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Abstract  
In this paper, the perturbation sohaion of  large deflection problem of  clamped 

elliptical plate subjected to uniform pressure is given on the basis of the perturbation 

solution of  large deflection problem of  similar clamped circular plate (1948) Ill, 

(1954) l'1 . The analytical solution of  this problem was obtained in 1957. However, due 

to social difficulties, these results have never been published. Nash and Cooley 

(1959)t31 published a brief note of similar nature, in which only the case ~ = a / b = 2  is 

given. In this paper, the analytical solution is given in detail up to the 2nd 

approximation. The numerical solutions are given for various Poisson ratios v =0.25, 

0.30, 0.35 and for various eccentricities 2 = 1, 2, 3, 4, 5, which can be used in the 

calculation of engineering designs. 

Key words elliptical plate, large deflectioa, perturbation method 

I. Introduct ion  

The large deflection problems of plates have interested applied mathematicians over a quite 
long period. In these problmes, Von K~trm~in's nonlinear differential equations need to be 
solved (1910)t4], (1940)t5]. Due to the difficulties in solving nonlinear differential equations, only 

very few problems have been solved. At the first, S.Way (1934)t6] gave the solution of circular 
clamped plate under uniform pressure in terms of infinite power series. Then, S. Levy (1942)t7] 
gave the double trigonometrical series solution for rectangular plate under uniformly 
distributed pressure. These two solutions are all very complicated and tedious so that they are 
hard to handle even in some important cases. Chien Wei-zang in 1948[I] and in 1954tzJ treated 
the problems of large deflection of clamped circular plate under uniform pressure for various 
boundary conditions by the perturbation method, in which satisfactory results are obtained. 
The calculated displacement at the center of the plate and the calculated yield condition on the 
plate boundary agree very closely to the experimental results given by McPherson, Ramburg, 
and Levy (1942)tsl. From then on, Chien Wei-zang and Yeh Kai-yuan tried to solve the large 

deflection problem of rectangular plate under uniform pressure (1~56)191 by perturbation 
method; a little later, Nash and Cooley (1959)t31 tried the perturbation method to solve the 
large deflection problem of elliptical plate under uniform pressure, in which the case of axis 
ratios ~,~2, v----0. 30 has been calculated in numerical details. In this paper, the perturbed 
solutions of large deflection problem of clamped elliptical plate in various Poisson's ratios 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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v =0.25, 0.30, 0.35 and various axis ratios ,i =1, 2, 3, 4, 5 are given for.uniform pressure. 
Both in the first approximation, and in the second approximation, the perturbed equations are 
solved analytically. 

II. Large  Def l ec t ion  Prob lem of  Ell iptical  P la te  under  Uni form Pres sure  

Let us consider the large deflection problem of an elliptical plate with major and minor 
axes 2a and 2b, thickness h under the action of transversal uniform load q (Fig.l). Let us 
denote the lateral deflection and the tensile displacements in x, y directions of the points P(x, 

Y ) in the middle surface of the plate by w, u, o. The membrane stresses may be written as 

E r au 1 I <gw \~ , r a v  1 z aw \z 
a . :  l"T=Tt--~"+-~'[-~- J -i-.7,L~-y +-~-~,--~--y ) ]} (2 . I a )  

a E r a y  I z a w \  ~ . Fau . 1 l a w \  z 
, :  1-~-~-~-t--~y +'-~'~---~ ) - t - , tTx -1--~-[~ ) ]} (2 .1b)  

E . f au + av aw aw 
~ " -  2(i--+,;) l - ~ -  Y~-+ a~ ay } Y 

(2 .1c )  
in which E is Young's modulus, v is Poisson's 
ratio. In the following calculations v may be 
taken various values in 0.25-0.35. 

Von K&rm~in's large deflection equations 
correspond to the following equations of 
equilibrium: 

aa, .at, W 0 a r . + a a  W__.O a~ +-b~ - =  ' ~ ay 

( 2 . 2 a , b )  

C 
Iqi I i I1: 

Fig. 1 Coordinates and displace- 
ments of elliptical plate 

2 2 a " w  a2w 
DV V w = q + h ( a , ' ~ i - + G w ' ~ + 2 r  d2w ~ (2 .2c )  

in which D = E h S / 1 2 ( 1 - v z ) ,  which is the fluxial rigidity of the plate, Substituting (2.1) into 
equation (2.2) gives: 

2 a : u  . . . .  a :u . a : v  . a w  2 - ~ - t  u - 1 , ) - f f ~ - +  (i + 3 , ) - - ~ =  - ( 1 - v ) - ~ - V  w 

_1(1 + a aw z aw : 
�9 ] 

~ z  " a ~ v  " a~u -- ( 1 - - v ) - ~ - V : w  2"~-~r + ( t - v ~ - ~ +  (I + v)--g~--~-~-: 

(2 .3a )  

(2 .3b)  

D v f v : w f f i q ~  ' Eh ~( a= + 8v \cgzw do au ~9:w ~-~, t~-~- " 3 ; - / ~ - + ( - - ~ - + ' ~ - - ~  + (1-,) 

{ a,, + a,, al_q:z_ l . eh  r r / a , , ,  v .  / a~, ~ , l a ' ~ _ [ , ,  a,,, v 
�9 VT#- -~ - /a .a#  J ~ 2(1--1,:) tLl,-~--) ~ ' ~ , - ~ - !  ]-~-'L~,~-! 

I a w  \ : q a 2 w  . a w  a w  8 z w  +vl--~-- ) ]~-~.-I-2(1-v) ax a y  a - - W ~ f  (2 .3c )  
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These equations may be non-dimensioned by introducing' the following 
quantities: 

dimensionless 

follows: 

U(~,  ~ / )=U,(~ ,  ~,)Wh + U , ( ~  e, ~/)W'=+:.. 

V(~,  r i )=V , (~ ,  r/)W~ + V , ( ~ ,  r / ) W ' + . . -  

W(~, r l~=W,(~,  r / )W=+W~(~,  r / )W~+-.-  

3Q/2 (3 + 2A2 +32  ~) ---- a~W,~+asW~_+ ... 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

(2 .4)  
r," by av w 

w =  x 

Thus (2.3) may be written as: 

O'U O'U a ' V  
2"~-~--+ (1--'a)A" -~+ (1-t-v)~' O~Or/ 

o W  a 2 w  2 0 2 w  1 a a w  z z a w  2 

a z v  , o2v  a2u  2A' --~--{- (I - v)---~-r + ( i + , , )  a~a,7 

. O W / O 2 W  - 2  __( l_~>=~_t_~+~ a2w\ i . arlaw~2, xjaw\2~ 

O ~ W - - - 2  04W "40"W 1 " ~  ~_ FI OU -2 d V  \ a z W  
-a-g + z,~ ~ +  ~ - 0 - -  ~u= vz tt-O-r ,,^ - - ~ ) - - ~  

, -2av  au,_,a2w , a u  o r ,  a2w }+6{[(-~--)' 
+t ~ -~-+ "-gg-Y -g~+[-~-+ -~-)(~- ")a~ a~a~ 

I 

+.~zaw\2~a~w F2:[OW~2. /aw\:q~,a'w 
~ t-b-U) J-~-+L ~-~- I  "-~t-aT) J a~ 2 

a W  a w  a ~ w  .i 
+2(1--v),~ ~ a~ o,1 a~a~, ~. (2.5e) 

These equations w~ll be solved with the boundary conditions: 

W = U = V = O W / O n = O  ~ on the boundary ~2+r/~=l (2 .6)  

in which n is the external normal direction on the boundary of elliptical plate. 

