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Abstract

In this paper, the perturbation solution of large deflection problem of clamped
elliptical plate subjected to uniform pressure is given on the basis of the perturbation
solution of large deflection problem of similar clamped circular plate (1948)!,
(1954)2). The analytical solution of this problem was obtained in 1957. However, due
to social difficulties, these results have never been published. Nash and Cooley
(1959)V) published a brief note of similar nature, in which only the case A=a/b=2 is
given. In this paper, the analytical solution is given in detail up to the 2nd
approximation. The numerical solutions are given for various Poisson ratios v =0.25,
0.30, 0.35 and for various eccentricities A=1, 2, 3, 4, 5, which can be used in the
calculation of engineering designs.

Key words elliptical plate, large deflection, perturbation method

I. Introduction

The large deflection problems of plates have interested applied mathematicians over a quite
long period. In these problmes, Von Karman’s nonlinear differential equations need to be
solved (1910)14, (1940)12). Due to the difficulties in solving nonlinear differential equations, only
very few problems have been solved. At the first, S.Way (1934)1¢! gave the solution of circular
clamped plate under uniform pressure in terms of infinite power series. Then, S. Levy (1942)1"
gave the double trigonometrical series solution for rectangular plate under uniformly
distributed pressure. These two solutions are all very complicated and tedious so that they are
hard to handle even in some important cases. Chien Wei-zang in 19480 and in 195412 treated
the problems of large deflection of clamped circular plate under uniform pressure for various
boundary conditions by the perturbation method, in which satisfactory results are obtained.
The calculated displacement at the center of the plate and the calculated yield condition on the
plate boundary agree very closely to the experimental results given by McPherson, Ramburg,
and Levy (1942)®. From then on, Chien Wei-zang and Yeh Kai-yuan tried to solve the large
deflection problem of rectangular plate under uniform pressure (1956)% by perturbation
method; a little later, Nash and Cooley (1959)™ tried the perturbation method to solve the
large deflection problem of elliptical plate under uniform pressure, in which the case of axis
ratios A=2, y=0,30has been calculated in numerical details. In this paper, the perturbed
solutions of large deflection problem of clamped elliptical plate in various Poisson’s ratios
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v =0.25, 0.30, 0.35 and various axis ratios A=1, 2, 3, 4, 5 are given for uniform pressure.
Both in the first approximation, and in the second approximation, the perturbed equations are
solved analytically.

II. Large Deflection Problem of Elliptical Plate under Uniform Pressure

Let us consider the large deflection problem of an elliptical plate with major and minor
axes 2a and 2b, thickness # under the action of transversal uniform load g (Fig.1). Let us
denote the lateral deflection and the tensile displacements in x, y directions of the points P(x,
¥) in the middle surface of the plate by w, ©, v. The membrane stresses may be written as

__F du 144w \? v | 1/ 9w \?
=T lex T z( ) Pl ) (z.12)
E (ov 1/ 6w \?
=15 a el e+l a3 (5 ) z.1b)
E - 14 Jw Jw
=0+ \ ay + ax %% By Yy
2.10) ] : =
in which E is Young’s modulus, v is Poisson’s _ P‘—Ji . ;
ratio. In the following calculations » may be ~ S
taken various values in 0.25-0.35. ” -
Von Karmdn's large deflection equations -

correspond to the following equations of 3_%

equilibrium:

do, +6T., —0 ar,, 60, —o Fig. 1 Coordinates and displace-
0x oy ? Jx ments of elliptical plate
(2.2a,b)

J*w )

207204y me
Dyy w—q+h(a.a 5 +a, ay’ +Zr., 323y (2.2¢)

in which D=FE#%/12(1—»*), which is the fluxial rigidity of the plate, Substituting (2.1) into
equation (2.2) gives:

224 L -t ay,+<1+ »-To_ axay =—a-»
-t {8
g‘; +a-nas + -2t e 1= Ty
~ g a‘i, (5 )'+( %) ] (2.3b)
Dy*viw=q+g—0x 1 p? {( ax R gz )3::’ +( g.: )%:_;_’_'_(1_,,)

ou +ox Yaway Paows (50 ) +(5) Tar (5

+(2- )]ay +20-» 32 ‘;‘; i;&—} 2.30)
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These equations may be non-dimensioned by introducing the following dimensionless
quantities:

(2.4)
Thus (2.3) may be written as:
a*g+(1 A A Y L
=-{a-» ag(agﬁ’wgg) 7Y )ag[( ) +4(5 ) | 2.52)
242 f;";+(1 Dt S
=—- (‘gg’ azW Fa4+nl [ ) A2 ‘g)] (2.5b)
‘g—g’-;-wag,z, +}.‘§W 12Q=12 {( PRI ‘W %’g’
+(#5; T 9% o5 (—iaznpf‘F %g on T3k )(1‘ i grg’& }+6{[(%Vg- z
o () [+ [#(5) +(5) |75
F2(1—v)? %pg %VTIV ggg;} (2.5¢)
These equations will be solved with the boundary conditions:
W=U=V =W /dn=0, on the boundary £*+7°=1 (2.6)

in which »n is the external normal direction on the boundary of elliptical plate.

III. Solution by Perturbation Method

According to the examples with most success in the perturbation method of the large
deflection problems in circular plate (1948)!", we take I/, , the dimensionless center deflection
of elliptical plate, as the perturbing parameter,

Wa=W(, 0) @G.D

Let us assume that U, ¥, W, Qin (2.5a, b, ¢) may be expanded into power series of W, as
follows:

U, m=Ui& mWi +U(E W e+ (3.2a)
VE, M=V MWL +V (& DT a4 (3.2b)
WiEy, my=W (& MW atW(&, PDWL+ (3.2¢)

3Q/2(3+42A* 431 = a, W u+as S+« (3.2d)
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Substituting (3.2a, b, c, d) into (2.5a, b, ¢) gives power series expansion of these equations in
terms of W ,,. These equations satisfy all the values of W/, . Hence, all the coefficients of
W5 terms in these equations must vanish independently, from which we obtain the équations
of various approximations for the determination of asy Ux(&y 1)y Va(Ey My Wi(Ey, 1)
successively.

