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Abstract

In order to use the second-order S-point difference scheme mentioned to compute
the solution of one dimension unsteady equations of the direct reflection of the strong
plane detonation wave meeting a solid wall barrier, in this paper, we technically
construct the difference schemes of the boundary and sub-boundary of the problem,
and deduce the auto-analogue analytic solutions of the initial value problem, and at the
same time, we present a method for the singular property of the initial value problem,
Jrom which we can get a satisfuctory computation result of this difficult problem.

The difference scheme used in this paper to deal with the discontinuity problems

of the shock wave are valuable and worth generalization.

Key words one-dimensional unsteady, Harten solution, difference scheme

I. Introduction

The reflection problem of strong plane detonation wave is important and typical in the
application of blow-up energy. This problem has been considered by many people. Prof.
Huang Dun gives a series of analytical solutions for 1/k%x10°<1,355 in [2] and Wu
Xiong-hua obtain the numerical solutions of the problem by using the separate singularity
method in [3]. But because this problem appears companied with unsteady shock wave,
boundary and initial values, and solutions with characteristic length, the results are either that
the shock region is widened or that the wave peak is evened, or discontinued with the
oscillation. So their results are not satisfactory.

In this paper, we use the 5-point difference seheme put forward by A. Harten in 1983
which was used to solve a kind of hyperbolic systems of conservation Laws and to computer
the reflection problem of the strong plane detonation wave. We not only have tested the high
accuracy of the Harten scheme, but also have showed the advantage of this method when it is
applied to the strong plane detonation. The advanthge is that it gets over the weakness of the
discontinuity region width when we use the first-order scheme to computer, as well as the
weakness of the discontinuity with the oscillation when we use the second-order to computer.

II. The Mathematical Model of the Problem

The one-dimensional unsteady movement equation of complete gas is

545



546 Chen Shao-jun

ou Ou
o1 ' ¥ 8x T p ox

@
ke
+
olo
%o
+
Q
)
|
1)

(2.1)

0
ap+ ap'*'?v u=0J

Y is heat-insulation constant. Choose the coordinate system as the following Fig. 1.
Neglecting the inner energy of the static air, then let r=—r, (1,>>0) and there is a strong
detonation on the plane at x=R,. According to dimensional theory and equation (2.1), we
know that before the detonation wave reaches the barrier x=0, the main parameters of the
problem are total two dimensional independent constants except for ¥ and ¢. Thus the detona-
tional incident wave AB which propagates to the rigid solid
barrier at x=0 has the auto-simulated property. When =
0, the incident wave meets the barrier without reflection,
denoted as & x=0, x=R,, Af(\) and OB divide the
plane x- ¢ into three regions: inregion I, there 1s auto-
simulated solution; in region I1 there is an unsteady shock
wave but average entropv and auto-simulated property; g
and region HI is the static air before detonation. I

I

For the convenience of the comparison and — e e i
analysis of the computed results, we will use all
constants appeared in [31 that is, Ro=I1(m). K=1, Fig. 1
t.=2.1718193x 10" l‘XK( s ) and E,=1.077X2.7349056 X 10+ K(J/m’) the released energy
from the unit area.

III. The Summary of the Method and the Results of This Paper

The Harten scheme used in this paper is 5-point difference scheme which has
second-order accuracy, and its convergence and stability have been considered in detail in [1],
here we express the scheme as following without any proof:

o3 =0) — AP, —F1_ )
s =L @) +(05,0)] +217:; RE Gy ghtah QR Gh  +r%, ) db 3

here:

Axr ko koo gk
A=g Yiee =M @i iy Ay
A,‘+,} UV=Ug4—Uy
gi= S, ymax(o, min(|gt, , |, g*_, S¥, )1
S.‘++=ﬂgn(§;+f)
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B =0.5[Q 0k, -0 mat

{ (g‘«n gk)/ d?++, a?+* 0
l+* a'h+_!_=0
x’/4e+e, |x] <2e
Q)= {
[x], |x] =>2¢

R[] denotes the right eigenvector obtained from matrix [-]; @®denotes the eigenvalue.

When we use the above scheme to compute the solution on every layer of the grids in II
region, first we must know the right and left boundary value and ‘the right and left
sub-boundary value on the layer of the grids, and the initial conditions of the equation.