III. Solution by Perturbation Method 

According to the examples with most success in the perturbation method of the large 
deflection problems in circular plate (1948)Itl, we take W,,, the dimensionless center deflection 
of elliptical plate, as the perturbing parameter, 

W , , = W ( 0 ,  0) (3.1)  

Let us assume that U, V, IV, Qin (2.5a, b, c) may be expanded into power series of W .  as 
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Substituting (3.2a, b, c, d) into (2.5a, b, c) gives power series expansion of these equations in 
terms o f g r  m. These equations satisfy all the values of Win. Hence, all the coefficients of 
W'~ terms in these equations must vanish independently, from which we obtain the eT:luations 
of various approximations for the determination of a ~  Ub(t~ r/)~ V ~ ( ~  rD ~ W~(t~ I/) 
successively. 

Equations of the first approximation are given by the W m terms in (2.5c) and W~terms in 
(2.5a,b) as follows. They are the equations for the determination of WL(~, r/)~ al ~_ Uj ( t2  r/) 
andV~(t~ I/): 

a'W ~'W ~4W 1 2 v 1 4 t l  1 ~  d--~---+2A ~ q - 2  ~ - - 8 ( 3 + 2 ~ . z + 3 ) . 4 ) a ~  (3 .3a)  

~zU ~ U  2e-b~ + (t -,,),l ~ ~ - ~ +  ( 1 +,,) a ~ a,v~ . aw,~. a ' w ,  ata~ = - ( i -  v~- -gT-  [. a t '  

a~w, ~ ~ . . . .  a r z a w , v  +~ , (aw,1 '  ] ' 2  ^ 0--b-U--)-Tt~*"~--g~--t~,T! ~ T !  J (3.3b) 

-202V~ . .  .a~v~ o~u2 

-. - OI'Vt/ O2WI 2 a2Wi 1 .\ a F/oWA~_.~/oW~\~-I 
= - t ~ - v ) - - ~ - t - : - ~ + a  T ) - T ( I + " ' N L U - a T  -] * "  t T )  ] (a.;Io) 

We have from (3.1), (2.6) the following conditions for the solution of (3.3a, b, c): 

W,(0, 0 ) : 1  (3.4a) 

W,r r~)=U~(t, rD=V~(~, rD=aW,(t, ~7)lan=o, 

on the ellipse t~q- r /z : l  ( 3 . 4 b , e , d , e )  

Equations of the second approximation are given by theW~lerms in (2.5c) and W~ terms in 
(2.5a,b). Thus, we have the following equations for the determination of W~(t,  r/), a~, U,  
( t ,  ri), V , ( t ,  r/); 

'W" 
a t  ~ Or/~ 8 (3+  2';t~+ 324)a~ 

= 12{(_d~ +v2~ _ _ ~ _ _ ) T  + ~ a v ~ \  a~w, z-zav~A --ff-~--+ v.--~.-)Aau~ ,_~aw,._~_~+~__~+...~)zauz a v t \  

~ - ~ - 1  ] ~  L ~,--~-1 

+ /OWDZI.~ a~W~ OW~ aW~ O~W~ 
~'k--b-U} ]a ~ + 2 ( 1 - , , ) a  ~- at a~ a~a~ } (3.5a) 

. : a w , :  a ' w ,  - ,  a ' w ,  x -~-~-) 

+ aW.,l a~w, a~w~ \~ -- a FaW, aws +2~aw,  aws 
at ] 

O:V, . O~V~ azU, . faW~ z azW~ 22 O~W.~ 2~ - ~ - I -  (1 -- v ) - -~ - l -  (1-1- v) - - - -  ( l - -  0to  + T I  
q_OW~i O~W~ "z a~W~ 

ar~ z I J  
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The boundary conditions for the solution of (3.5a, b, c) are 

Wa(0) 0)==0 (3 .6a)  

Ws(~) ~)=U,(~) r/)=V,(~, ~)=OW3(~, rl)/an=O 

on the ellipse ~+~"-----1 ( 3 . 6 b , c , d , e )  

and so on. These equations can be solved successively. According to the experience in circular 
plate problems, the solution of the second approximation gives sufficient accurate solution for 
ordinary purpose. 

IV. Solut ion  of  First  Approximat ion  

Let us solve (3.3a)with th.e boundary conditions (3.4a, b, e). The solution satisfying (3.4b, 

e) may be written as 

Wt(~) ~i)=A~(1-~z-O~) z, A~=constant  to be determined. (4 .1)  

Substituting this into (3.2a)gives 

A~=a~ (4.2)  

Thus applying (4.1) to (3.4 a), we obtain 

A ~ = !  (4 .3a)  

from which we obtain the undetermined constant 

a l =  I (4 .3b)  

and also the solution of (3.3 a)under the conditions (3.4a, b, e) (lst approximation solution) 

W1(~  r / )=(1-~Z--r /Z)  z, a , = l  (4.4)  

Substituting Wt(s  e, r/) from (4.4) into (3.3b, c), we obtain the system of two equations 

for the determination of U~(~, 1"/) and Vz(~) r/) . 

2~rO2U2 _v)O2U~ a~v~ 
--b~ -+(1 -b-~ - + ( l + v )  0~0~ 

= 1 6 ~ ( 1 - ~ z - r f l )  {[f---~+.(1-v)]~2+[-~f2+5-v]rfl--~-(1-v)} (4.5a)  

2 A z ~ +  t l  v',tgzV2.t_ .OzU~ , -- ) - ' ~ ,  ( 1 - b v ) ~  

=16~(1-~2-~2){[62.2+(1--v)]~+[22=+5--v]~Z--ZAz--(1--v)} (4 .5b)  

From (4.5a, b), it can be shown that, if U 2, V_, ~) r/) 1/2.' in (4.5a) are changed into V v U v 
r/, ~, 2 z, we readily obtain equation (4.5b). 

~, r/, 2 z, v, i .e .  

U2=f(~, 17, 
then V 2 must be the same function of r h ~, 1/22, 

On the other hand, we have 

That is to say, if U 2 is a function of 

2 ~, v) (4 .6a)  

v, i.e. 

~, 1/2 z, v) (4 .6b)  

Vz----g($)" 7, 22 ) v), U~=g(r j ,  ~, 1/22) v) (4.7a~ b)  
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By the symmetrical properties and the boundary "conditions (3.4c, d) of displacements, we may 
assume that the solutions of (4.5a, b) may take the following forms: 

U~(~, ,D=~(1-~-,#){At~'+Bt~2rJ~+Ct'#+D,~2+E~'f +F~} (4 .8a)  

V~(~, ,1)=,I(1-~2-~z){A~tl'+B~,I~+C~4+Dz~+E~+F~} (4.8b) 

in which A,, A 2, B,. B2, C~, C2, O v D~, E~, E 2, F v F 2 are functions of~l z, vto be determined. 
On the basis of (4.6a, b) or (4.7a, b), if A~ is a function of~l'~ v, thenA~ must be the same 
function of 1/,~ s, v. That is, 

~/,=A~(2z~ v), A , :At ( I /2  2, v) (4.9a, b) 

B, and B,, C, and C v D, and D,_, E, and E2, F, and F2 have similar relations. It can be easily 
seen that (4.8a, b) satisfy the boundary conditions (3.4c, d). Substituting (4.8a, b) into (4.5a, b) 
gives 

+[~(A ,+  B,) +6(1-v)(B,+C,) [~z2At + ( 1 - v ) ( A ~ +  Bt)+ 3(1+v)C~ ] '  20 

20 + [~/'(D, - A,) + (1 -  v) (D, + E , -  B,)+ 2(1+ v)(E,-C~)]~ 

E42~tA, + (1 -v)  (A~+B D + 3 (1+  v)C, ] r / '+  [20;t~(A2+ B D +  6(1 -v)  (B~+C~) 
+6(l+v)(B~+Ct) ]~z,?+[622(Bz+CD+15(1-v)C2+5(l +v)(B,+c,)]6" 
+ [20~.2(D~-AD + (1 -v ) (D2+E2-BD+2(I+v)(E, -CD], f  
+ [ 622( D2+ Ez -  BD + 6(1- v) (Ez-CD + 3(l + v) (D, + E, - Bt) ]6 z 
+ [6a2(F2 - DD + (1 - v) (F~ - ED + (1 +v )  (F t  - E , )  ] 