Equations of the first approximation are given by the ¥, terms in (2.5¢) and Witerms in
(2.5a,b) as follows. They are the equations for the determination of W, (&, 1), a,, Ui(&ym)
andp, (&, n):

4
—%E—V.—‘-+z}.’a£26” +i.‘ a +-=8(3+242434%¢, (3.3a)
a U — 20 2 — 52W1
ag"*‘(l v)A +(1+ »)A 6&9 (1- v) a£ —oEF
W .\? W .\2
A2 ‘9 W )—-1—(1+v)a—a§[ L) +Az(aa,] 9] (3.3b)

8 o,

__(l_v,a;i;(aag, + 42 a;f,f‘ )=+ [(aavg) +# 67 ) | (3.3¢)

We have from (3.1), (2.6) the following conditions for the solution of (3.3a, b, ¢):
W0, 0)=1 (3.4a)
W&, m=U,(& D=V, (& 1)=0W (& n)/on=0,
on the ellipse £24p2=1 {3.4b,c,d,e)
Equations of the second approximation are given by the/#3terms in (2.5c) and W% terms in

(2.5a,b). Thus, we have the following equations for the determination of W (£, 1), a5, U,
sms V& n

W W W
66543 +2/1~zaa£za,;z + A 667748 —8(3+24*+34AYa,
LV INSW, (o U, \ 1.0W, aU ;
“12{ gt T4 5 ) E +(’1 S roE) Mt ag)

oo o) o 1

W N4, W, W, W, oW,
1 5E ]’1 g T2 e

(3.5a)

2
2 +<1_v>a*——~+"”U A2l TR

W
_ 2 3
3y = I~ gE 4 5p

oW, oW 4 oW, oW,
} (L+v )ag[ 5 08 Y45 on ]

Fid o, 8U, (GW (W o | 12 W5 \
28 Gt =0t Q)G — =Ty (Gt -5 0)

e T ML AN

oW o W,

zaW
+5E o A

(3.5b)
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The boundary conditions for the solution of (3.5a, b, ¢) are
W40, 0)=0 (3.6a)
Wik, Mm=U.(& M=V (& m=0W(E, 1)/on=0
on the ellipse £24n?*=1 (3.6b,c,d,e)
and so on. These equations can be solved successively. According to the experience in circular

plate problems, the solution of the second approximation gives sufficient accurate solution for
ordinary purpose.

V. Solution of First Approximation

Let us solve (3.3a) with the boundary conditions (3.4a, b, e). The solution satisfying (3.4b,
e) may be written as

W& nN=A(Q—-£—7"*,  Al=constant to be determined. “.D
Substituting this into (3.2a) gives
At=a, 4.2)
Thus applying (4.1) to(3.4 a), we obtain
Ar=1 (4.32)
from which we obtain the undetermined constant
2,=1 (4.3b)
and also the solution of (3.3 a) under the conditions (3.4a, b, e) (1st approximation solution)
W& m=Q-§~-1) a=1 .9

Substituting W, (&, 1) from (4.4) into (3.3b, c), we obtain the system of two equations
for the determination of U,(&, n) and V,(&, 7).

o1 0°U g U 2 0,
T 08an

g+ - Vg +A+v)

6 : 2 . . 2
=16£(1—-£‘—172){[75+~(1—V)]§z+[72-+0——v]7)2—ﬁ—(1—v)} (4.53)
v, o,
of* RIS )65617

=16n(1—n*—ED{(6A°+ (1 —»)1n*+ [24°4+5—v]E*—2A*— (1 —»)} (4.5b)
From (4.5a, b), it can be shown that, if U,, V,, £, 7, 1/A*in (4.5a) are changed into V,, U,
n, & A*, we readily obtain equation (4.5b). That is to say, if U, is a function of

‘5’ 7y ,12’ v,i.C.

2
zAZ%iV—H e s

Us=f& ny 24 v) (4.6a)

then V, must be the same function of , & 1/4% v,le.

Vz=f(7h & 1/4% » (4.6b)
On the other hand, we have

V,=g(&y ny, A2, v), U,=g(n, & 1/4% ») (4.7a, b)
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By the symmetrical properties and the boundary conditions (3.4c, d) of displacements, we inay
assume that the solutions of (4.5a, b) may take the following forms:

U,(&y, M=E(Q—E—*){4,&4 B En*+Cin*+ D&+ En*+ F} (4.8a)
V(& Mm=n0—n"=E{4n'+ B’ + C8* 4 Dy’ + E 824 F o } (4.8b)
in which 4, 4,, B, B,, C,, C,, D,, D,, E, E,, F,, F, are functions of A%, »to be determined.

On the basis of (4.6a, b) or (4.7a, b), if 4, is a function of A2, v, then 4, must be the same
function of 1/4%, ». That is, '

A1=-A1(/127 "’)‘7 .A2=A,(1//12, V) (4.9&, b)

B, and B,, C, and C,, D, and D,, E, and E,, F, and F, have similar relations. It can be easily
seen that (4.8a, b) satisfy the boundary conditions (3.4c, d). Substituting (4.8a, b) into (4.5a, b)
gives

(B4 A=) A+ BO+3040C, |84 F A+ B +60 -9 (B+C))

+6C+0 Bt C | £+ [ B CO+15U ~nC 45+ (At By) [’
20 ,
+HBD ~ A+ A=) D+ B - By+2049) (B =Cy)

+] f DB~ BO+ 60— (B~ CO+3+) (Dot Es—By) |

+H[ B =D+ A= (F = ED+ U4 (Fo— B |
——8a—&-m) {{f+1-v e +[FHHs |- m-a-n} (4.108)

