~'1+ / , I - - ~ , ,  r e , ,  t r  i T /  J {/5'~} 

J _ _  i " 1  r # 

r' [3 _ r  7 R, k ,=f l ' l  k i = ~ + f l T i  k o = � 9  

(2.1)  

where, 
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Superscript II ) and J2) are respectively expressed as linear and nopiinear part in the strain. 

R, and R are respectixel.\ mcridional and circumferential of  curvature. 

Assuniing prebucklirig state is "c" arid buckling state is "p ' .  the strain relations before 

buckling can be obtained b\  taking prebuckling displacemcn�93 pattern into formula 12.1) and 

the strain r'cl,ition tilt1 bc shm~ n as x~ hen buckling: 
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v, here 

g , = - - ~ - - w ~ ,  r  .vt - -  
RI R2 �9 t ' , , = ~  - - 7  

Subscript ",,p" expresses tile slrain ccmsisting of prebuckling and buckling deforn3ation. 

Assuming 0,,, is �93 cilcunalercntial coordinale of the m-th meridional sliffcner. Zm is Ihc 
distclnce of ccillriod of lhe Millcner ;area fron; shell n-iidsurface. Iciing 0 = 0 ,  and substituting 
Eq. (2. l i and I-'."l. ~c coin oblain the striari relations of the m-th meridional stiffener: 

I .tP~c~ llmtP~ elml'~ZmklmrP (7. 3) 

v, herc. 

t , . ~ , = t ,  lO=O., e~- - - - -ep ,  10=&., km,=k~,IO=O., kp,,,=k~v, lo=o 
" l  

In a smlilar manner, the strain relations ol'~-th circumferential stil'lZmcr: 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
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l , , = e , i +  Z,kol, ~ i , ,=e~, l+ Zok~,t ( 2 . 4 )  

where. 

ea=e~l~=~=, epo,=e~lt,=i,=, kot=kll~=i,., kta=k~l~,=~. 

q~o is the meridional coordinate of  r-th circumferential stiffener, Z, is the distance of centroid 

of the stiffener a.rea from shell midsurface. Taking plastic buckling theory and Mises y'ield 

principle, the relations between stress a~d strain in the shell can be expressed based on plastic 

shape theoryi-'i: 
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1 . .  l - - 2 p _ { .  I O't / E,* ~ -K-.' E . f f f  

1 1 -- 2/~ + 1 dot  
(2,8) 

The corresponding yield strength is: 

,:r I -- c,~ + a l  - cr,ai+ 3rb 
i {  3 (ec't'ae) z ) I (2.9) 
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Ignoring the effects of the trauerse strain and torque, the stiffener is in the single stress state. 

For the meridional stiffener: 

drr~, ffi a=Ede , (2.10) 

where 
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For the circumferential stiffener: 

where, 
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III. E n e r g y  Exp re s s ion  

The total energy of stiffened torispherical shell can be expressed as: 

IIfV,+Vo+V,+U (3. ]) 

where, V,9 V#and V~ are respectively strain energy of shell, meridional and circumferential 
stiffener, U is potential energy. 

Every part of energy can be resolved according to the state and type of strain, the strain 
can be expressed in following in this paper: 

eff ig . '+  ep > +.e(,'> + e~, ' '  +e . , ,  k= k .+k ,  (S. 2) 

where, e |  ' l  and ett') (i= I, 2) are linear and nonlinear item of prebuckling and buckling 
strain respectively, e.p is the strain consisting of two kinds of strains. 

The expression of every part strain energy is given in following: 
3.1 S t r a i n  e n e r g y  o f  t he  shel l  
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where, t*(~)--t/'(J) V (~) expresses the strain energy of prebuckling and buckling state r@| - -  r # ~  , - - # p  

respectively, j =  I "~ 12 express linear�9 quadratic and higher order item of strain energy, r/'(~) ~i �9 ~�9 - -##p  v 

buckling. = 1, 2, 3) are strain energy consisting of the energy of prebuckling and 

C = E / ( 1  - p ' )  , Z is the distance of any point from shell midsurface. 

3.2 S t r a i n  e n e r g y  o f  t h e  m e r i d i o n a l  s t i f f e n e r s  

The strain energy of the meridional stiffeners can be written as V~,= ~ V ~ , , ,  
it 

the strain energy of m-th meridional stiffener and can be resolved using Eq. (3.2): 
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V(=, E ~  r / . " '  , = - ^  t , ) - ^ - ( ,  -,,, Z j F  a m t ~ # p m ~ /  t Z s  " Z ~ p m ~ e p m P  Omop 

Vg, is 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



1008 ttac) Gang. Zeng Guangwu and Hao Qlang 
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:1.3 S t r a i n  e n e r g y  o f  t h e  c i r c u m f e r e n t i a l  s t i f f e n e r s  

The strain cncrg~ or the circumferential stiflcners can be ~licten as P i =  ~ For,, P ~  
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t,, the strilill CllClg% c,f c-th ctrcumfercnti+tl stilfcncr and can bc resolved using Eq. 13.2) too. 
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u =  52. 
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Buckling Equation and Solution 
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lixpandmg I!q. (3. t) ill ( u , , , , . ;~  ,~.  the energy incremem or buckling can be obtained: 

& I 1 = 6 I I + ~ 3 : / 7  +~16~II+. . .  (4.1) 
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%% hCTC. 
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~,~o can be oblmned by Ihe prebuckling analysis. 