= --8(1-~z--~Z)lE62Z+l--v],TZ+E222+5--v]~Z--2~lz--(1--v)} (4.10b) 

(4.10a, b) are applicable to all the points in the region 6z+r /z~[  . Thus, the coefficients of 
the terms 64,6Zr/t, r/*~ ~ ,  r/z, l in  the two sides of equation (4.10a) must be equal to each 
other. This gives 

~-~2A,+ ( i - v ) ( A t +  B , ) + 3 ( 1 + v ) C , = 8  ['~-'i-~ + 1 - v ]  (4 .11,)  

8 ~ ( A t +  B,) +6(I_v) (Bt+C,) +6(I +v) (B~+C:)=8 [-~+ 2(3-v) ] (4.11b) 

~(B ,+C, )+ lg(i_v)Cl+5(l +v) (At+ B~):8 [-~+ 5-v]  (4.11o) 

m+.)(e,-c.)---8 [J+m-.)] 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



Large Deflection Problem of a Clamped Elliptical Plate 897 

~(DI+ E, - B,) + 641 - v) (E, -Cl) + 3(l + v) (D, + E, - BD 

=- 8[-~2 +243- v)] (4.11e) 

~(F,-Dt)+tl-v)(F,-EI)+(I+v)(F~-Ez)=8[~+I-v] (4.11f) 

Similarly, the coefficients of terms r/4~ r/:~', ~4 rf ,  ~2, 1 in the two sides of equation (4.10b) 
must be equal to each ol~her. This gives 

42~zA,+ (I -v) (A,q-B~) + 3 (i + v)C, = 8 [6,~+ 1 -v] (4.12a) 

202'(Az+B,) +6(i -r)(B~+Ca)+6(l+v)(Bi+CO=8[8l'+2(3-v)] (4.12b) 

6;t' (B2+ CD + 15(1 - v)C,+ 541-I.- v) (A,-I- B,) =812.,I'+ 5 -v] (4.12e) 

20,V (D, - A,) + 41 - v) (D,+ E," BD+ 2 (1+v) (E, - C,) = - 8[82'+ 241 -v)] 

(4.12d) 

6I*(D,+Et-B,) -I- 6(I -v) (E2-C,) -I- 3 (I q-a,) (D,+E,-B,) = - 814,,V+ 2 (3- v) 3 
(4.1zo) 

62' (F,- D,) + (I-v) (F,-E,)+ (l+v) (F,-E,) =812Az+ 1 -v3 (4.12f) 

The above equations in (4.11) and (4.12) may be divided into two groups. (4.1 l a, b, c) and 
(4.12a, b, c) are the six equations for the determination of six unknowns A,, B,, C,  A v B v C 2. 
When A,, B,, Cj, A 2, B v C 2 are determined, and substituting these results into (4.11d, e, f), 
(4.12d, e, f) also gives six independent equations for the determination of six unknowns Dr, E,, 
Ft, 02, E2, F 2. Thus, all the unknown coefficients in (4.7a, b) can be determined, and therefore, 
equations (4.8a, b) represent the first approximation solution U,_(~ rl) and V2(~ ~ T/) of the 
functions U(d, ,7) and V(~, 7). 

Eliminating C 2 from (4.11a, b) gives the expression for B 2 in terms of A I, B,, C v 
Substituting this expression of B 2 into (4.1 lc) gives the expression for A 2 in terms of A,, B,, C v 
The expressions for A 2, B 2 obtained in the above calculation, together with the expression C 2 
derived from (4.1 i a), from the following matrix equation. 

15(1-l-v)O~+a(I/2Z)Ot----Q,41//% ') (4.13) 

in which O,, Oz, a(1/2a) ,  Q(1/2 z) are respectively the following matrices, and 
a41/2~), Q,(1/2 ')are functions of 1/tz: 

C, C, ~ 240/lz+40(l-v) 

[ 1 6 0 / ~ + 5 ( 1 - - v )  --32/2z-- IO(l--v) 18/Jl~+3O(l--v) ] 

a ,, ,~-  (_~1) _160/2z 541_v) 50/2'q- 10(1--v) 15(1--v) 44.14d) 

210/2~-F 541 - v )  541 - v )  0 

Similarly, from (4.12a, b, c), after similar calculation, we obtain the following matrix equation: 

1541 +v)O,+ a (;tz) Oz---- Qt (A z) (4.15) 

in which Or, O2are given in (4:14a, b), and(l(lz), Q,4/].')are similar toot(I/At), Qt(I/Ag)as 
shown in (4.14c, d), in which the variable l / / ' i s  substituted by J.'. 

From (4.13), (4.15), we get the solution of O, ,  �9 2 : 
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@,= E225(1 - v ) ' l - a ( t l z ) a ( 1 / 2 z ) ] - ' {  - a ( ) : )  Q, (1/2z) q- 15(1 q-~,) Q,(A~) } (4.16a) 

q~=E225(lq-v)~l-a(I/2")a(2~)J-'{-~x(I/2~)Q,(2~)-}-lS(l-l-,,)~,(I/~)} (4.16b) 

in which I is a unitary matrix. 
By means of (4.1 la, b), the B 2, C, are eliminated by (4.11d, e, f), and finally the following 

matrix equation is obtained: 

6 (1 q- v) ~z "F 13 (1/2 z ) @,q- Y (1/). 2) u = -- Oz (1//l ~) (4.17) 

in which @, can be found in (4.14a). u ~ ,  Qz(1//lZ)are 
D, Dz 32 

~I I ,={E,  } , " ~ = { E 2  } , Qz(21~)={96/h2q-32(1-v '  } ( 4 . 1 8 a , b , c ,  

F, Fz -16(1-v) 
~(1/Jlz), u matrices in functions of I/~-: 

1--88/3z-4(l-v) 8/2Z-l-5(l-v) - 6 ( l - v )  I 

[ 0 J (4.18d) 
24/32-1- 2(1 --v) -- (1 --u) 0 

1--- 48/)12-- 3 (i --v) 12/)12q- 9 (1 --v) 0 1 
/ 0 
t_ 24/2~q_3(l_v) --3(l--v) 36/).zq- 6(I-- ~) 

Similarly, we obtain from (4.12d, e, f)the following equation: 

6(I + v)u q- I](/].z) @~ q- Y (its) u = -- Qz (,;1. z) (4.19) 

in which@,, ~,, ~are shown respectively in (4.14b), (4.18a, b), and matrices 
l](,t~), y(2Z) ,  Qz(~)are shown in (4.18c, d, e) except the 1/2~in (4.18)changes into ~.' . 

From (4.17), (4.19), we obtainy, , ~ a s :  

~, == E36(1 .-.F v) 21 - Y (,~z) y (1/22) ] - t {  _ 6(1 q-. v) Q2 (22) q-. Y (22) Qz ( 1 / ~ )  

+ 6 (1 + v)ti(2~') O~+ Y (2z)13(1/2~) | } (4.20a) 
~ = E 36(1-F v)Zl - Y (1 /  ]t~) y ( /tz) ] - '  { - 6 ( l q- v)Qz (1 /  /lz).4r Y (1/,~z) f2~ ( /l') 

+ 6(1 + v) ~(1/a~)O,+ ~ (1/2z)1](2') O2 } (4.20b) 

in which @, ,Ozare given as in (4.16a, b). From (4.16a, b) and (4.20a, b) we can determine 12 
unknowns A,, B,, C,, A 2, B 2, C 2, D,, E,, F,, D 2, E2, F r Therefore, the first approximation 
solution of U, V, i.e. U s, V~ is obtained. 