Firstly, we can know easily that, for the region II, the right boundary is determined by
the solution of the region I. We have mentioned once above that the solution in the region |
has the auto-simulated property. Here we first deduce the auto-simulated analytical solution in
the region I by the dimensional theory in the mechanics.

When applying the Eular coordinate, the basic functions needed solving in (2.1) are the
velocity u, density p and pressure p. By the [l theorem in the dimensional theory. there are
follow:

u="¥y  p=p¥)  p=Hhw (3.1)

here 9, %, & are the variables without the dimension. p, is the density of the static air
before the detonation.

When the strong detonational wave is produced by the air, the strong jump is generated
within the flowings. The conservation of mass, momentum and energy should be satisfied
when the gas passes the discontinuous surface. Denote one side of the discontinuous surface as
the upper mark 1 and the other side as the under mark 2, then we have

pi(u; —c)=py(us—c)
o (u,—c)*+ p,=pa(4s—c)+ p:

: -— ——2'-‘ l=— —c)? —K—.ﬁ"—
'9—(“1 c)? +‘Y"‘1%; 2(“: C)+‘)’—1Pz

¢ is the velocity of the air-shock wave. In this case, the unique combination of the
non-dimensional variables is r%~%/(E/p,) according’to the dimensional theory. This follows
that the unique non-dimensional variable parameter is

)»=r/(E/p,)‘"t2n (3.3)
to air-shock wave, coordinate r; is the function of time, so r; has dimension 1, £1 and E can not
form the non-dimensional combination, we have:

re=(E/p)""" t "1 (3.4

here A*is any a non-zero constant. Without lossing generality, let A*=1 then derivate (3.4)
about time ¢

(3.2)

l

placing (3.5) into (3.2) and we notice that #,=0 and a,/c=0 on'the air-shock wave (a, is the
velocity of sound in the undisturbed medium), we have following on the air-shock wave:
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Compare (3.1) with the first equation of (3.6) and let new variable =y o/ %

_r’_= 7". =f= ——(y+1)/17f

- b, g (3.7)
Log-2zly, 2_p Srtlugy

P2 9= y+1 , 8
We now can sce that to solve r, p, u. p only need to compute the functions A(9°), (%)
and ¥ (%) . Placing (3.1) and (3.3) into (2.1) and replace with ZF=vw’/ %’
derivate the first cquation about g . and derivate the seccond and the third cquations after

logarithm them, we have:

F{(F+yyr—2)(F-38)'—(y—-D¥(r—1)(¥ =38} \

d¥r -R(r-H+Fx (-1’

dv (7 =87 (Fr—1)(Fr-3+ (¥ -]

dlnd F—(7r-9)° \ (3 8)
d¥ ~— (¥ -1 (F -0+ (F¥-9)Fr :
dinw (-7 (r—-OH+ (¥ -7

dlnA ¥ — d( 0—9" Fr— (7 —38)? )1

in (3.8), 6=2/3, #=2/3y. By applying the energy integral formular satisfied by the

air-shock wave:
o+ (r=-5)(Fr+75) =

repeat integral (3.8) then we obtain (%), A(%)and # (2°). Placing & ("), A(?") and
Z(7°),(3.6) into (3.7) and we notice that: y<(Ty 9" —>2/3p  thus we get the auto-simulated
analysis solutions in region I:

= [R(ET m (D) ar, a n=Be

2

2s8 70 -, —6/0

A=(1.8V) " [6(2. 1V =11 [3(1—1.2"F]
—u=V —V,x (1.8V)

2679

p=p.(62. W ~1)1"T6 (1-27 )] " 1301~1.20))
p=p, (1.8 [6(1—1.5V)] "*[3(1—1.2V)1™"°

here V' comes from theiteration of 1 as following:
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70— .
v 63 ’



Harten Solution for One-Dimensional Unsteady Equation 549

V(l+l)=V(i)+_3_. A—-AV D)
2 AV [1/@V Y —10/T) =1/ VO 41/(1—1.2V )]
Now, we can compute the value of the right-boundary of region I1.

Secondly, we can use the analysis solution in region I as the initial value of region II. But
we must note that the original point is the singular point to the analysis solution and also the
multiple-valued singular point. So we take the following two kinds of methods to avoid the
singular point.