(4242 4,4 (1 —v) (A, + B,) + 31+ C, '+ [204*(A4,+ B,) + 6 (1 —») (B, +C,)

+6(1+ ) (B,+C) 160+ [64*(By+ Cp)+15(1 =) C,+ 51+ (B, +C ) 1E*

+[2012(D2""-Az)+(1-?)(Dz"l“Ez"'Bz)"'2(1+”)(E1_'C1)]772

+[642( D+ By — By) +6(1—v) (B, ~ C)+3(14+9) (D, + E, — B)IE

F+ 642 (F, — D)+ (1 =) (F = E))+ (1 4+v)(F ~E)]

=—-8(1—£—n){[6A*+1—vIn*+[2A*4+5—~v]E - 24~ (1 -} (4.10b)

(4.10a, b) are applicable to all the points in the region §2+q2<i . Thus, the coefficients of
the terms £4, &2, n*, £, 7%, lin the two sides of equation (4.10a) must be equal to each
other. This gives

22 44 (1=9) (4 +B) +3 (140 Co=8 [ r+1-] (4.11a)
20 —s[.8 1b
F(A1+Bn)+6(1_”) (Bx+C1)+6(1+v) (Bz+cz)—8 Az+2(3-‘”) (4.11b)
S BAC)+15(1~»)C,+5(1+) (At By =8 [{;—+5—v] (4.110)

20D, 4+ A=) Dy Ey= B+ 20+ (B, ~Cy=—8 [r+20—» | & 11d)
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DBy~ BY+6(1—9)(E, —C))+3(L+) (D, +E,— By)
= -8 +2G-»] (4.11e)
6 D 2
FE =D+ A-NF —ED+ Q0 (F—Ep=s[f+1-»]  «@.11f)

Similarly, the coefficients of terms 7*, n*£%, &*, 7%, £%,1in the two sides of equation (4.10b)
must be equal to each other. This gives

422 4,4+ (1 =) (A,+ B)) +3(14+v)C,=8[6A* 4 1—) (4.12a)
20A*(A4,+B,) +6(1 —v) (B4 C,)+6(1+v) (B4 C,) =8[84'+2(3 — )] (4.12by
64*(B,+C,)+15(1 ~»)Co-+-5(1+42) (4,4 B)) =8[24*+ 5—v] (4.12¢)
20A*(D, - A))+ (1 =) (D, +E, — By)+ 2(1+v)(E, - C)) = —8[84*+ 2(1 —¥)]

(4.12d)
6A*(D,+E,—B,) +6(1 —v) (E,~C)) +3(1+%) (D,+E,—B,)= —8[4A*4-2(3~7)]

(4.12e)
64X (Fy— D)4+ (1-v)(F,~E))+ (14-v) (F, "E;) =8[2A*+1—v] (4.12f)

The above equations in (4.11) and (4.12) may be divided into two groups. (4.11a, b, ¢) and
(4.12a, b, c) are the six equations for the determination of six unknowns 4,, B, C,, 4,, B,, C,.
When 4, B,, C,, A,, B,, C, are determined, and substituting these results into (4.11d, e, f),
(4.12d, e, f) also gives six independent equations for the determination of six unknowns D , E,,
F, D, E,, F, Thus, all the unknown coefficients in (4.7a, b) can be determined, and therefore,
equations (4.8a, b) represent the first approximation solution U,(£, n) and V. (£, ) of the
functions U(£, n) and V(&, n).

Eliminating C, from (4.11a, b) gives the expression for B, in terms of 4, B,, C,.
Substituting this expression of B, into (4.11c) gives the expression for A4, in terms of 4,, B, C,.
The expressions for A,, B, obtained in the above calculation, together with the expression C,
derived from (4.11a), from the following matrix equation.

15(1+»)®,+a(1/41)®,=Q,(1/4%) (4.13)

in which ®,, ®,, a(1/4»), Q(1/A%) are respeétively the following matrices, and
a(1/4%, Q,(1/A%are functions of 1/4%:

A, 4, 128/424-8(5— 3v)

°1={ Bn }7 °z= { Bz }7 Ql(zl{)={ —80/A*+4-80 } (4.1439b,0)
C, - C, 240/A*4+40(1—»)

. 160/A*45(1—v) —32/A*—10(1—») 18/4*430(1—v)
“(75‘ = [—160/}.’—5(1—1:) 50/A%410(1 ~») 15(1 —») ] (4.144d)
210/A*+4+5(1 —v) 5(1—v») 0
Similarly, from (4.12a, b, c), after similar calculation, we obtain the following matrix equation:
151419, 4 a(12)®,=Q,(4?) (4.15)

in which ® , ®, are given in (4:14a, b), anda(A?), Q,(4?)are similar toa(1/4%), Q,(1/A*)as
shown in (4.14c, d), in which the variable 1/4%is substituted by A*.
From (4.13), (4.15), we get the solution of @,,®,:
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®,=[225(1 =) —a(AHa(1/4) ] H{ -a(4)Q, (1/4*)+15(14»)Q,(4*)}
©,=[225(1+v)*1—a(1/ADa(A) T {—a(1/A*)Q (4" +15(1+)Q,(1/4)}

in which [ is a unitary matrix.
By means of (4.11a, b), the B,, C, are eliminated by (4.11d, e, f), and finally the following
matrix equation is obtained:

6(1+v)¥z+$(1/'12)01+Y(l/lz)‘h: _Qz(l/)'z)

(4.16a)
(4.16b)

.17

in which @, can be found in (4.14a). ¥,, ¥,y Q,(1/4*)arec

D,
V1={E1
F,

D,

| , Qz(;z-)= { 96/4%432(1 —»)

}’ "’:{in

32
} (4.18a,b,0)
—16(1—»)

B(1/4%), Y(1/A%)are matrices in functions of 1/4%:

o)

