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Abstrac t  
hi order to use tire second-order 5-point d!fference scheme mentioned to compute 

the solution o f  onc dimension unsteady equations o f  the direct reflection o f  the strong 

plane detonation wave meeting a solid wall barrier, in this paper, we technically 

construct the d(ffcrence schemes q f  the boundary and sub-boundary o f  the problem, 

and dethwe the atao-analogue attalytie solutions o f  the initial value problem, and at the 

same time. we present a method for the singular property oJ the initial value problem. 

from which we can get a .~'ati.s~wtory computation result o f  this difficult problem. 

TIw d(f.ferenec scheme ,tsed in this paper to deal with the discontinuity problems 

t~/" the shock ware are valuable and worth generalization. 
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I. I n t r o d u c t i o n  

The reflection problem of strong plane detonation wave is important and typical in the 

application of blow-up energy. This problem has been considered by many people. Prof. 

Huang Dun gives a series of analytical solutions for t / k •  in E2] and Wu 

Xiong-hua obtain the numerical solutions of the problem by using the separate singularity 

method in I-3]. But because this problem appears companied with unsteady shock wave, 

boundary and initial values, and solutions with characteristic length, the results are either that 

the shock region is widened or that the wave peak is evened, or discontinued with the 

oscillation. So their results are not satisfactory. 

In this paper, we use the 5-point difference scheme put forward by A. Harten in 1983 

which was used to solve a kind of hyperbolic systems of conservation Laws and to computer 

the reflection problem of the strong plane detonation wave. "We not only have tested the high 

accuracy of the Harten scheme, but also have showed the advantage of this method when it is 

applied to the strong plane detonation. The advantage is that it gets over the weakness of the 

discontinuity region width wlaen we use the first-order scheme to computer, as well as the 

weakness of the discontinuity with the oscillation when we use the second-order to computer. 

II. The  M a t h e m a t i c a l  Model  o f  the  Prob lem  

The one-dimensional unsteady movement equation of complete gas is 
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The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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(Su c3u . 1 Op 
,~t I u ~ + - ~ - - ' O x "  = o  

cqp ~ ~u 
at + u  + p ~ = 0  (2.1) 

0p ~ 0u 
0t  ' + u  + ~ ' , T = 0  

Y is heat-insulation constant. Choose the coordinate system as the following Fig. 1. 

Neglecting the inner energy of the static air, then let t = - t ,  ( t ,>0) and there is a strong 

detonation on the plane at x=Ro.  According to dimensional theory and equation (2.1), we 

know that before the detonation wave reaches the barrier x=0 ,  the main parameters of the 

problem are total two dimensional independent constants except for }' and t. Thus the detona- 

tional incident wave ,,1" ~ which propagates to the rigid.solid 

barrier at x--0 has the auto-simulated property. When t---- 

0, the incident wave meets the *barrier without reflection, 

denoted as O B  x=0,  x=Ro,  A O  and O B  divide the 
plane x- t into three regions: in region I, there ~s auto- 

simulated solution; in region II there is an unsteady shock 

wave but average entropy and auto-simulated property; 

and region III is the static air before detonation. 

For the convenience of the comparison and 

analysis of the computed results, we will use all 

constants appeared in [3-1 that is, R0=l(m). K = i ,  

t .=2.1T18193x 1 0 - S x K (  s ) 
from the unit area. 

() 

---:_~ 

IlL 

~g . L ~ ~ .  ] ~ 

Fig. 1 

and Eo = 1.077 x 2.7349056• 10 .6 K(J/m 2) the released energy 

III. The S u m m a r y  of  the Method and the Results  o f  This Paper 

The Harten scheme used in this paper is 5-point difference scheme which has 

second-order accuracy, and its convergence and stability have been considered in detail in [1], 

here we express the scheme as following without any proof: 

Vm+ t =VB /V ~n 7.n "~ 
:l J--  ~ , .Pi+@--Jj-- f  : 

] 7 + i  = + f / ( v j ) + f ( v j , t ) ]  +.~2F~--= R k I, I, Ok k k a t, �9 i + ~ [  9j+g~+t  -- (v i+_i_+ri+ + )  i+i_]  

here: 

Ax v~+ =Aak(v . .+ , ) ,  a k L k 
= ~  _,]_ , i+ . i .=  i+4g A / + + v  

Ai .b .  i v -~v  ~ + I - -v  ~ 

g ~ =  k maxC0, rain (I k -k k Si+-~ ~i+i- [, gi-~- Si+-i- )] 
k 

Si+.  t. = s g n ( ~ +  ab ) 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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k h s h ~ + §  = 0.5 C~' (vi+ § ) - (vi+ § ) ]a,.+ § 
h ,.,,,.++= { 4++, <,,+,,, ,o 

O, a i +  ~ -~0 

x=/4e + e, I x I <~.e 

O(x)= { Ixl, Ix l~2e  
R[ ' ]  denotes the right eigenvector obtained from matrix [" ]; ttkdenotes the eigenvalue. 