(4.2) 
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4.2 Displacement function 
Because the effect of meridional stiffeners shell shall produce asymmetric deformation 

before buckling, the shell is a kind of shell of revolution and subjects to uniformly external 

pressure, the circumferential displacement pattern can be expressed by trigonometric function 

and the meridional pattern can take a finite combination for some functions. Neglecting 

meridional and circumferential deformation, the prebuckling displacement pattern can be 
written as: 

w, (q~,O) = ~ qbAjw,4~q-Xw (0) ~ ~ , j w , j  (4.3) 
i i 

where. ~b,~j and q~sjare basic functions, w,t~and wnjare generalized coordinate to be found.X~, 

(0)can take a trigonometric function and let g. ,(0)=cosN0 in this paper, N is the numbers 
of meridional stiffeners. The basic functions can be taken as arbitrary function which satisfies 
the boundary condition and deformation feature of the shell. 

The displacement of prebuckling sate increases an infinite small amount when buckling 
and this increment can be expressed as: 

P 

k - I  

8 

9 - 1  

0 

t o p =  I~lu] "{to~,= ) '] ,  t~wmwm 
l i l t  m I 

(4.4) 

according to the feature for shell buckling, the basic function is taken as: 

~b.t= e x p  [ --tiC"] sinSc~qmosnO ] 
~b.t= exp  1" --B~,2]sinSc,~sirm8 

4'~,~ = exp  r - B ~  ~] [cos~c~0- sinSc,,ucosna] 

(4.~) 

where, 
c~= (2m- 1)~/2-~, c2=m~d~.  
n the numbers )f circumferential waves when buckling, 

m the nubmers of meridional I/4 waves when buckling. 

// the attenuation coefficient along meridional direction when buckling. 
4.3 Solution procedure 

Substituting (4.3), (4.4) and (4.5) for the formula (4.2), the buckling problem of stiffened 

torispherical shell can be changed into following optimization with constraining problem: 

' P , , =  minP(m,n,f l ,x ,)  
""'P } (4.e) 

s . t .  d//ixfx.ffiO 

V. Computing Examples 

In order to check if the method is correct, some typical problems are calculated. The 
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fol lowing are some ca lcula ted  results. 

E x a m p l e  1 C l a m p e d  spherical  shell 

The  c l amped  spherical  shell is subjected to uni form external  pressure ,  with d imens ions  R 

= 3 2 c m ,  t = 0 . 1 5 c m ,  ~ = 6 0  ~ E = 6 9 . 6 2 9 G p a ,  c r+=254.973MPa,  / t = 0 . 3 2 .  respectively.  The  

basic da t a  o f  s t ress-s t ra in  curve o f  the mater ia l  are shown in Tab le  I. the ca lcu la t ion  results 

by some me thods  are shown in Table  2, the change  o f  buckl ing pressure  with m and n is listed 

in Table  3 

T a b l e  1 I n i t i a l  d a t a  o f s t a t e - ~ t r a i n  c u r v e  o f t h e  m a t e r i a l  

...... ,0.01 1 o., 
o(MPa) 341.271 349.117 356.962 

T a b l e  2 B u c k l i n g  p r e s s u r e  o f a  c l a m e d  s p h e r i c a l  she l l  

m 

, p h c  r ~,..,t ] 

i 1 1 c i i i b c i  . l i l t  L" 

p l , t M I t  

el 

2 
2 
3 

mcth,.M 

13 

7 
7 

8 

Pc,(kPa)/p 

186,1.636/-- 
2047.727/$.2~1 
2013.796/5.5~2 
1413.432/17.401 

Table  3 The e f fec t  of  v a r y i n g  t h e m  a n d n  on t h e  b u c k l i n g  p r e s s u r e  ( k P a )  

N m 

1 
2 7 
3 
4 

1 
2 

8 
3 
4 

1 
2 9 
3 
4 

IIII I )}hCI .ll~t t "  CI; l '~ l l t  

P+, /? Pc, t? 