It should be noted that, i f , l z=l /2Z=l , th is  elastic plate must be a circular plate. In this 
case, the undetermined coefficients have symmetrical properties, that is, 

A, - - - -C ,=Cz=A, ,  B,----Bz=2A, (4.21) 

Thus, (4.11a, b, c) and (4.12a, b, c) are identical to each other, and can be reduced into the 
following common form: 

Hence, we have 

A ~ = ( 7 - ~ , ) / 6  (4.22) 

A,=A,=CL~C~(7-v)/6, B,----B~----(7-v)/3 (4.23) 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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Substitute the result (4.23) into (4.1 ld, e, f) and (4.12d, e, f), and take 2 2 = 1 / 2 z =  1 , and also, 

DI~E:=D2=E~ F,=Fz (4 .24)  

Then equations (4.11d, e) and (4.12d, e) are identical to each other, from which we get 

D,=E, =Dz = E 2 =  - (13 - 3 v ) / 6  (4.25) 

The third equations (4.11 f), (4.12f) give: 

F,-Dt=3-v  (4 .26)  

Using the value of D, from (4.25), we have 

F I = F 2 =  (5-- 3v)/6  (4 .27)  

Hence, in circular plate,Az_--l/,,}~=l,(4.7a, b) may be written as: 

U A L  ,7) v=(~, ,7) - ( l ( 1 - ~ 2 - r f ) { ( 7 - v ) ( 1 - ~ - r f ) ~ - ( l + v ) ( 1 - ~ - ~  ) 
- -  r/ = 

-- ( 1 q - v )  } ( 4 . 2 8 )  

This is identical to the results given by Chien Wei-zang (1948)t" for circular plate. Tables I(A), 
I(B), I(C) are respectively the values of the coefficients in (4.8a, b) when v takes various values 
0.25, 0.30, 0.35. These results are calculated through formulas (4.16a, b) and (4.20a, b). 
Table  (A) The  va lues  of  coef f ic ients  for U~, V 2 in (4.8a, b) w h e n  v=0.25 

L 

2 

3 

4 

5 

Aa 

1 

o 

3 

4 

5 

1 .12500  

1 .15057  

t . 1 8 1 8 9  

1 .20011 

1 .20975  

Bl 

2 .25000  

2 .79600  

3 .17442  

3 .37940  

3 .49342  

I 

I c ,  

1.12500  

1 ,39835 

1.49157 

1 . 5 3 3 7 l  

, 1 . 5 5 5 7 5  

DI 

-- 2.04167 

-- 2.15911 

--2.25220 

--2.30863 

- -  2.34384 

E, 

--2.04167 

--2.92955 

--3.30192 

-- 3,47115 

-- 3.55892 

FI 

0.70834 

0.881~8 

1.00153 

1.06840 

1.11010 

A= B2 C, Da E2 F2 

1.12500 

0 .78911  

0 .68017  

0 . 6 4 4 0 2  

0 .62940  

1 .12500 

1 .13309  

1 .13762  

1 .13968  

1 .14074  

--2.04167 

--1.42616 

- -  1.29319 

- - 1 . 2 5 3 8 6  

--1.23862 

2.25000 

2.06325 

2.04430 

2.04486 

2.04744 

-- 2.04167 

-- 2.02992 

- -  2.04007 

-- 2.04620 

-- 2.04968 

0 . 7 0 8 3 4  

0 . 6 2 3 7 7  

0 .61164  

0 .60930  

0 . 6 0 8 8 4  

Table 1 (B) The  va lues  o f  coef f i c ients  for U2, V 2 in (4.8a, b) w h e n  v=0.30 

B1 

I I. 11667 

2 I. 12585 

3 t .  13279 

4 1 .12114  

5 1 .09958  

A, 

1 I. 11667 

2 I. 13057 

3 1. 13643 

4 I .  13899 

5 1. 14030 

2 .23333  

2 .78453  

3 .17261  

3 .38259  

3 .49866  

Ca 

1.11667 

1.39402 

1.48901 

1.5321~ 

1.55467 

D, 

-- 2.01667 

-- 2.08489 

-- 2.10788 

- -  2.08840 

-- 2.05252 

El 

--2.01667 

--2.92156 

- - 3 . 3 0 2 9 2  

-- 3.47524 

- -  3.56378 

FI 

0.68333 

0.81479 

0,87458 

0.89767 

0.00489 

/l B, C, ~, Ez F2 

1.11667 

0 .77981  

0 . 6 7 5 1 9  

0 .64216  

0 , 6 2 3 2 2  

- -  2 .01667  

- -  1.40966 

- -  1 .28684  

- -  1 ,25235  

- - 1 . 2 3 9 1 9  

- - 2 . 0 1 6 6 7  

--  2 .02120  

--  2 .03573  

- -  2 .04365  

- - 2 . 0 4 8 0 3  

2.23333 

2.05329 

2.03825 

2.04100 

2.04481 

0.68333 

0.61730 

0,60949 

0,60856 

0,60862 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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T a b l e l ( c )  The  v a l u e s  o f  c o e f f i c i e n t s  forUm, I/2 in (4.8a, b) w h e n  v=0.35 

Aa B~ C~ D~ E~ F~ 

I 

2 

3 

4 

5 

1.10833 

l . lO lO0  

1.08266 

1.03923 

0 .98369 

2.21667 

2.77331 

3.17142 

3.38664 

3.50486 �9 

1.10833 

1.38966 

1.48643 

1.53048 

1.55358 

- -1 .99167  

-- 2.00963 

-- 1.95854 

- -1 .856~3  

-- 1.74106 

-- 1.99167 

-- 2.01403 

- -3 ,30471  

- -3 .48026  

- -  3.56961 

0.~5833 

0.73711 

O. 73948 

0.71275 

0.67981 
,L 

2 A2 B2 Ca Dz E~ F= 

1.10833 

0.77066 

0.67057 

0.64080 

0.62959 

I 

2 

3 

4 

5 

- -1 .99167  

-- 2.01244 

- -2 .03137  

- -2 .04110  

- -  2.04636 

2.21667 

2.04328 

2.03215 

2.03710 

2.04217 

-- 1.99167 

- -1 .39371  

-- 1.28442 

-- 1.25190 

- - 1 . 2 4 0 8 3  

1.10833 

1.12804 

1.13524 

1.13830 

1.13985 

0.65833 

0,61122 

0.60775 

0.60818 

0.60871 

It is shown in the above tables that in the case of circular plate, 2 ' z = l / 2 2 = 1 ,  and the 

values of all the coefficients are equal to the corresponding values given in (4.23), (4.25) and 
(4,27). 

In the above, we have the first approximation solution of the large deflection problem of 
elliptical plate. 