When we use the above scheme to compute the solution on every layer of the grids in II 

region, first we must know the right and left boundary value and "the right and left 

sub-boundary value on the layer of  the grids, and the initial conditions of the equation. 

Firstly, we can know easily tha t ,  for the region II, the right boundary is determined by 

the solution of the region I. We have mentioned once above that the solution in the region I 

has the auto-simulated property. Here we first deduce the auto-simulated analytical solution in 

the region I by the dimensional theory in the mechanics. 

When applying the Eular coordinate, the basic functions needed solving in (2.1) are the 

velocity u, density p and pressure p. By the 11 theorem in the dimensional theory, there are 

follow: 
r _ . .~_ , ,~  

u=-T .~r l  p =  plJt' l  P --  r - i t  2 (3 .1 )  

here y ' ,  ,,I?'. ~r are the variables without the dimension, p, is the density of  the static air 

before the detonation. 
When the strong detonational wave is produced by the air, the strong jump is generated 

within the flowings. The conservation of mass, momentum and energy should be satisfied 

when the gas passes the discontinuous surface. Denote one side of the discontinuous surface as 

the upper mark 1 and the other side as the under mark 2, then we have 

PI(ul - c ) = p i ( u i - - e )  

p, ( u = - c ) ' + p ,  = p=(u=-c)  +p= (3.2) 
r,J 2 - s . = ! ( = , - c ) ' +  r , P___~.= 

-~(== -- c)= "l'1,'-- 1 p= 2 13-- 1 p= 

c is the velocity of the air-shock wave. In this case, the unique combination of the 
non-dimensional variables is rSt - t / (E/pt )  according'to the dimensional theory. This follows 

that the unique non-dimensional variable parameter is 

2 = r / ( E / p � 8 6  l ' '  t " '  ( 3 . 3 )  

to air-shock wave, coordinate r= is the function of  time, so r= has dimension t, P~ and E can not 

form the non-dimensional combination, we have: 

r==  ( E / p l )  l"s t =,s~. ( 3 . 4 )  

here ~o is any a non-zero constant. Without lossing generality, let ~,W=l then derivate (3.4) 

about time t: 
2 e=-~- (E/p,) "'t-,,s (3 .5 )  

placing (3.5) into (3.2) and we notice that u ,=O and a l / c = O  on the  air-shock wave (aj is the 

velocity of  sound in the undisturbed medium), we have following on the air-shock wave: 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



548 Chcn Shao-jun 

2 4 1 ( E l " '  -,,, 4 1 ir .E..E]'"r,,* 

o y+l 

z =__ ( E ' t '~  _~,~ 8 E 2 8 P' \ " ~ , )  t = r~ 
Pz=~-~ p~c 9 "},+1 9 y + ]  ) 

(3 .6 )  

Compare (3.1) with the first equation of (3.6) and let new variable .~'-=y.se'/.~ 

} p = # =  y - i  ---P =h= 9 ~+I~,~2. ( , t .7)  
p, v+i "~' t , , .  -g  i -  

Wc now can see that to solve r, p, u. p only need to compute the functions ~ ( ~ ' ) ,  .,~,'($r') 

and ,.,$,'(~r) . Placing (3.1) and (3.3) into (2.1) and replace with .~=va,  t/3F'. 
dcrivate the first equation about ~ r ,  and derivate the second and the third equations after 
logarithm them, we have: 

d.~ 
.t,'{ ( r + v ~ -  2) ( m " -  a ) ' -  (~, -  L) ~ ' ( : ~ - -  I ) ( ~  - a ) }  

- [ 2 ( ~  - i )  + ~,- (~ , . -  I )  ] z "  