-

( —88/A*—4(1—»)

24/ 421 —v)
- 24/4*42(1—v)
~—48/A*—-3(1 —»)
60/A%4-3(1 —v»)

24/A24-3(1 —v)

8/A45(1—v) —6(1—»)
—(1—v) 0 ] (4.18d)

-(1-v) 0

12/A49(1 —-») 0
3(1—-») 0 ] (4.18e)
—-3(1—v») 36/A*4+6(1—v)

Stmilarly, we obtain from (4.12d, e, f)the following equation:
6(1+»)¥,+BUAND, + Y (A1) ¥, =—Q.(4*) (4.19)

in which®,, ¥,, ¥,are shown respectively in (4.14b), (4.18a, b), and matrices
B(A®), Y(AH, Q.(4%) are shown in (4.18c, d, €) except the 1/A%in (4.18) changes into A .
From (4.17), (4.19), we obtainw,, w,as:

¥, =036(14+DH-YUDHY(1/AD) ] H{ =60 +QUD+Y(AD)Q,(1/4%)

+6(1+ B O+ Y(4)B(1/4) 0, } (4.20a)
¥, =[36(1+»)-Y1/AHY ()] H{ =61+, (1/A) 4+ Y (1/4A)Q,(A%)
+6(14+2B(1/4AH O 4 Y(1/AHB(AHO,} (4.20b)

in which @,,®,are given as in (4.16a, b). From (4.16a, b) and (4.20a, b) we can determine 12
unknowns 4, B, C,, 4,, B,, C,, D, E,, F,, D, E,, F, Therefore, the first approximation
solution of U, V, i.e. U,, ¥, is obtained.

It should be noted that, if A2.==1/12==1,this elastic plate must be a circular plate. In this
case, the undetermined coefficients have symmetrical properties, that is,

A4,=C,=C,=4,,  B,=B,=24, (4.21)

Thus, (4.11a, b, ¢) and (4.12a, b, ¢) are identical to each other, and can be reduced into the
following common form:

A =(T—)/6 (4.22)

Hence, we have
A1=A2=C1=C2=(7—v)/6;

B,=B,=(7—v),3 (4.23)
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Substitute the result (4.23) into (4.11d, ¢, f) and (4.12d, ¢, f), and take A*=1/4%*=] , and also,

D, =F,=D,=E,, F=F, .20
Then equations (4.11d, e) and (4.12d, ¢) are identical to each other, from which we get
D, =E,=D,=F,=—(13—3v)/6 (4.25)
The third equations (4.111), (4.12f) give:
Fl—Dl=3-——v (4.26)
Using the value of D, from (4.25). we have
F,=F,=(5—3v)/8 .27

Hence, in circular plate, A>=1/4*=1,(4.7a, b) may be wrillen as:

Uz(g; T)) =Vz(1f! U)=%(1_52_1]2){(7_1})(1_&2_7)2)2_(]+1,)(1_§z__n2)

—(14v)} (4.28)
This is identical to the results given by Chien Wei-zang (1948)!'l for circular plate. Tables 1(A).
1(B), 1(C) are respectively the values of the coefficients in (4.8a, b) when v takes various values
0.25, 0.30, 0.35. These results are calculated through formulas (4.16a, b) and (4.20a, b).
Table 1 (A) The values of coefficients for U, V,in (4.8a, b) when v=0.25

A Al B] Cl D1 E] Fl

| 1.12500 2.25000 1.12500 —2.04167 —2.04167 0.70834
2 1.15057 2.79600 1.39835 —-2.15911 —2.92955 0,88088
3 1.18189 317442 1.49157 —2,25220 —3.30192 1.00153
4 1.20041 3,37940 1.53371 —2,30863 —3.47115 1.06840
5 1.20975 3.49342 .1.55575 —2.34384 —3.55892 1.11010
A A B2 C: Da E, F,

1 1.12500 2.25000 1.12500 —2,04167 —2,04187 0.70834
2 1.13309 2.06326 0.78911 —2.02992 —~1.42616 0.62377
3 1.13762 2.04430 0.68017 ~2.04007 —1.29319 0.81164
4 1.13968 2.04486 0.64402 —2.04620 —1.25386 0.60930
5 1.14074 2.04744 0.62940 —2,04968 —1.23862 0.60884

Table 1 (B) The values of coefficients for U, V, in (4.8a, b) when v=0.30

)- A1 Bl C1 Dl El Fl

1 1.11667 7,23333 1.11667 —2.01667 —2.01667 0.88333
2 1.12585 2.78453 1.39402 —2.08489 —2.92156 0.81479
3 1.13279 3.17261 1.48901 —~2.,10788 —3.30292 0.87458
4 1.12114 3.38259 1.5321v —2.08840 —3.47524 0.89767
5 1.09958 3.49866 1.55467 —2.05252 —3.56378 0.90489
A Az Bz Cz I EZ Fz

1 1.11867 2.23333 1.11667 —~2.01667 —2.01667 0.68333
2 1.13057 2.05329 0.77981 —2.02120 — 1. 40966 0.61730
3 1.13643 2,03825 0.67519 —2,03573 —~1.28684 0,60949
4 1.13899 2.04100 0.64216 —~2.,04365 ~1.25235 0,60856
5 1.14030 2. 04481 0.62322 —2.04803 —1.23919 0.60862
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Table1(c) The values of coefficients forUJ,, V, in (4.8a, b) when v=0.35

A Ay B, C, Dy o F,

1 1.10833 2.21687 1,10833 —1.99187 —-1.99167 0765833
2 1,.10100 2.77331 1.389G6 —2.00963 —2,91403 0.73711
3 1.08266 3.17142 1.48643 —1,95854 —3.30471 0.73948
4 1,03923 3.38664 1,53048 — 1 85643 —3.48026 0.71275
5 0,98369 3.50486 . 1,55358 —1,74105 —3.56961 0.67981
A Az B, Ca D» E, F;

1 1,10833 2.21667 1,.108338 —1,99167 —1,99167 0,65833
2 1.12804 2.04328 0.77066 —2,01244 —1.3_9371 0.61122
3 1,18524 2.03215 0.67057 —2.,03137 —1,28142 0.60775
4 1.13830 2.03710 0.64080 —2.04110 —1,25190 0.60818
5 1.13985 2.04217 0.62959 —2,04636 —1,24083 0.60871

It is shown in the above tables that in the case of circular plate, 42°=1/A*=1, and the
values of all the coefficients are equal to the corresponding values given in (4.23), (4.25) and
4.27).