(1) Choosing an arbitrary A¢t>0 and supposing A¢ section as the initial compute time.
Naturally this complicates the computation of the initial value and the key point of the
complication is how to locate the shock wave on the At section. Now let us begin with 7=0.0,
and find the location of the grid points occupied by the shock wave (by using the method we
have had, we can make certain the location table of the shock wave determined by At and go
a step further to locate roughly the grid point location of the shock wave) and then deal these
points with the weighted-average method. The new location computed from above can be
considered as the more accurate location of the shock wave. For convenent comparison, we
will use the table of the shock wave determined by At in [2] to locate the shock wave on
some At sections. Once we have determined the location of the shock wave, we have
determined initial value.

(2) Using the mirror-reflection method. Let us also begin with 7=0.0, and add two nodes
before the origin. Then we value these three points with the original first three node values
respectively (notice that u needs to change its sign). Thus the shock wave seems to be passing
through x=0 from the left of t-axis and reflecting to the right of r-axis, hence the singular
point is avoided when we compute the initial value.

Thirdly, we will present the sub-boundary schemes. For the convenience of furture
computation, we will not compute directly the u, p and P in (2.1), but the p , m and e in (2.1)",
the equivalent equation system obtained by placing: '

0 e L]

p=(y—1)(e—~0.5pu*)

e
into(2,1)

‘04 0 1 0 \ {p'

?—3’"2 m 1
mi S (3—}’);- y—1 |m,

+ | =0 (2.1)

yme m* ye 3(y—1)m* ym
—_ —1]1)— - e,

€ k oF +(y )pa P 2p2 0 J

(1) To the sub-boundary we can choose a general three-point explicit scheme:
vitt=vj—4 (Jji g~ Fi-g)

1
f,~+.4_=%'[f(vﬂ+f(vm)—70 (‘DH__%) AH_%U ]

Dj++=lak(vll_+'f‘) ’ A)'++v=vl+l_vi

x/de+e |x| <2¢

Q(x)={ | x] |x| >2e
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It is valuable to notice that this three point scheme is 1-order, and its combinational use with
the 2-order scheme must lead to unsatisfactory computation results. So in the following we
will give a sub-boundary difference scheme which has Z-order accuracy and be provided
together with the 2-~order Harten scheme.

(2) From a careful analysis of the Harten scheme, we can see that the key to the question
is how to construct g,( - 1.1, 2). It is difficult to construct g, because of no definition of g, at

the point — 1. We are forced to remove the dependence of g, on the point — 1 to that on the
point 1(N+1) (see Fig. 2). t
When x=0 and m=0, we have e¢,=0.
Meanwhile, from x=0 we can also easily Nl 3 e 5 s |7
compute the three eigenvalues of the coeffi- hle L s |
clent matrix A(W) of #,in the (2.1): -1 N
a=(—c¢, 0, ¢) and 3X3 left characteristic 0 X
matrix L. So: Fig. 2
a=(Ax-L- W')"”:Ax'(_;—c" o __%)rl c=_2£_
hence:
vi=—Acy vi=0; vi=4-c
and

(Q(—=Ac) =(=Ac)*1[(p ' —p1)/4c]A
91=( Y )
—[Q(Ac) = (Ac)*I[(p1*' —p7)/4cIA /=77

Thus g, only relates to the physical quantities at the point x=0, hence it can apply the Harten
scheme to the sub-outer layer. This has actually technically-improved the Harten scheme so
that the Harten scheme can be used for the sub-outer layer and to increase the accuracy.

Lastly, we present the two schemes for the left boundary.

(1) First we give a left boundary differential scheme by taking the advantage of the
characteristic relation. Suppose the three eigenvalues of the coefficient matrix of }/, are:
A =u—cy A,=uy A;=u+c, u=0 at the left boundary and so A,=c>0, that follows
m=0, further morc e,=0, hencc ¢7*' ~vg3*! . The second, suppose (xi, x:, xs) is the left
eigenvector of A,=u ., then: (x), x2, x3) A(W)=u(x,, x2, xs), expanding this formular and we
notice that u=0, we have x,= —2ye; x,=0; x3=2p . With this eigenvector left multiplying
the (2.1)' and expanded and simplified, we have:

pi*t=pi+pi-[(ei*' ~€})/vei]
Thus, we have a group of solving differential schemes of left boundary:

! ' t
N +1

N+1Q>—+———
:!\I

Tig. 3 Fig. 4
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mi*!=0, ei*'=ei,  pi*'=pi+pil(ei*' —6])/yel)
To the above formula , we know its order of convergence is O(h+7) by its inference. So
although the Harten scheme is two-order, when n is large enongh, a very little error of the
boundary point will definitely affect the accuracy of the inner points. We must reconstruct a
left boundary differential scheme by using the Taylor expansion so that its local order of
convergence reaches two-order.