( ~ . - a )  E ~ ( ~ -  ~)( ~ - a ) + c ~ -  r ~  ] 

dln~l . ~ -  ( ~ r ' - 6 )  2 
d~v- 

dln.~ 
~ ( m ' -  i )  ( ~ -  6) + (..,m - ~,') ~ 

dln~ = - ~ - a  ( 6-~-"-(~"-])~(r-~)+('W-~'/ ') '~" ) ~ - ( ~ - - a )  2 

(3 .8 )  

in (3.8), 0 = 2 / 3 ,  . .Z '=2 /3} , .  By applying the energy integral formular satisfied by the 
air-shock wave: 

3. [ p~r/" + ( 2 " /  ..~" ,/,2 

repeat integral (3.8) then we obtain .~"(:~v'), ~.(~v-)and 3g'(~'/'). Placing .~"(~'), .,1.(~") and 
. g ( ~ " ) ,  (Y6) into (3.7) and we notice that: y<7~ ~'~2/3"p, thus wc get the auto-simulated 
analysis solutions in region I: { E.],,, 

j ,  ' 

,~= (1.8V)-~.,3 [6 (2 .1V - ] ) ] ' "  [3(]  -- 1.2", I,'- ] 

- u = Y - V 2 x  ( I .  8,W) 

R 0 ~ X  ,l(x, t ) = ~  
r2 

- 5 / ~  

p=p216(2.1V_1) ]5,916(1__~V )]-,ot~ [3 ( ]_1 .2V) ]2wo 

p = p , ( 1 . 8 V )  "'~ [6 (1  - i .  5 v )  ] - ~ ' 3 1 3 ( 1  - 1 . 2 v ) ]  5"' 

here V comes from the'iteration of  ~. as following: 

V~5,= 5 ~ +  30 
63 ; 
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a A-A(Vm) 
I/(t§176 I / (  3V~ -10/7) - I/V(~> q- I / (  l -  l.2VC~) ] 

Now, we can compute the value of  the right-boundary of  region II. 

Secondly, we can use the analysis solution in region I as the initial value of  region II. But 

we must note that the original point is the singular point to the analysis solution and also the 

multiple-valued singular point. So we take the following two kinds of  methods to avoid the 

singular point. 

(!)  Choosing an arbitrary A t > 0  and supposing At section as the initial compute time. 

Naturally this complicates the computat ion of  the initial value and the key point of  the 

complication is how to locate the shock wave on the At section. Now let us begin with T=O.O, 
and find the location of the grid points occupied by the shock wave (by using the method we 

have had, we can make certain the location table of the shock wave determined by At and go 

a step further to locate roughly the grid point location of  the shock wave) and then deal these 

points with the weighted-average method. The new location computed from above can be 

considered as the more accurate location of the shock wave. For  convenent comparison, we 

will use the table of the shock wave determined by At in [2]  to locate the shock wave on 

some At sections. Once we have determined the location of the shock wave, we have 

determined initial value. 

(2) Using the mirror-reflection method. Let us also begin with T=0 .0 ,  and add two nodes 

before the origin. Then we value these three points with the original first three node values 

respectively (notice that u needs to change its sign). Thus the shock wave seems to be passing 

through x = 0  from the left of  t-axis and reflecting to the right of t-axis, hence the singular 

point is avoided when we compute the initial value. 

Thirdly, we will present the sub-boundary schemes. For  the convenience of furture 

computation,  wewill not compute directly the u. p and ,o in (2.1), but the P , m and e in (2.1)', 

the equivalent equation system obtained by placing: 

u = m / p  

p=(v_l)(a_O,5puZ) ; 

i n t o ( 2 . 1 )  

I ) W'= m 

6 

!m~ ~, - 3 m z 
+ 2 pz ( 3 - } , ) ~ - "  } , - t .  m, 

~ma . m s ~ s  3(~-1)m 2 ~m 
a, , , - - - " ~  q" ('V -- 1)-~ p 2p' - a, 

---0 

(I) To the sub-boundary we can choose a general three-point explicit scheme: 
n n 

I f j+t=__~[ f(v.~'l..l-f(va+t)---~Q (g j+.,]. ) Aj+@v ] 

~i++=aak(vj++) , 

x/4e+e 

Q(x)= { Ixl 

Aj+4z_V=Vj+ l --Vj 

Ixl<2~ 

I x l ~ 2 e  

( 2 . 1 ) '  
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It is valuable to notice that this three point scheme is I -order ,  and its combinat ional  use with 

the 2 -o rde r  scheme must lead to unsatisfactory computa t ion  results. So in the following we 

will give a sub-boundary  difference scheme which has 7_-order accuracy and be provided 

together with the 2 -order  Harten scheme. 