In the above, we have the first approximation solution of the large deflection problem of
elliptical plate.

V. The Second Approximation Solution

The substitution of the first approximation solution (4.4), (4.8a, b) into the equation of
the second approximation (3.5a) gives the differential equation for the determination of

Wi(& 1) and a; :

Wy OWs |\ s OWs _
o d&an? ont
=48(1—3&— ) {(TA,+vA*C,) 4 [5(A4,+ B))+ 3vA*(B,+ C,)1é'n*

+[3(B,+C))+ 54w (A, + B,) 19* 82+ (C,+ TvA*A,)0°+ [ - 5(4, - D))

—vA%(Cy— F}) 16+ [~ 3(B,— B, — E)) — 3v4*(B, — D, — E,) 187
—[(C,~E)+5vA*(A,— D,) In*—[3(D, — F ) +vA*(E, - F,) &

=[(E = F)+39A"(D,— F)In*— [ F +vA’F,]}

+4842(1 - £2 =3 {(Tv A+ A2C) E°+ [5v (A, + B ) 4 3A*(B,4-Cy) 1é*n*
+[3v(B,+C)+54*(A4,+ B) In* e+ [vC,+ TA2 4, ]+ [ - 5v(A4,— D))
—A(C,—E,)]E
+[—3V(Bl_D1—E1)—3'12(Bz—Dz_Ez')]§2772+[—V(Cl—El)—5A2(A2—Dz):|7)‘
+[=3(D,—F))—A(E,—F)18+ [ —v(E,— F ) —312(D,~ F)1p*

—[vF +A*F,]} )

—192(1 - A%n{ (4,4 B+ 3C)nE+2(B,+ C,+ B, + CH E°
+(3C1+A2+Bz)7lsg+[—Bx+E1+D1_Z(Cz—Ez)]U§a+[—2(C1—E1)
—(Bz"Ez_Dz)Jgﬂs’*"(“E1+F1—E2+F2)77§}

+384(1 — &2 — ) { (B+vA)E+ (14 22+ v)A24 A1) &2

+ (340 A% — (14 9AD 82— (v A A2} 5.1

At the same time, the solution of (5.1) may be of written as:

+ 24

8(34 242+ 344 a,
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Wi, m=0-8—n){GE+HEP+ 1 +T 8"+ Kn®+ ME°
+ NED+ LEn*+ P+ Q&4 REN 4 Sn*+ T &4 Xn*} (5.2)
mwhich G, H, I,J, K, M, N, L, P, Q, R, S, T, X are 14 constants to be determined. It can be

see that W (&, n)in (5.2) satisfies the boundary conditions (3.6). Substituting (5.2) into the left-
hand sides of (5.1) gives:

‘W, 2 O'W s (OW
& 24 o&*an’* +4 on*

=24E8{ (4954 304+ AN G+ (154 2A)A2H 4 A*1 } 4+ 24£°7*{ (4204564 G
+ (2104112424 15A%) H 4 (56 + 30A*) AT + 15447 } + 1205*n*{14G+ (28+ 154 H
F (14430424 14AN T 4 (154 28A2) A2T 4144 K } - 24 £29°{ 15 H 4 (3045642 ]
4 (154112424 210A*)J + (5644204 A2 K } 4 24n*{ I 4+ (24 154%) ]
4 (14304244954 K } - 8£%{ — (12604 564%)G —6A*] — (564-6A*) A2 H
+ (630456424 3A )M + (284 6A%) A2 N4 3A*L} 4 120&4n*{ — 28G — (284124 ) H
— (12464222 — 62T+ 6 (14 A AL+ (284 6A*) M + (14 +12124-3A) N
+3AP} 4120820 —6H — (64+124%)] — (124282122 — 284*K +3M
+G(1+/12)N+‘(3+ 12A%414A%) L+ (6A*+ 284*) P} +8n°{ - 61 — (64 564A%*)J
+ 3N+ (64284 L — (564-1260A*)A* K + (3+ 56424 6304*) P}
4 24E4T0G+5A H 4+ A*] — (1404-10A)M — (104 2A")A* N — 2A°L
4 (704 10424+ AHQ+ (54 2AH AR+ A4S}
+ 7280 {5 H + 422 +5A0T — (84 10A1)A* L —10M
- (10+8,12)N+(10+4AZ)Q—1OA"P+(5+ 8A24-5AY R4 (441042 ALS}
+24n* {1 4542T F-T0A*K — (2410A*) L— 2N — (10+140A")A* P+ Q+ (2454 R
+ (1410424 70A*) S} 24 £2{ A L+ 15M 4 2A* N — (304-447)Q — 2(2+AHA’R
—2ASS L (154 FANT 4+ 2(1+ A A2 X }+ 24n*{2A* L+ N4 15A*P - 2Q
—2(1+2A2)R— (443040 A2S 420+ ADT+ (14444 15AH X}
+8{3Q+ A2 R+3A'S - 23441 T — 2(14 34 A* X} (5.3

Comparing the coefficients of various terms in (5.1) with (5.3) gives all the equations for the
determination of various undetermined constants. The coefficients of &%, £°n%, £4n*, &%n°,
n® give 5 equations for the determination of 5 constants of G, H, I, J, K.