V.  T h e  S e c o n d  A p p r o x i m a t i o n  S o l u t i o n  

The substitution of the first approximation solution (4.4), (4.8a, b) into the equation of 

the second approximation (3.5a) gives the differential equation for the determination of 
W3(~e~ r/) and as : 

O4Ws .1_922 64Ws .a.. ~4 64Ws _ 8 < q - - 2 2 ' ~ + 3 2 ~ ) a s  
0~4 . -  dseZOr/Z.., d ~  , o w  

=48(1-3~Z-r lZ){(7Al+v2 'ZCz)~e6+[5(A,+Bl)+3v2Z(Bz+Cz)]~4r l  z 

+ [ 3 ( B , + C , ) + 5 2 " v ( A z + B z ) ~ r 1 4 ~ z +  ( C , + 7 v A Z A D r f l +  [" - 5 ( A , - D , )  

- v 2 ~ ( C 2  - E D ' I $ ' +  [ - 3 ( B , -  D, - E , )  - 3v22 (B~ - D 2  - E D l ~ z r :  

- E (C ,  - E l ) +  5v2Z(A2 - D,)"t7/4 - [- 3 ( D ,  - F , )  + v).Z (E2  - F ~ )  .]~2 

- [ ( E t  - F , )  + 3v22 ( D 2 -  FD' I  r/2 - [ F , +  v22F23 } 

+482,2(1 _ ,e2 _ 3r/Z){ ( 7 v A ,  +22C2)~"+  E5v (A ,  + B , )  + 32'~ (B2+ C,) ]~4q 2 

+ [3v(B, + C1) + 522(A2+ Bz) ]q4~z+ [vC,  + 72ZAz]r f l+ V - 5 v ( A ,  - D r )  

- 22(C2-E2)3~ ~ 

+ [ - 3 v ( B I -  D ,  - E , )  - 322( B2 - Dz - E i )  ]$2r12 + E - v (  C, - E ,) - 522( A z -  D2)']ri ~ 

+ [ - 3 v ( D ,  - F , )  - 2Z(Ez  - F2)-1~2+ l- - v ( E ,  - F , )  - 32'z ( D z -  F2)-lr/2 

- EvF,  + 22F2 -1 } 

- 192(1 - v)XZ~r/{ ( A t + B ~ + 3 C D r I ~ 5 + 2 ( B ,  + C ~ + B z + C z ) ~ s r i  s 

+ ( 3 C ~ + A ~ + B D r : ~ + E  - B ~ + E , + D ~ -  2(Cz - E2) ]r/~a+ E - 2 ( C , - E ~ )  

- (Bz - E2 - D z )  ]~rfl+ ( - E~ + F ~  - E 2 +  FDr/~ } 

+384(1  - ~ Z - r 1 2 ) z {  ( 3 + v 2 Z ) ~ ' +  [ l + 2(2 + v ) 2 2 +  2t'3~'r12 

+ ( v +  322)22rfl - (l+v2'Z)~ z -  (v+2z)2Zr/Z ~ (5 .1)  

At the same time, the solution of (5.1) ma3~ be of written as: 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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W3(~, r i )=(1-$z-r i ' )*{G~8+ H~erlz+ I ~'rl'+ lr + KrlS+ M~ 6 

+ N~'ri'+ L~r14+ Prl~+Q~'+ R~ri~+Srl'+ T~Z+ Xrl ~ } (5.2) 

in which G, H, I, J, K, M, N, L, P, Q, R, S, T, X are 14 constants to be determined. It can be 
see that Ws(~, rDin (5.2) satisfies the boundary conditions (3.6). Substituting (5.2) into the left- 
hand sides of (5.1) gives: 

04W8 z O'W3 , O'W3 
a~ 4 +22. ~ + 2 .  at? 

= 245s{ (495+ 30~.z + 2') 67+ (15+ 2Az)2.2H + 2 ' 1  } + 2t$8rf { (420+ 56~,z) G 

+ (210+ 11297+ 1 5 2 ' ) H +  (56+ 302.2) 2.~I + 152.'I } + 120~'r/'{ 14G+ (28+ 1522)H 

+ (14+ 302.~+ 142 ' )1+ (15+ 282z) 2.z/+ 14a'K}+ 245',?{ 15H+ (30+ 562z)I 

+ (15 + :t12/tz+ 2102 ' )1+ (56+4202. ')2. 'K}+ 24rla{I+ (2+  152~) J 

+( l+302z+4952. ' )K}+8ses{ (1260+562z )G-62 '1 -  (56+6,;tz)).2H 

+ (630+ 562z+ 32.4)M+ (28+ 6Az),~2N+ 3,;PL} + 120~'rf{ - 2 8 G -  (28+ $2AZ)H 

- (12+ 62z)2.'I -- 62.4J+ 6 (1+  2.')2.~L+ (28+ 622)M+ (14 + 122.z+ 3)l 4) N 

+ 32'P } + 120~'r/'{ - 6H - ( 6 + 122. z) I - ( 12 + 282') 2.'J - 282.'K+ 3M 

+ 6 ( 1 + 2 . ' ) N +  (3+  122z+ 1424)L+ (62z-F 282.4)P}+ 8rf{ -- 6/_- (6+  562.z)J 
6 

+ 3 N +  (6+  282. ' )L- (56+ 1260.~z)AzK+ (3+  562.z+ 6302.')P} 

+ 2454{ 70G+ 5AZH+ 2.41 - (140+ 102.Z)M - (10+ 22') 2.'N - 22.4L 

+ (70+ 102.z+ 2.4)Q+ (5 + 22z)2.ZR+ 2.4S} 

+ 72~zrlz.[5H+42.'I+ 524J - (8+  102.2)2.ZL - 10M 

- (10+ 82.2)N+ (lO+42.Z)Q - 102~'P+ (5+  82.z+ 524)R+ (4 + i02.')2.zS} 

+ 24r/4{I + 52.zl+ 7024K - (2+  102Z)L - 2N - (10+ 1402z)2zP+Q+ (2+  52Z)R 

+ (1+  102.% 7o2.4) s } + 24~z{ 2.4L+ 15M+ 22.ZN- (30+ 42.Z)Q- 2 (2+  2z)2'R 

-- 22.'S+ (15+ 4Az+/P) T+ 2 (I + 2z)2zX}+ 24rf{ 22ZL+ N+ 152.4P - 2Q 

--2,(1+ 22Z)R - (4+302')2.zS+2(l+2.Z)T+ ( l+4Az+ 152.4)X} 

+ 8{ 3Q+ 2~R+ 3~4S- 2(3+ 2.Z)T- 2 (1+  3~z)).zX } (5.3) 

Comparing the coefficients of various terms in (5.1) with (5.3) gives all the equations for the 
determination of various undetermined constants. The coefficients of ~8 ~er/Z ' ~,r/4 ~Zr/6 ' 
r/8 give 5 equations for the determination of 5 constants of G, H, I, J, K. 

(495+ 302z+ 2 ' ) G +  (15+ 22z)2.ZH+ 2 ' I = f ,  

} (420+ 562z)G+ (210+ l 12Az+ 152.4)H+ (56+ 302z)AzI+ 152.'J----/z 

70G+ (140+ 7522)H+ (70+ 150Az+ 702.')1+ (75+ 14 o2.~)2.'J'+ 7o2.'K=/3 
1 5 H +  (30+ 56,;tz) I + (15+ 1122.z+ 2102.') J +  (56+ 4202.z)2.ZK=/, 

I +  (2+  15Az)J+ (1+  302.z+ 4952. ' )K=/6 

(5.4) 

in which f (i=1, 2, 3, 4, 5) are the following known functions of 2.z and v , which are 
obtained from the right-hand side of (5.1). 