(2) From a careful analysis o f  the Harten scheme, we can see that the key to the question 

is how to construct Or( - I , I ,  2). it is difficult to construct gt because of  no definition o f g )  at 

the point - I. We are forced to remove the dependence .of  g, on the point - I to that on the 

point I ( N +  I) (see Fig. 2). 

When x = 0  and re=O, we have e,=O. 

Meanwhile, from x = O  we can also easily N +1 

compute  the three eigenvalues of  the coeffi- ,,/ 

cient matrix A(W) o f W .  in the (2.1)': -1"~7 

a = ( - c ,  0, c) and 3 x 3  left characteristic 
C 

matrix L, So: Fig. 9. 

p, p,~r 
a=(Ax.L. W,)l , .o=hx. ~ P "  --2-'el ) C =  

hence: 

and 

1 2 3 I 5 

7 

6 7 

])P. ,  
P 

X 

vl=-2-c)  v~=0) vl-~2.c 

_[O(2c)_(2c)~j[(p:+~_pT)14c] ~ ,..o 

Thus g, only relates to the physical quantities at the point x=O, hence it can apply the Hartcn 

scheme to the sub-outer layer. This has actually technically-improved the Hartcn scheme so 

thai the Hartcn scheme can be used for the sub-outer layer and to increase the accuracy. 

Lastly, we present the two schemes for the left boundary. 

(I) First we give a left boundary differential scheme by taking the advantage of the 

characteristic relation. Suppose the three eigenvalues of  the coefficient matrix of  IV.  are: 

/ l , = u - c )  Az=u) / 1 3 = u + c .  u-=0 at the left boundary  and so 2 . 3 = c > 0  , that follows 

m- -0 ,  further more e.---0, hence e~ § m s |  § . The second, suppose ( x .  x:, xs) is the left 

eigenvector o f  2z-~u , then: (x~, x2, xs) A(W)=u(x~. x~, x~), expanding this formular  and we 

notice that u=O, we have x t = - 2 p e )  x 2 = 0 )  x a = 2 p .  With this eigenvector left multiplying 
the (2.1)' "and expanded and simplified, we have: 

p; ' "  =p;  + p ; .  r(e~ ~' -e'~ ) / r e ;  ] 

Thus, we have a group of  solving differential schemes of  left boundary:  

t f 

N+I 1 N +11.. 

. ,. x C) x 

F i g .  3 F i g .  4 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



Harten Solution for One-Dimensional Unsteady Equation 551 

m ; §  #~+l==a~, p;"'=,,p"t Jcp"t[(e~+t--e~)/},e'~] 

To the above formula , we know its order of convergence is O ( h + r )  by its inference. So 

although the Harten scheme is two-order, when n is large enongh, a very little error of the 

boundary point will definitely affect the accuracy of the inner points. We must reconstruct a 

left boundary differential scheme by using the Taylor expansion so that its local order of 

convergence reaches two-order. 

(2) Expansing el  +t (Taylor expansion) at e l .  From u = 0  and using the undetermined 
coefficient method and m0=0, we can infer that: 

(rn:) '  
2 ya l  ( m l - - 4 m ~ ) q - - ~ - - ~ - - ( , , - - l ~ ( a ; - - 2 . ~ + e , +  p:  ) 

e;§ + T p; 
+ O ( A t  3 + ZXx" ) 

Then accorcling to the entropy conservation equation: 

as as 
~T+..-~-x =o 

we'know, on the solid barrier: 

05 1 = 0  

and once more, to the constant specific heat complete gas, we have: 
a 

o7 
these follow that: 

pl§ t §  I ' - C6, / e ,  ] " ' .  p;  

and we get a new left boundary schemes: 

m~ § = 0  

f .. �9 . ~. ~,e: , , , , ,  . )? ya ;  , p: ) 

The above formula is two-order convergence and it is easily to see from the inference 

procedure. 

IV. N u m e r i c a l  Resu l t s  and A n a l y s i s  

1. Combining the I -o rder  boundary, sub-boun- 

dary difference schemes and the Harten scheme with 00 

the first kind of m e t h o d . . C o m b i n i n g  the 2-order 5c 
boundary,  sub-boundary difference schemes and the 

Harten scheme with the second kind of method. We 4r 

have made a great deal of computat ion-by using these 30 

two methods respectively, and made a comparison 20 

among the results of  our computation and the results in 1( 

[3] in the shock wave location, veiocit3( density and 

pressure at the respectively same time. From the 

comparison we know the results in this paper have less 

p• lO-Jkg/'m ~ 

O.Ol o.o3 . o.o5 o.o65 

Fig. g 
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errors than that in [ 3 3. and the errors  o f  the results in this paper  are usually from 0.2090 % to 1.109 ~. 