(4954 30424 AN G+ (154 2AD AL H - AT = f,

(412045621 G+ (2104112424 15A) H 4 (564 3042)A T +1544T =f,

70G + (1404 75A2) H 4 (704 150A*4 70A) T+ (7541404 A* T +T0A K =f, (5.4)
15H + (304 5642) T+ (154112424 2104*)J 4 (56442041 A* K= f,

T4+ (241547 4 (1430424495 ) K= f;

in which f, (i=1, 2, 3, 4, 5) are the following known functions of A* and v , which are
obtained from the right-hand side of (5.1).

fi=~6(T4,+vA*C,) —24%(TvA4, +A2C,) +16(34vA%) (5.5a)
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f:=—2(7A,+vA*C,)—6[5(A,+B))+3vA*(C,+B,)1—24*[5v(A,+ B )~ 34*(B,+C,)]
—6A*(TvA,+ A*C,) —8(1 —v)A*(A4,+B,+3C,))+32(3+v4%)
+ 1601422+ v)A*+44] (5.5b)
fa=—6[3(B,+C)+5vA*(A,+ By)1—2[5(A,+ B+ 3vA*(B,+ C,) ] - 6A*(5v(A4,+ B))
+ 342(Co+ By) 1+ 24 [3v(B,+ C)H)+ 54 (4,4 B,) 1—- 16 (1 =) A (B, +C)
+ (B, +C) 1+ 16(34 A0 +32[14- 22 v) A2+ A4 ]+ 16 (v+ 3/12)/12. (5.5¢)
fo=—6(C,+TvA%A4,) —2[3(B +C))+5vA*(A,+ B,) ]~ 6A* [ 3v(B,4-C))
+54%(A4,+ By) 1 - 24*(vC + T2 A4,) ~8(1 =) A*[3C 4 A, + B, 1+ 32(v+ 349 A?
+16[ 14224 v)A2444] (5.5d)
fe=—=2(C,+TvA*A4,) — 6A2(vC 4 TA A,) + 16 (v4 34%) A2 (5.5€)
It should be noted that A, B, C.A, B,, C, are given in (4.16a, b), and therefore, f, (i=1, 2, 3,

4, 5) in (5.5) are known.. Thus, (5.4) are S linear equations for the determination of 5
unknowns G, H, I, J, K. This can be written in matrix form as follows:

BX =2 (5.6)
in which
=G H I J Kh?, Q=(f, f. fs fo fT (5.7a, b)
495+ 30A2 4 At (154242)4% At o 0
4204-564% 2104 112A*4154*  (564-304%)A* 154 0
b= 70 1404-754% 704150424 70A*  (75-41404%)A% 7044
0 15 305642 154 112424210A* (56 4204%) A%
0 0 1 241542 14 30A%4-4954*
(5.7¢)

The solution of (5.6) can be written as follows:
X, =HKi'Q, (5.8)
In (5.1) and (5.3), the coefficients of terms £°, £‘n%, &7, n°are given.
(1260456 A)G + (56 +6A2) A2 H + 64T — (6304 564+ 3A )M — (28+64)A*N

—3ML=f, (5.9a)
28G + (28+ 124 H+ (12+ 641 A’ T + 62T — (28464 )M — (14+124*+ 34N
—6A2(14+ A1 L —-3A*P=f, (5.9b)
6H+ (64+12A) 1+ (124 2842)4%J +28A4'K — 3M —6 (1 +AHN
— (3+ 12424144 L - 126+ 28A) P=f, (5.9¢)
61+ (64+5642)J — 3N — (6+4284%) L4 (56+12604%)A*K — (34 564+ 6304 P=f,
(5.9d)

In which, G, H, I, J, K are known as shown in (5.8), and therefore, (5.9a, b, ¢, d) is a system
of 4 equations for the determination of 4 unknown L, M, N, P. In matrix form, it can be
written as:

2
l*ler—"erz':—‘_?Qz (5.10)
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in which X;is shown as in (5.7a); Xo» M, 8., Q,are

.={M N L P}7, Q,={15f¢ f1 fs 15fs}" (5.11a, b)
12604561 (56 +6A2)A2 64 0 0
| 28 2841242 (12+6AHAr  6A4 0
He= 0 6 641242 (12428494 2844
0 0 6 64564* (564 126042)A%,
(6.11c)
63045642+ 344 (28 6A%)A2 344 0
_ 28+ 642 L1228 430 62214 47) 344 511
3 6(1+4%) 3412424144 (642841 A% '
0 3 642847 345642+ 630A*

The solution of (5.10) is
X.=07'{H.X,+29,/5} (5.12)

The values of £, [, f;, f, in (5.11b) are respectively:

foe=(TA,4+vA*C)+ 3[5(A4, — D)+ vA*(C, — E) 1+ (TvA 4+ A*C ) A*

+05v(A4, = DDA+ (C,— EDA*]—8[2(3+vA) + (14vAD)] (5.133)
fr=[5(A,+ B)) +3vA*(B,+C,)1+9[B,—D,—E,+vA*(B,—D,—E;)]

+05(A, =D )+vA*(Co,— E)) 1+ A 5v(A4,+ B,)+ 34*(B,+Cy) ]

+34[(v(B,—D,~E )+ A*(B,—D,—E;) 1+ 3A[5v(A,— D)+ A*(C, - E,)]

+4(1-»A*(B,—E,—D+2C, - 2E,) —16[4+ (4+ 3 A*+A*]—8(2+ 3vA*+ A%)

(5.13b)

fe=03(B,+C) +5vA*(4,+B,)1+3[B,~ D, ~E,+vA*(B,—D,—E))]

4 3[C,— E\+5vA* (A4, — D,) 1+ A*[ 3v(B,+ C,) +54* (4, + B,) 1+ A*[»(C, - E))

+54%(A4, - D)1+ 3A*[3v(B, =D, ~ E)+3A%(B,— D, — E)) 1+ 4(1 ~v)A?