/ l =  -6(7Al+v2.2C2) - 2,;tZ(7vA2 +2zC~) +16(3 +v2. 2) (5.5a)  

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



902 Chien Wei-zang, Pan Li-zhou and Liu Xiao-ming 

f z= - 2(7A~ +v22C2) - 6[5 (A, +Bt)+3v).2(C2 +B2)]  - 2).2[5v(A,+ B , ) +  3).z (B2+ Ca)] 

-622(7vA,+).~C2) - 8 ( 1  -v)AZ(A, +B, +3C,)  + 32(3+wt 2) 

+ 16[ 1+ 2(2+ v)).2+ ).'] (5 .5b)  

f3=  - 6[ 3 (B ,+  C~)+ 5vAZ(Az+ B2) ] - 2[ 5 (A ,+  B , ) +  3v).2 (B2+ C 2) ] - 6F[-Sv(At + B,) 

+ 322(C2+ B2)]+  2FE3v(B,+C,)+ 5).2(A2+ Bz)-] - 16(1 - v ) F E ( B , + C  l) 
+ (B2+ Cz) ] + 1'6(3+ v22) + 32[ 1 + 2(2+ v)22+ ) . ' ]+  16 (v+ 3).2)23 (5 .5c)  

f , =  - 6(C, +Tv).zA2) - 21- 3(Bt + C,) + 5wlZ(A2+B2)] - 6).2[3v(B,+Ct) 
+ 5).2 (Az + B2) ] - 22z(vCl+ 7).2A2) - 8 (1 - v)).2[ 3Cl+ Az+B2 ] + 32(v+ 3).z)). 2 

+ 161-1 + 2 (2+  v)).2+).'] (5 .5d)  

/ 5 =  - 2(C, + 7v).2A2) - 6).2(vCl + 7).2A2) + 16(v+ 3).2)22 (5 .5e)  

It should be noted that A,, B,, C,,A 2, B 2, C 2 are given in (4.16a, b), and therefore, f. ( i= l ,  2, 3, 
4, 5) in (5.5) are known. Thus, (5.4) are 5 linear equations for the determination of 5 
unknowns G. H, I, J. K. This can be written in matrix form as follows: 

in which 

P t X t = ~ ,  (5.6) 

X , : ( G  H I I K) r, 

~495+ 30).2+2 ' (15+22t)~ 2 

420+56). 210+ i12).2+ 15). 4 

P ' = [  700 140+752215 70+150).2+70).' 30+5622 

t. 0 0 I 

Q t : ( . f ,  f2 f3 J . . f D  T (5.7a,  b) 

)." 0 1 (56 + 30).~)). 2 15).' 

(75+ 140).z)). 2 70).' 

15+ I'12).z+210,;!.4 (56+ 420).2)).2 ~ 
2+152" I+ 30).2+ 495).4- I 

(5 .7c)  

The solution of (5.6) can be written as follows: 

Xt=lxi'tlll (5 .8)  

In (5.1) and (5.3), the coefficients of terms {~6 ~4r/2 ' ~2r/, ' r/eare given. 

(1260+ 56).z) G +  (56 + 6).2)).2H + 6).'1 - (630+ 5622+ 3).')M - (28+6).2)).2N 

- -  3).'L----" / e (5 .9a)  

28G+ (28+ 12).2)H+ (12+ 622)).2I+ 6 2 ' J -  (28+ 622)M - (14+ 12).'+ 32 ' )N 

- 6).2(1+ 2Z)L-  3) . 'P=/7  (5 .9b)  

6H+ (6+ 1222)1+ ( 1 2 + 2 8 ) . z ) ) . z J + 2 8 ) . ' K  - 3M - 6 (i +).~)N 

- (3+ 12).z + 142')L - 22(6 + 28). 2) P=f8 (5.9c) 

61+ (6+ 56).z)J- 3N-  (6+ 28).Z)L+ (56 + 1260).2)22K - (3+ 56).2+630).')P----)to 

(5 .9d)  

In which, G, H, 1, J, K are known as shown in (5.8), and therefore, (5.9a, b, c, d) is a system 
of 4 equations for the determination of 4 unknown L, M, N, P. In matrix form, it can be 
written as: 

2 P2X, --'OzX2 : - "~-Q2 (5.  I0)  
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an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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in which Xtis shown as in (5.7a); X2, 1~2, 

X~={M N L P}~, 

f 1260+562: 

Oz, f~2 are 

! l ,={15 / ,  [ ,  / ,  15/,} �9 
(56+62')2 ~ 62' 0 

28+ 122'  (12+62')2' 624 

6 6+122 z (12+282z)2 ' 

0 6 6+ 56). 2 

i 
6 30+ 562'+ 32' (28+ 62')2'  324 

02 ---- 28+ 62' 14+ ] 2,;t'+ 32' 62'(1.+ 23) 

3 6 (] + 2 ' )  3+ 122'+ 1,t2' 

0 3 6 + 282' 

(5. l la ,  b) 

(56+ 126 oXz)Jl2..J 
(5 .11c)  

The solution of (5.10) is 

X, = 0~'{ ~hX,+ 2 f~/5 } 

The values off6, fT, fs, f9 in (5.lib) are respectively: 

.__- 

L__- 

(6+282 ' )2 '  [ 

3+ 562'+ 6 30). 4 .J 

(5.11d) 

(5.12) 

(T A, + v2'C,) + 31-5(A, - D , ) +  v2Z(C~ - E,)  ] +  (TvA, + 2zCz) 2 ~ 

+ [ 5 v ( A , - D t ) 2 z + ( C , - E z ) 2 " ] - 8 1 2 ( 3 + v 2  ~) + (1+v2~) 3 (5.13a) 

1- 5 (A,.+ B,) + 31,2'(B,+C,)'] + 91-B t - D r  - E ,  +~,2'(B, - D ~  - E D ]  

+ I- 5(A, - D , ) + v ; t ' ( C z - E D ] + 2 ' [ s v ( A L + B , ) +  32Z(B,+ CD ] 

+ 3221-v(B,- D, - E , )  + 2 z ( B z - D z - E D  3 + 32215v(A,- D,)  + 2 ' ( C z -  ED ] 

+ ' . l ( 1 - v ) 2 Z ( B , - E , - D I + 2 C z - 2 E , )  - 161-4 + (4 + 3v)2 '+ 2"1 - 8 (2+  3v2:+ 2 :~) 

(5.13b)  

(5 .14b)  

( 5 . 1 4 c ~  

.is----'[ 3(Bl +Cl )  + Sv2Z(A2 + BD] + 3[ B I -  D t - E  ~ + v2Z(B=- D , - E D  ] 

+ 3[-C t -EI+sv2Z(A2-DD']+2213v(B,+CI)  +522(Az+BD]w2~[v(CI -EI )  

+ 5,V(A~-Dz) 3+ 32z[ 3v(B, --Dl - El) + 322(B2-Dz-  Ez) 3+ 4 ( 1 - v ) 2 :  

�9 [2 (C, - Et )  + Bz - Ez - D~] - 16[- 1 + 2 (2 + v))l '+ 2'3 - 162z(v+ 322) 

- 162'(v +2  z) - 8 (1 +v22 ) 

[c = (C1+ 7vA'AD + [C1 - E , +  5v2' ( A , - D z ) ] +  (vCl + 72'A,)2z+ 3Iv (C, - E , )  

+ 52' ( A z -  Dz) -I~.' - 16 (v+ 32') 2z -  8 (v+ 22)2 ' 

(5.12) gives }Q or gives M. N. L. P. 
Comparing the coefficients of terms s e ' ,  ~'rf~ r/'in (5.1) with (5.3) gives: 

70G+ 522/-/+ 241 - (140+ 1 0 2 ' ) M -  (10+ 22t)2=N- 2,~'L+ (70+ 10,~2+ 2')Q 

+ (5+22~)2 'R+2'S=f ,o  

1 5 H +  122 ' I+  1524J - 3 (8 + 1022)2'L - 3 0 M -  3 (10+ 8 2 ' ) N +  3(10+ 4,u 

- 3024P+ 3 (5+82z+  524)R+ 3(4+ 102z)).. 'S=f,l 

I + 5;t'~r + 702 'K - ( 2+  l o a ' ) L -  2 N -  10(i-I- ld) ,2)2 'P+ Q 

+ (2+  5,V)R + (1+  102 = + 70,~')S---.f,z 

in which/,0, f,,, f,2 are respectively: 

f ,Q= - IO(I + v ) 2 ' ( A , - D t ) -  2(v+ 2")2~(C2-E,) +6(  3 + v 2 ' ) ( D , - F , )  

(5.14a) 

(5.13d) 