In addit ion,  the er ror  o f  the shock wave location o f  the first kind method  is larger than that o f  

the second mcthod  and this result coincidcs with thc result o f  the thcoretical ~malysis. Fig. 5 

shows the density imagc o f  t = 1 .542x 10~(s). The further ~malvsis shows that  the two kinds o f  

methods  have little difference at the shock wave. and the result is more  sat i fatory than in E3]. 

2. Table  1 shows the analysis solutions and the numerical  solutions o f  [ 3 ]  and the two 

kinds o f  methods  at time / = l . 0 0 X l 0  -~s )  I n t a b l e  I we can see that P s  and 'pu  

but u s  computed  from Harten scheme are better than that in I- 3 ~ . However  

Tab le  1 T=10t ) •  T , ,=0 .20X t0 ' ( s )  

Shock w~lve  u•(m/s) p,~(kg/m3) pu• 
Classes location 

~umeric~d solution in [3] 0.021598 1606.0 2.3758 14.817 

~,lumerical solution from the second O. 0218 58 1599.5 2. 4307 14.863 
kind method in this paper 

Numerical solution from the first 
0.021337 1596.3 2.4301 14.8di 

kind mcthod in this paper 

Analysis solution in this paper 0.021598 1606.8 2.5253 14.875 

when we make  the grid points  more  dense, we can also make  the u s  better than in [3 ]  . 

Besides , it is easy to see that the second me thod  is closer to the analysis than the first 

method  in this paper.  In the same way. we c o m p a r e  the results o f ' t h e  period t < l . 0 5 x  10 -~ 

(s) and can obtain  the sat isfactory ana logous  conclusion.  

3. In order  to increase the accuracy  o f  the compu ted  resqlts, we can use the 

mirror-rcf lcct ion method  to avoid thc singular point  which come f rom the c o m p u t a t i o n  with 

thc beginningtimc T0=0.0(s) .  Tablc  2 shows the results c o m p u t a t e d  with the initial value To = 

0.0.(s) o f  the mirror-reflection method  and the first kind method  at T = 0 . 1 9 7 x  10 -s (s). 

T a b l e 2  T=0.197xIOS(s)  7z0=0.0(s) A x - - 4 . 9 6 1 8 x 1 0 4 ( m )  

Variable Classes 

i t  

pM ,,, 

(kg/m3) *,ot 

~t 

Pu • IO -e ~ o 

(N/,,,') ,,,,, 

uM 'l ~t 
4 t ~  

(=/s)  , o ,  

J = l  J = 2  

18.181 18.067 
24.431 23.723 

6.2500 5.656 

50.936 50.966 
58. 594 58. 430 

7. 6580 7. 4640 

J= 3  

17. 795 
20. 413 
2.618 

51.112 
55. 401 
4. 289 

0.0000 

0.0000 

0.0000 

75.156 1157.36 
186.78 1272.44 
111.62 ~15.08 

�9 / = 4  J=5  

17.337 16.362 

16.682 9.2859 
0.655 7. 0761 

51.316 50.287 
48. 695 24.174 
2.621 26.113 

244.76 286.62 
190.85 --724.91 
53.91 1011.53 

J=6  

14. 266 
4.6881 

9.5779 

44.323 
7.5034 

36.8196 

176.32, 

- -  2129.3 

'2305.62 

J----'7 

7.8737 
4.3574 
3.5163 

7.0418 

6.9194 

0.1224 

-860.86 
--2184.7 

L323.84 

- /=8 J----9 

4.3427 

4.2323 

0.1104 

7.0557 
6.8160 
0.2397 

--2130.5 

--2168.7 
38.200 

4.112.11 
4.1120 

0.0000 

6.7165 
6.7164 
0.0001 

-2152.9 
-2152.9 
0.0000 

* Mirror-reflection. *~' The first kind method. " *  Different value at the solid barrier. 