« [2(C,—E)+B,— E,—D,1—16[ 14 2(2+») 424 1*]— 1642 (v 34%)

—16A2(v+A%) —8(1+vA?) _ (5.13¢)
fe=(C\+TA*4,) 4+ [C,— E\+ 5vA*(A4,— D) ]+ vC + T4 ) A2+ 3[»(C, — E))
+54%(A4,— D,)JA* — 16 (v+ 342) A2 —8(v+ A2) A2 (5.13d)

(5.12) gives X, or gives M, N, L, P.
Comparing the coefficients of terms &*, £25%, p*in (5.1) with (5.3) gives:

70G4-EA*H + A*] — (1404 10/1")M— (10424*)A*N — 2&‘L+(70+ 10424 AHQ

+ (54+2A) AR+ A'S=f,, (5.14a)
15H 12421 415447 — 3(84-10A*) A2L — 30M — 3(10+ 842) N+ 3(10+445)Q

—30A'P+ 3(5+484*+-5AY R+3(4+10A1)A*S =, (5.14b)
[+52T+70MK — (241045 L— 2N — 10(1+ 1440 A2P+Q

+ (2+5AD R+ (14104247044 S=f,, (5.140)

in which £, f, . f,, are respectively:

fro=—10014+» (4, — D) =2+ ) A(C,— ED +6(3+vA) (D, ~F,)
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+2(3v+ADANE,—F,)+16(543vA?) (5.15a)
f1=203+4A'— 312 J(E, — F )+ 2[4 —3v+ 34242 (E,— F ) + 6 (3v+ A A*(D,— F,)
+6(1+3vADD,—F)—6(1+vA*)(B,—D,—E)) ~6(v+4>)A2(B,—D,—E,)

+16[3+2(2+ 39) A2+ 344] (5.15b)
fre=—2(14v4)(C,— E) —10(v+A*) 1*(A,— D)+ 2(1 +3vA*) (E, — F )
+6(+34) D, —F,) +16(3v+544) 2> (5.15¢)

(5.14) may be written in matrix form:
BaX, 4 05X, + D Xs =9, (5.16)

in which X;» X.are shown as in (5.7a) and (5.11a), while p,, §;, ®;, s, Xsare respectively:

Q Fro 70 B5AT A4 0 0
x3={R }, Q3={f“ }, u3=[o 15 124> 15A* 0 J (5.17a,b,e)
S fie o o0 1 54 70A*
r —(1404104%) — (10424112 — 244 0
0= L —20 _ —3(10-484%) —3(84+10A%A? — 3044 ] (5.17d)
0 -2 — (241013 (104 14042)4%
70410424 A4 (5424012 At
;= | 3(10444?)  3(54-84%4519 3(4+104%) A% ] (5.17¢)
- 1 24 54% 14-10A*4 7044
The solution of (5.16) gives Q, R, S, i.e.
Xs=m§‘{93/3—PaXI~Ost} . (5.18)
Comparing of the coefficients of various terms £2, n2in (5.1) with (5.3) gives:
AML+15M+2°N — (304-441)Q— (44 2A) 2R — 2488 + (154 442+ AT
+204+ A2 X=f,, (5.1%a)
2A'L+ N+ 151*P—2Q—2(1—2A)R — (4+30A) A2 S+ 2(1+ A5 T
+(1+H4A2+15AH X = £, (5.15b)

in which fn, /.4 Tespectively are:

3= =61 +vAN (D, —F ) =2A*(v+ A (E,— F )+ 23+ vA)F 4+ 23v+ADAF,

—16(1-+2vA?) (5.20a)
fra=—2Q+2A)(E,—F ) —6122(v+ A (D, — F )+ 214+ 3wA) F 4+ 2(v+ 34 A*F,
—16(v+AH)A? ‘ (5.20b)
(5.19a, b) may be written in matrix form as follows:
0. X2+ 0. Xs+ X, =9Q, (5.21)

in which X3, Xsare shown as in (5.11a), (5.17a), while X¢» Q., 84, ®,, W, are respectively:

T f 15 24 A% 0
X¢={X}> 9‘={f:}, 0‘=-[0 L o 15”] (5.22a,b,c)
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(30+44%) —(442AH)4* — 244
@,= [ ] (5.22d)
-2 —2Q424%) —(4+30AHA2
154442 A4 2014142
x —[ ] (5.22e)
2(144% 144441544
the solution of (5.2) gives T, X. They are:
X4='4-1(94"OAX1“(°4X3) (5.23)
At last, comparing of constant terms in (5.1) with that of (5.3) gives:
(8342224 34 @y =3Q+ A2R +34'S —2(3+ A1) T —2(1+ 3A1) A2 X+ 6 (1+vAD F,
+ 64 (v4- A F, (5.24)

in which Q, R, S, T, X are shown respectively from Xs» X,or from (5.18) and (5.23), F, F, are

shown respectively from ¥,, ¥,in (4.20).

Based upon the results of calculation in the 2nd order perturbation, this unknown
coefficients in (5.2) for W (£, n) are completely determined. The unknown constant ay is
also obtain. The values of these coefficients for different A with » =0.25, 0.30, 0.35 are given
in Table 2 (A, B, C).
Table 2 (A) The coefficients in (5.2) and a; in (5.24) with v=0.25