(5.13c) 
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terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 
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Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
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Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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+ 2(3v+ 22)2~(E2-F~)+16(5+ 3v2 ~) (5.15a) 

f ,, = 2E3 + &IZ- 3v]d] ( E , - F ,) + 214- 3v+ 32~];t~( E~- F D + 6 ( 3v+ A2) 2~(Dz- F ~) 

+ 6 (1+ 3v22) ( D , -  F,)  -6 ( I+v2~) (B , -D t -E , )  -6(v+22)~(B~-Dz-ED 

+161-3+2(2+  3v)2~+ 32 ~] (5 .15b)  

f~2 = - 2 ( 1  + v ; t z ) (C1-E , )  - lO(v+,~z)dd( .dz -Dz)+2(1  + 3 v A z ) ( E , - F , )  

+6(v+32z)2t~(D~-F2) +16 (3v+ 5)))/l ~ (5 .15c)  

(5.14) may be written in matrix form: 

IlsX, + gsX~ +OsXs=fls (5 .16)  

in which X,, X~are shown as in (5.7a) and (5.11a), while I~s, e~, ~as, fls, x~ are respectively: 

S f,2 ~- 0 0 1 5,;l ~ 7024 

( 5 . l T a , b , c )  

(140+10A 2) 

l-  os = --30 

0 

1-70+ 1022+24 

~3 = [ 3 ( ] 0 +  412) 3(5+8~.2+514) 

I.. 1 2+  5,~ z 

The solution of (5.16)gives Q, R, S, i.e. 

-- (10+ 2Az) A 2 -- 2~ 4 0 "l 

J --3(10+822 ) -- 3 (8+ 10/12)22 --3024 

--2 --(2-1-10)l 2 ) (10+  140/12)d ~ 

(5+22z)2  z A 4 

3 (4+  102~)2z ] 

l + 1022+ 7024 

(5 .17d)  

(5 .17e)  

Xs----off~{ f~s/3 - l~3Xl- esx2} (5.18) 

Comparing of the coefficients of various terms ~2 rflin (5.1) with (5.3) gives: 

/14L+ 1 5 M +  222N - (30+  422)Q - ( 4+  22z)2ZR - 224S+ (15+ 4~.~+ 24) T 

+ 2(l  + 2Z)A2X=f , s 

2,t2L + N + t524P - 2 Q -  2 (1 - 2 2 Z ) R -  (4 + 302z) ~ )S+  2(1 + )z )T 

+ ( l+42z+15]t4)X=f ,4  (5 .19b)  

in which f~3, f~4 respectively are: 

f , s =  -- 6 (1 +7~22) (DI - F , )  - -22Z(v+;~) (E2-FD+2(3+v2Z)F ,+2(3v+2z) ] t~Fz  

- -  16 (I +v,~ z) (5 .20a)  

f ,4---- - 2( l +.vAZ) ( E i -  F l ) -62Z(v+ 22) ( D 2 -  F 2) W 2( l + 3v2~) F l + 2(v+ 32z)]d Fz 

-- 16 (v+2Z)22 (5 .20b)  

(5.19a, b) may be written in matrix form as follows: 

e ,X,+ ~ ,Xs+  11"4X, = [14 (5 .21)  

in which X2, Xsare shown as in (5.11a), (5.17a), while X4, 04, 84, o4~ lr4 are respectively: 

(5 .1oa)  

x,--{x , . } ,  0 1 15 ,] 

Abstract  
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
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f 

15 +4~t= + ~  4 2(1 +A2)~  = 
w.----[ ] 

2(1+A a ) 1+4112 + 15,~? 
the solution of (5.2) gives T, X. They are: 

x,--wi '(g,-  e,x,-=,xo 
At last, comparing of constant terms in (5.1) with that of (5.3) gives: 

(30aL 4A=) --(4+2A=)A = --2A' 1 

- - 2  - 2 ( 1 - [ - 2 2  ~) - - ( 4 + 3 0 ~ z ) , ~  2 J 
(5 .22d)  

(5 .22e j  

(5 .23)  

(3 +2,t=-F 3,~4)as= 3Q+ ,~=R-F 3~'S - - 2 ( 3 +  ~ 2 ) T -  2 ( I +  3~2),~=X+ 6 ( 1 +  v~=) FI  

+ 6A2(v+ AZ)F2 (5.24)  

in which Q, R, S, T, X are shown respectively from Xs, X, or from (5.18) and (5.23), F I, F 2 are 

shown respectively from ~ ,  u in (4.20). 
Based upon the results of calculation in the 2nd order perturbation, this unknown 

coefficients in (5.2) for YFs(~, 77) are completely determined. The unknown constant as is. 
also obtain. The values of these coefficients for different A with v =0.25, 0.30, 0.35 are given 

in Table 2 (A, B, C). 
Table 2 (A) The coef f ic ients  in (5.2) and as in (5.24) wi th  v=0.25 

,t 

1 

2 

3 

4 

5 

I 

2 

3 

4 

5 
i, 

1 

2 

3 

4 

5 

G H I J K 

- - 0 . 5 2 0 8 3 X  10 1 

- - 0 .39984X '10  -2 

--0.11305 

- - '0 .21263 

- -  0,31A31 

M 

0 .36458X 10 -z 

0.24550 

0.64191 

1.11020 

1,52727 

R 

- - 0 . 2 3 4 3 8  

- - 0 . 3 3 6 3 3  

- -  0 .44380 

- - 0 .52117  

- -  0 .57538 

- - 0 . 2 0 8 3 3 X  I0 - t  

- - 0 . 5 2 9 8 8 X  I0 - I  

- - 0 . 8 7 3 9 2 X  10 - l  

- - 0 1 1 7 4 0  

-- 0.14190 

N 

0.10938 

0.21857 

0.33111 

0.42083 

0.48999 

S 

-- 0.11719 

- - 0 . 1 5 1 8 8 X  10 - I  

- - 0 . 3 6 2 4 4 X  10 -z 

- - 0 . 1 0 8 8 3 X  10 -z 

- - 0 , 3 3 7 1 8 X 1 0  -s  

- - 0 . 3 1 2 5 0 X  10 -1 

- - 0 . 1 9 5 8 2 X  10 -1 

- - 0 . 7 9 5 9 3 X 1 0  -2 

- - 0 . 3 0 4 0 7 X  10 -2 

- - 0 . 1 0 6 1 0 X  10 -2 

0.10938 

0 . 3 6 7 5 9 X 1 0  -1 

0 . 1 1 7 2 8 X 1 0  -z 

0 .39038X I0 -z 

0.11689X I0~ z 

T 

0.33681 

0,93368 

1 . 5 5 9 1 1  

1.99581 

2.27442 

- - 0 . 2 0 8 3 3 X  10 -z 

- - 0 . 5 1 0 1 4 X  t0  -~ 

- - 0 . 1 6 3 8 6 X 1 0  -z 

- - 0 . 6 4 2 4 2 X  10 -3 

- - 0 . 2 9 4 1 8 X  10 -s 

P 

0 . 3 6 4 5 8 X 1 0  - I  

0 . 4 1 2 2 9 X  10 -= 

0 . 1 0 1 1 3 X  10 -s 

0 . 3 5 3 3 5 X  10 -3 

0 . 1 5 2 6 3 X 1 0 - 3  

X 

0,33681 

0.21976 

0.21914 

0.22522 

0 .2301 ,  

- - 0 . 5 2 0 8 3 X 1 0  -2 

- - 0 . 5 1 6 1 0 X  10 - 5  

- - 0 . 1 2 1 4 8 X  10 -5 

- - 0 . 4 1 6 8 7 X  10 -= 

- - 0 . 1 7 8 1 6 X  10 -~ 

0 

- -0 .11719  

- -0 .64741  

- -1 .45782  

-- 2 .22038 

- -2 .79620  

G| 

0.53733 

0.58232 

0.83010 

0 . 6 6 9 9 9  

0.68934 

Table 2 (B) 

1 

2 

3 

4 

5 

The coef f ic ients  in (5.2) and a= in (5.24) wi th  v=0.30 

G H �9 I 

- - 0 . 5 0 5 5 6 X  10 -s 

- - 0 . 3 8 8 6 8 X  10 -1 

- -0 .11061  

- - 0 . 2 0 9 4 2  

- - 0 . 3 1 0 9 9  

- -  0. 20222X 10 -z "  

- - 0 . 5 1 5 1 0 X  10 -1 

- - 0 . 8 5 1 8 6 X  10 -1 

-- O. 11476 

- - 0 . 13913  

- - 0 .  30333X 10 - !  