In [4] ,  it was ment ioned  that  there is a vibrat ion at the solid barr ier  when we use the 

mirror-ref lect ion method ,  and  the vibrat ion smoo thes  the peak values o f  p ,  - and  ,o . Table  2 

shows how much  o f  the peak value is erased. We will find that,  when we c o m p a r e  a series o f  

da ta  o f  the same time, the vibrat ional  and erasing p h e n o m e n a  will gradual ly  d i sappear  as time 

goes on. Table  3 shows the mirror-refleCtion me thod  at T = 0 . 6  x 10S(s) and  T = 0 . 1 9 7  x 10~(s). 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



Harten Solution for One-Dimensional Unsteady Equation 5 53 

T a b l e  $ 

t X l 0 - ' ( , )  

T,---O.O(s) Ax-----4.9618x lO-4(m) 

C I ~  Shock wave 
Iocanon 

o O. 010420 
eo 0.010916 

u~(,,,/s) 

975.15 
980.11 

pu(kg/m 3) 

5.8887 

5.1233 

Pu x 10"*(N/m~) ! 

25.220 

25.067 
0.60 

0.197 0.0019847 272.,1,1 20.4.13 55.401 
e.. ,1 0.0029771 :286.62 16.362 �9 50.287 

p, x 10-* (N/re') 

24.507 
~.~ 

58.596 
51.112 

�9 Solution of the first kind method. 
, e  Solution of the mirror-reflection method. 

From Table 3 we know the error of  the shock wave location o f  the mirror-reflection method 

is larger than that of  the first kind method. But along with the time going on, the error is 

being reduced and when it reaches the points nearby the detonation point the error tends to 

zero. In Table 3, the shock wave deviates one node at T = 0 . 6 0 x  10-S(s) and two nodesat  

T=0.197  X 10-S(s). 
4. For  the stability of the Harten scheme, [ 1 ] shows that the step of time must satisfy the 

condition: 

At 
o =max( I , , I  +c) 

For  the accuracy of  the Har ten  scheme, we can increase the number  of  the grid points so that 

lessens and so does At . In this case; the time spent in computat ion increases at power of  

two to reach a certain time T. The Table 4 shows that the increase of the grid points obviously 

improves the accuracy. But on the other  hand, in order  to reach the time T = 0 . 3 0 •  lff~(s) 131 

nodes need only ! 5 layers while 200 nodes need 20 layers, hence the time spent in computat ion 

greatly increases. All above show that the Harten scheme is better than other former 

algorithms in dealing with the shock wave location and the numerical solution nearby the 
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Table 4 ro=O.20x 10-~(s) T=0.30X I(Y~(s) 

Number of Nmher of the Shock wave location 
the nodes grid layers 

13/ 15 | .  N49618 
100 2O 0.0042~0 

Analysil mlutioo# in [2] 0-0~I I1~ 

uU(m/|)  pN(llg/ma) pie X 10"-t(N/ml) 

470.38 I~. ~ $  40.159 

446.46 11.766 39.$I6 

shock wave. Because of the more accurate data of the H~trten scheme, it is an effective 
method in dealing with the problem of the discontinuity of the shock wave and is valuable to 
be gencrali,~d. The Fig. 5 to the Fig. 9 show some images in-comparison with that in L33. 

SO 

10 
0 

X 10- ' (N/mD 

L 
x(. , )  

0 0l 0 "03 0 "05 0" 07 

Fig. 8 

T x  ]0 ' (s)  

! .00 

0.50 

x(m) 
" 0.'01 0.'03 ' 01'05 ' 0.'0z ' 

F i g .  9 T h e  f i g u r e  o f  t h e  s h o c k  w a v e  l o c a t i o n  

( t h e  s e c o n d  k i n d  m e t h o d )  

Finally, the author sincerely thanks Wu Xiong-hua ph.D for his instructfon in both 
theoretical inference and problem analysis. The author also express my heartfelt gratitude to 
professor Li Shi-xong for his warmly guidance and help. 

R e f e r e n c e s  

El3 
E23 

[ 3 3  

[ 4 ]  

Harten, A., High Resolution ~chemes for Hyperbolic Conservation, Laus (! 983). 

Huang Dun, A series of analytical solutions of higher order accuracy for air-dynamics 
coupled equations, Yearly Thesis Jbr Mathematics of Computation (1979). (in Chinese) 

Wu Xiong-hua, The application of singularity-separation method to the computation of 
unsteady shock, Mathematics of Computation and Computer Applications, 3, 3 (1982). (in 
Chinese) 
Zhon Ning, Reflection of unsteady blast wave computed by second order accurate 
MUDVL scheme, Journal of Computational Physics Sinica, 1, 1 (1984), 21-30.  (in 
Chinc~) 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 