yl G H I J K
1 —0.52083X 1072 ~0.20833X 1071 —0.31250X 1071 —0.20833%X 101 —0.52083% 10™2
2 ~—0.39984X'107} —0,52988X 1071 —0.19562X 1071 —0.51014X 1073 —0.51610X 1073
3 —0.11305 —0.87392X 107! —0.79593X 1072 —0.16386X 1072 —0.12148X 1073
4 —0.21263 —0.11740 —0.30407X }0™2 —0.64242X 107 —0.41687X 1074
5 —0.31431 —0,14190 —0.10610X 1072 —0.29418X 1073 —0.17816X 104
A M N L P Q
1 0.36458% 10-1 0,10938 0.10938 0.36458X 107} —0.11719
2 0.24550 0.21857 0.36759X 107t 0.41229X 1072 —0.84741
3 0.64191 0.33111 0.11728X 107t 0.10113X 1072 —1.45782
4 1.11020 0. 42083 0.39038X 10~2 0.35335X 1073 —2.22038
5 1.62727 0.48999 0.11689X 1072 0.15263X (073 —2.79620
A R S T X as
1 ~0.23438 —0.11719 0.33681 0.33681 0.53733
2 —0,33833 —0.15188% 1071 0.93368 0.21976 0.58232
3 —0.44380 —0,36244X 1072 1.55911 0.21914 0.83610
4 ~0,52117 —0.10883X 1072 1.99581 0.22522 0.86999.
5 —0.57538 —0,33718X 1078 2.27442 0.2301. 0.68934
Table 2 (B) The coefficients in (5.2) and a; in (5.24) with v=0.30
.G H I J K
1 —0,50556X 102 —0,20222X 107" —0,30333X 107! —0,20222X 1071+ —0.50556X 102
2 —0,38868X 107 —0,51510X 1072 —0,18997X 1072 —0,49270%X 1072 —0,50150% 103
3 —0,11081 —0,85186X 1071 —0,78521X1072 —0,15566X 1072 —0.11820X i0-3
4 ~0, 20942 ~0,11478 —0,31870X 1072 —0.59740X 1073 —0,40580X 104
5 —0,3109% —0.,13913 —013248X 1073 —0,26760X 1073 —0,17343X 10™4



906 Chien Wei-zang, Pan Li-zhou and Liu Xiao-ming
Continue Table 2 (B)

A M N L P Q

1 0.35389%X 101 0,10617 0,10617 0.35389X 1072 —0,11375
2 0, 23927 0,21258 0.35785X 1071 0,39870X 102 —0,63502
3 0,63083 0.32328 0.11751X 107 0_96847X 1079 —1,44202
4 1.09773 0.41254 0.42840X 1072 0,33463X1073 —2,20583
5 1.51572 0.48211 0.18476X 1071 0.14302X 1073 —2.78420
A R S T X as

1 ~0_22750 —0,11375 0.33656 0.33656 0,54564
2 —0_32806 —0,14814X 1072 0,93108 021977 0.58713
3 —0,43563 —0,36837X 1072 1.55568 0,21806 0,63872
4 —0,561408 —0,12047X 1071 1,99280 0, 22512 0.67127
6 ~0,56946 —0,45863X 1078 2.27203 0,23001 0,68043

Table 2(c) The coefficients in (§.2) and as in (5.24) with v=0.356

A G H ) 7 J K

} —0_48750% 1072 —0.19500X 1072 —0,29250X 1071 —0_19500X 10~} —0,48750X 1072
2 —0,37537X 1672 —0.49757% 1071 —0,18321X 1071 —0.47271X 107t —0,48411X 1077
3 —0,10754 —0,82559%X 1071 —0_76774X 1072 —0.14679X1072 —0,11426 X 1073
4 —0,20503 —0.11159 —0,32840%X 1072 —0_55038X 1073 —0,39247X 1074
5 —0,30603 —0,13578 —0.15304X% 1072 —0.24024X 107 —0,16773X 1076
i M N L P Q

| 0,34125X 1071 0.10238 0.10238 0.34125X 107 —0.10969

2 0.23168 0.20550 0.34586X 107! 0.38301X 1072 —0.61898

3 0.681615 0.31393 0,11656X 1071 0.92098X 1073 —1.41849

4 1.07935 0.40246 0.45874X 1073 0.31437X 107 ~2.18091

5 1.49685 0,47233 0,20724X 1072 0.132756X 1073 —2.76095

i R s T X ey

1 —0,21938 —0.10969 0.33525 0.33525 0.55294

2 —0,31820 —0.14344X 107} 0,92455 0.21931 0.58077

3 —0.42563 —0,36685X 1072 1.54615 0.21860 0.84018

4 —0,50509 —0,13036X 1073 1,98308 0.22469 0.67188

S ~0.,56178 —0,.56969X 1073 2.26325 0.22964 0,69068

VI. Relation between Central Deflection and Uniform Loading

From (3.2d), we may write the relation between the central deflection and uniform loading
in the second approximation as follows:

3Q/2(34- 22+ 3/ ) =a\W u-+a W3, 6.1)

in which @Q is dimensionless uniform loading. ¥ ,is dimensionless central deflection (see (2.4)).
a, and a; are respectively shown in (4.4) and (5.24).

ay=1 6.2)

@, is the function of A* and v. The various values of A2 and v, a4 are shown in Table 2 (A,
B, O).
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When A*==1/4*=] , we have:

3/2(3+24%4344)=3/16 6.3)
(6.1) is of the same form as shown for circular plate; seel!! (1948). WhenA*=1,v=20,30we have:
ay;=0,54564 - (6.4)

which is the same as shown in[}](1948).

Based upon this relation given in (6.1), we can constructs the central deflection curves
against uniform loading.

Fig. 2 shows the central deflection ¥/, curves against the intensity of uniform loading for
various 4* when v =0.30.

e—s—s Experimental
data

v=0, 30

2.

1.
1.
0.
a‘q = a‘q
‘E}l‘ 0 . ) QT( 1 "Vz)Eh‘
100 100 200 300 400 500 600
Fig. 2 Central deflection against intensity Fig. 3 Central deflection curves against
of uniform loading for various 12, intensity of uniform loading for
when v=0.30 various v values, when 1=2.

Fig. 3 shows the central deflection curves against intensity of uniform loading for
various v values when A=2 .

In Fig.2, the experimental point “.* are given by Nash and Cooley for A*=4(1959)031,
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