- -0 .  18997X 10 -z 

- - 0 . 7 8 5 2 1 X  10 -z 

- - 0 . 3 1 8 7 0 X  10 -2 

- - 0 .  13148X 10 -= 

--0.20222X 10 - l  �9 

--0. 492?0)< 10 -2 

--0. 15566X 10 -= 

--0.59740X 10 -3 

-0.287~ox lO-, 

m 

K 

- - 0 .  50556 X 10-2 

- - 0 . 5 0 1 5 0 X  10 -3 

- - 0 .  11820X 10-3 

-- O. 40580X 10-~ 

- - 0 ,  17343X 10-* 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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cont inueTable  2 (B) 

M N L P Q 

I 

2 

3 

4 

5 

2 

1 

2 

3 

4 

5 

0.35389X I0 -l  

0,23927 

0.63083 

1.09773 

1.51572 

R 

--0.22750 

~0.32806 

--0.43563 

~ 0 . 5 1 4 0 6  

~0.56946 

0.10617 

0.21258 

0,32328 

0.41254 

0.48211 
, , .  

-- 0.11375 

- - 0 . 1 4 8 1 4 X 1 0  -1 

--0.36637 X 10 -a 

- -0,12047X 10 -z 

- -0.45863X 10 -= 

0,10617 

0 . 3 5 7 8 5 X 1 0  -z 

0 . 1 1 7 5 1 X 1 0  -~ 

0 . 4 2 8 4 0 X  10 -2 

0.18476XI0 -2 

T 

0.33656 

0.93108 

1.55569 

1.99280 

2.27203 

0.35389X10 -1 

0 39870X10 -= 

0.96847X 10-s 

0.33463X 10-~ 

0.14302X 10 -3 

X 

0.33656 

0,21977 

0.21906 

0.22512 

0,23001 

- -0 .11375  

--0.63502 

- -  1.44202 

--2.20583 

- -2 .78420  

all 

0.54564 

0.58713 

0.63872 

0.67127 

0.69043 

Table 2(c) The coeff icients  in (5.2) and as in (5.24) with v--=0.35 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

~t 

1 

2 

3 

4 

5 

G 

- -0 .48750X 10-2 

- -0 .37537X10-1 

-- 0.10754 

-- 0.20503 

--0.30603 

M 

0 , 3 4 1 2 5 X 1 0  -1 

0 .23168 

0.61615 

1.07935 

1.49685 

--0.21938 

--0.31820 

--0.42563 

--0.  50509 

--0,56178 

H 

--0 19500XI0 -1 

- -0.49757X10-1 

- -0.82559X 10 -1 

-- 0.11159 

- - 0 . 1 3 5 7 8  

N 

0.10238 

0,20550 

0,31393 

0.40246 

0,47233 

S 

- -0 .  10969 

- - 0 . 1 4 3 4 4 X 1 0  -I  

- - 0 , 3 6 6 8 5 X  10 -a 

- -0 .  13036 X 10 -2 

- - 0 . 5 6 9 6 9 X  10 -z 

, , , i 

1 

-- 0, 29250X 10 - l  

- - 0 .  18321X 10 - l  

- - 0 . 7 6 7 7 4 X  10 -= 

- - 0 . 3 2 8 4 0 X  10 -= 

- - 0 .  15304X 10 -2 

L 

0.10238 

0,34586X 10 -= 

0. 11656X 10 - t  

0 45874X 10 - j  

0.20724X 10 -2 

T 

0.33525 

0.92455 

1.54d15 
1.98308 

2.26325 

- - 0  19500X10 -1 

- -0,47271X 10 - I  

- -0.14679X 10 -= 

--0 55036X10 -5 

- - 0 . 2 4 0 2 4 X  10 -~ 
, . .  

P 

0.34125X 10 -1 

0.38301X 10 -z 

0 92098XI0 -$ 

0 .31437XI0-S 

0.13275X10 '= 

X 

0,33525 

0,21931 

0,21860 

0.22469 

0.22964 

K 

-0 .48750X10-=  

- - 0  4 8 4 I l X l O - l t  

- -0.11426X 10-$ 

--0.39247X 10-4 

--0.16773X 10-6 

Q 

--0. 10969 

--0.61898 

-- 1. 41849 

--2,  18091 

--2.  76095 

lilt 

0.55294 

0.59077 

0.84018 

0.67188 

0.69068 

VI.  R e l a t i o n  b e t w e e n  C e n t r a l  D e f l e c t i o n  a n d  U n i f o r m  L o a d i n g  

From (3.2d), we may write the relation between the central deflection and uniform loading 
in the second approximation as follows: 

3Q/2 (3 + 22~+ 32')  =alW.+ a~W~ (6 .1)  

in which Q is dimensionless uniform loading. Wmis dimensionless central deflection (see (2.4)). 

c h and cz8 are respectively shown in (4.4) and (5.24). 

az~l (6 .2)  

as .is the function of 2 2 and v. The various values of 2" and v,  as are shown in Table 2 (A, 
B, C). 
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The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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When A==l/g==l , we have: 

3/2(3-I- 2~=~ L 324) = 3/i 6 (6.3) 

(6.1) is of the same form as shown for circular platel seet~l (1948). When22--l~v=0.30we have: 

as=O. 54564 (6.4)  

which is the same as shown in[i ] (1948). 
Based upon this relation given in (6.1), we can constructs the central deflection curves 

against uniform loading. 
Fig. 2 shows the central deflection g/'=curves against the intensity of uniform loading for 

various 2= when v =0.30. 

Wm w.=-  k- 
/1=,  =,jt 

[ . ~ "  - - ' - 4  Experimental 

l . J  

IOC ' - Z~t54 ~ a'q 

0 160 260 3d0 4~o s00 6~0 
Fig. 2 Central deflection against  intensity 

of  uniform loading for various 22 , 
when v=0.30 

2" ~= T~I',~= u-~-'~ 

u=O. 2 5 ~ ' 7  \ 
2. C ~ "='0. 30 

/ I.E 

/ v~O. 35 ~=  2 
t.C 

0.5 

2 a!q Q=( 1-u  )Eh 4 
c ~0~ 260 360 46o s~0 660 
Fig. 3 Central deflection curves against 

intensity of uniform loading for 

various �9 values, when 2---2. 

Fig. 3 shows the central deflection curves against intensity of uniform loading 
various v values when ~ = 2 .  

in Fig.2, the experimental point "." are given by Nash andCooley for 22=4(1959)E3L 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



908 Chien Wei-zang, Pan Li-zhou and Liu Xiao-ming 

[ 8 ] McPherson, A. E., W. Ramburg and S. Levy, Normal pressure tests of circular plates 

with clamped edges, N. A. C. A. Reports, 744 (1942). 
[9]  Chien Wei-zang and Yeh Kai-yuan, On the large deflection of rectangular plate, 

Proceedings of IX Congress of Applied Mechanics, Bruxelles (1956). 

[10] Weil, N. A. and N. M. Newmark, Large delqections of elliptical plates, Journal of 
Applied Mechanics, 23 (i 956), 21 - 26. 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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