(2) Expansing e}*! (Taylor expansion) at e} . From u=0 and using the undetermined
coefficient method and m, =0, we can infer that:
" 2 n 2
o1t mel + o Lo (m'.—4m:)+'l— -zf.‘-'(v—lﬁ(e. ~ 263 +oy 4 S8 )
2 1 2 pl p'

+O(A* +Ax?)

Then according to the entropy conservation equation:
Js ds
ar T4y =0
we-know, on the solid barrier:

ds
2 P

and once more, to the constant specific heat complete gas, we have:

i (F)]...
17y

pitt=[ei*"/e;] " - pi
and we get a new left boundary schemes:

mptt=0

these follow that:

A ye:! Al yc,

l#l_e +

- - - (m3)?
l( imi)+5 (v 1)(61 265 +6\+ ——— o )

1
= (61 *!/61)"" Pt

The above formula is two-order convergence and it is easily to see from the ihference
procedure.

TV. Numerical Results and Analysis

1. Combining the l—order‘boundary, sub-boun-
dary difference schemes and the Harten scheme with 60
the first kind of method. Combining the 2-order
boundary, sub-boundary difference schemes and the
Harten scheme with the second kind of method. We
have made a great deal of computation-by using these

px10~'kg/m?

1=1_542X107%(8)

two methods respectively, and made a comparison 20t
among the results of our computation and the results in 10
(3] in the shock wave location, velocity density and 0

001 003 005 0.065

pressure at the respectively same time. From the
: Fig. §

comparison we know the results in this paper have less
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errors than that in[3]. and the errors of the results in this paper are usually from 0.2090 % 101.109 .
In addition. the error of the shock wave location of the first kind method is larger than that of
the second method and this result coincides with the result of the theorctical analysis. Fig. S
shows the density image of r=1.542x 10%(s). The further analysis shows that the two kinds of
methods have little difference at the shock wave. and the result is more satifatory than in (31

2. Table 1 shows the analysis solutions and the numerical solutions of [3] and the two

kinds of methods at time ¢=1.00x10°s) In table | we can see that py and py

computed from Harten scheme are better than that in [ 3] . However

but ugy
Table1 7T=1.00x10%s) 7,=0.20 X 10%(s)
Classes Shock wave uu(m/s) ou(kg/m?) Pux107(N/m?*)
o location

Numerical solution in [ 3] 0.021598 1606 .0 2.3758 14.817
N.umcrlcal sol.unonl from the second 0.021858 1599. 5 2.4307 14.863
kind method in this paper
Numerical solution from the first
kind method in this paper 0.021337 1596.3 2.4301 14.841
Analysis solution in this paper 0.021598 1606.8 2.5253 14.875

when we make the grid points more dense, we can also make the uy better than in (3] .
Besides . it is casy to see that the second method is closer to the analysis than the first
method in this paper. In the same way. we compare the results of ‘the period (<1.05X 10
(s) and can obtain the satisfactory analogous conclusion.

3. In order to increase the uccijracy of the computed resylts, we can use the
mirror-reflection method to avoid the singular point which come from the computation with
the beginning time T, =0.0(s). Tabic 2 shows the results computated with the initial value T, =
0.0.(s) of thc mirror-reflection method and the first kind method at 7 = 0.197X 10 (s).

Table 2 T=0197x 10°(s) To=0.0(s) Ax=4.9618X 10™(m)

Variable | Classes | J=1 | J=2 | J=3 ) J=4 ] J=5 /=6 J=17 I=8 I=9
ou * 18.181 | 18.067 | 17.795 | 17.337 | 16.362 | 14.266 7.8737 | 4.3427 | 4.1120
.» 24.431 | 23.723 1 20.413 | 16.682 | 9.2859 | 4.6881 | 4.3574| 4.2323| 4.1120
3