5204.291 
2047.727 

2515.013 
3722.310 

4164.002 

2054.984 
2953.959 
4428.389 

3428.503 
2168.937 
3475.183 
5084.062 

0.01628 

5.5489 
10.532 
10.830 

0.04178 

5.5226 
9.0449 
4.2918 

0.0165S 
4.8666 
7.1849 
1.9896 

5116.914 
2013.796 
2473.335 
3660.626 

4093.786 
2020.954 
2905.024 
4355035 

3370.840 
2132.946 
3417.519 
5004.137 

0.01699 
5.5262 

10.489 
10.786 

0.04161 
5. 2269 
9. 0461 
4.2924 

0.01656 
4.g673 
7.1859 
2.4873 

plip~lir 

P ,  # 

1897.293 
1414.511 
1413.629 
1494.239 

1598.092 
1414.903 
1413.432 
1671.347 

1433.63,4 
1413.923 
1441.774 

1860.027 

0.01929 
17.401 
30.107 
10.365 

0.01929 
20.088 

17.401 

4.173 

O. 01929 
17.40I 
6.922.8 

2.1134 

Table 4 Buckling pressure of a clamped torisphericalshell 
! 

b 

n m .8 meth,~ P, , (kPa) 

spherical 6 3 8 1 . 1 1 1  

ct,~t,c 4915.693 
pl.st,~ 2015.465 

Example 2 Clamped  tor ispher ical  shell 

,I 2 8.:346 
4 4 13.430 
5 4 U.~S8 

The geomet ry  form of  tor ispher ical  shell is shown in Fig. l (a) ,  and  some pa r a me te r s  are  r, 

= 8 c m ,  L=32.1cm, t = 0 . 2 8 c m ,  R = 2 0 c m ,  H = l l . 2 c m ,  q~0=30 *, 1t=0.32,  respectively.  The  
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physical properity of  material is the same as Example I. The buckling analysis results are 

shown in Table 4, a series of  the results by changing r,/H is listed in Table 5. 

Table  5 The e f fec t  of  vary ing  the r,/H on the buckl ing  pressure  (kPa) 

rt/H 

0.0 
0.25 
0.50 
0.714 
0.75 
0.85 
0.90 
0.95 
0.99 

i 

torisphertcal 

Pc, 

13040.433 
11235.393 
8271.302 
4915.693 
4257.148 
2657.627 
1949.443 
1513.683 
1062.619 

f'l 

4 
5 
5 
4 
4 
5 
6 
7 

12 

m 

2 
3 

3 
4 

4 

4 
4 

6 
3 

equivalent spherical 

P e r  n 

13040.433 4 

11776.905 5 
9548.662 4 

6381.111 4 
5664.098 4 
3280.660 4 
1916.972 4 

632.411 4 
26. 277 4 

spherlcu i 
m 

2 12096.711 
2 11009.763 
2 9215.710 
2 6490.198 

2 582,4.393 

2 3591.441 

2 2239.623 
2 837.558 

2 49.050 

On the condition that H and R are definite, the torispherical shell may have different 

external outline. An extreme form is the radius of hoop shell which equals to zero and 

the radius of  spherical shell obtains minimum. Another extreme form is the radius of  spherical 

which obtains maximum and the radius of hoop maximum (equals the height H of 

torispherical shell) too. Between the two forms, the shell may have many kinds of radius 

combinations for spherical and hoop shell. Because the radius of spherical and hoop shell has 

following relation: 

Lffi (R'+ H ' -  2Rrt) /2( H - r l )  

When radius r, of  hoop shell is given the radius L of spherical shell may get. After R and H is 

definite, the buckling pressure of  torispherical shell will decrease rapidly along with increment of  

radius of  hoop shell as shown in Table 5. When r,/H equals 0, ,,O,, is maximum an(l r,: H c(luals I, 

minimum. In the range of  0 and 0.9. the buckling pressure of  torispherical shell is lower than 

that of  equivalent spherical shell. When equals 0.9, the buckling pressures of two kinds of are 

almost equals, and then the pressure of torispherical shell will increase along with the increase 

of  r,/H and is greater than the equivalent spherical shell. But for this case, the radius of 

spherical shell is very large and the shell will tend to a flat, the buckling pressure is very lower, 

it is impossible to use this kind of  shell as a head of vessels subjected external pressure in 

engineering. Following conclusion can be obtained by above analysis, the buckling pressure of 

torispherical shell is lower than that of equivalent spherical shell in the range of  engineering 

applying. It will give a danger result if using the method of equivalent spherical shell to design 

torispherical shell. 

E x a m p l e  3 Clamped stiffened torispherical shell 

In oraer  to check the method, a buckhng experiment of  stiffened torispherical shell is 

completed, the stiffenedA'orm of the models is shown in Fig. l(b), for the model I, the width 

of  stiffener is 5.Smm, the height of stiffener is 7.3mm, for the model 2, the width and height 

are 5.5ram and 7.4ram, respectivly other parameters are the same as Example 2. The 

experimental results and buckling pressure calculated by the method in this paper are listed in 

Table 6. 
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Table  6 

number  of model 

1 

B u c k l i n g  pressure  o f  s t i f fened tor i spher iea l  Shell 

method P,~,(kPa) n m 

,-I,,,,, 9215.799 7 3 
I,I~,,L,~ 3166.077 3 4 

c~pcNment 2981. 222 --  --  

t.I;,.,,~ 7 3 

c" x p c ' r l l D c . n  i ~ 

9487.395 
3258.353 

j 3082.624 

R e f e r e n c e s  

~.~46 
5.3123 

8. 351 
5.322 

I ml 

re[.lllxr e r ror  kkllh expcrlmenl 

209.1~ 
6.2,~ 

207.8~ 
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