(kg/m?) wes | o 2500l 5.656| 2.618| 0.655| 7.0761| 9.5779| 3.5163| 0.1104 | 0.0000
pu X107 - 50.936 | 50.966 | 51.112 | 51.316 | 50.287 | 44.323 7.0418 | 7.0557 | 6.7165
) ** | 58.594 | 58.430 | 55.401 | 48.695 | 24.174 7.5034 | 6.9194| 6.8160 | 6.7164
(N/m?) see | 5 esgo|l 7.4640] 4.289 | 2.621| 26.113 | 36.8196 | 0.1224| 0.2397 | 0.0001
uk . 0.0000| 75.156 [157.36 |244.76 | 286.62 | 176.32 | —860.86 | —2130.5 | —2152.9

‘ . 0.00001186.78 [272.44 |190.85 | —724.91 | —2129.3 | —2184.7 | —2168.7 | —2152.9
(m/s) s+ | (.0000j121.62 (115.08 | 53.91 [1011.53 [2305.62 [1323.84 38.200 | 0.0000
* Mirror-reflection , ** The first kind method . *** Different value at the solid barrier,

In (4], it was mentioned that there is a vibration at the solid barrier when we use the
mirror-reflection method, and the vibration smoothes the peak values of p, u and p . Table 2
shows how much of the peak value is erased. We will find that, when we compare a series of
data of the same time, the vibrational and erasing phenomena will gradually disappear as time
goes on. Table 3 shows the mirror-reflection method at 7=0.6 X 10°(s) and T=0.197 X 107%(s).
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Table 8 7,=0.0(s) Ax=4.9618x 10%m)

tx10°%(s) | Classes S‘}g‘n‘z’;‘]"e un(m/s) pu(kg/m?) | pux10%(N/m?) | poX 10-4(N/m?)
0.50 * 0.010420 975.15 5.8887 25.220 24.507
T e 0.010916 980.11 5.1233 25.067 24.424
0.197 1. 0.0019847 272.44 20.413 55.401 58.596_
0.0029771 286.62 16.362 50,287 51.112

*  Solution of the first kind method .

*% Solution of the mirror-reflection method.
From Table 3 we know the error of the shock wave location of the mirror-reflection method
is larger than that of the first kind method. But along with the time going on, the error is
being reduced and when it reaches the points nearby the detonation point the error tends to
zero. In Table 3, the shock wave deviates one node at 7=0.60%10(s) and two nodesat
T=0.197 X 10-5(s).

* 4. For the stability of the Harten scheme, [1] shows that the step of time must satisfy the

condition:

0=maX(lu|+c)—§{—

For the accuracy of the Harten scheme, we can increase the number of the grid points so  that
Ax lessens and so does At . In this case; the time spent in computation increases at power of
two to reach a certain time T. The Table 4 shows that the increase of the grid points obviously
improves the accuracy. But on the other hand, in order to reach the time 7=0.30% 10-%(s) 131
nodes need only 15 layers while 200 nodes need 20 layers, hence the time spent in computation
greatly increases. All above show that the Harten scheme is better than other former
algorithms in dealing with the shock wave location and the numerical solution nearby the

u(m/s)
]
3000} rx10'(s)
[ 200p
2000}
@ )
= &
t”}_ L:»‘
- - 100
1000 " " g
° =]
X K
0 T x(m)
0,01 0.03 0,05 0,065 o
—-500 Lo
L ------ - pXx1073N/m?
- 1000} ’ oT 83 0.5

Fig. 6 Fig. 7
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Table 4 T,=0.20x10%s) T=0.30 X 10-%(s)

?h:";’:df;r :nlzhlca;:::‘k Shock wave location lly(nl/l) Pﬁ(h/ml) Plxlo-‘(N/m’)
131 15 0.0049%18 470.38 11.265 40.159
290 20 0.0042250 446.46 11.766 39.516

Analysis solutions in [2] 0.0041000

shock wave. Because of the more accurate data of the Harten scheme, it isan effective

method in dealing with the problem of the discontinuity of the shock wave and is valuable to
be generalized. The Fig. 5 to the Fig. 9 show some images in- comparison with that in [3].

T x10%8)
1,59
12
110
102.8
1.00
3 60.5
sof ! x10%=1.34 1X105=1. 88 0.50
10p x(m) z(m)
%o oo o0 007 0.0f 003 005 0,07
Fig. 8 Fig. 9 The figure of the shock wavelocation

(the second kind method)
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