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Abstract

A uniform high-order method is presented for the numerical solution of a singular
perturbation problem in conservative form. We firest replace the original second-order
problem (1.1) by two equivalent first-order problems ( 1.4), i.e., the solution of (1.1)
is a linear combination of the solutions of (1.4). Then we derive a uniformly
O ( k™+1 )accurate scheme for the first-order problems (1.4), where m is an
arbitrary nonnegative integer, so we can get a uniformly O( hk"*' ) accurate
solution of the original problem (1.1) by relation (1.3). Some illustrative numerical

results are also given.

Key words uniform high-order method, singular perturbation problem,
initial value problem

I. Introduction

A number of finite difference schemes or finite element methods were proposed for the
numerical solution of singular perturbation problems in recent decades. Especially, uniform
arbitrary order difference schemes were constructed for the selfadjoint and the nonselfadjoint’
singularly perturbed ordinary differential equations in [3,7 - 10]. We may observe, however,
that the difference scheme is very complicate if its convergence order is larger than two.

In this paper we will derive a simple uniform high-order method for the following
nonselfadjoint singular perturbation problém'in conservation form.

eu”+ (a(x)u)’=f(x), for 0<x<1,
} (1.1)
“(O) =loy “(1) =U,,

where e is a parameter in (0,1]; goand 4, are given boundary data; the coefficient a(x) is in
We={F:F (x)€C"[0, 1], F™E€Lip1} and f{x) in Wm where m is an arbitrary
nonnegative integer, and g(x)>ag>0 for some positive constant @.

The basic idea of deriving our uniform high-order method may be described as follows.
Let u(x),i=1,2 be the solutions of the following second-order initial value problems:

eu! (%) + (a(x)ue(x)) =F((x), for0<x<],

4:(0) =Dy, u}(0)=E; , }
909

(1.2)
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where F,(x)=f(x), F,(x)=0, E,=D,=0, D,=p, and E,=1/e . Obviously the solu-
tion of (1.1) can be represented as

u(x) =u,(x) + vu, (x),
.where p=(y,—u,(1))/8,(1) . Note that

u, (1) =e™! I: exp[—I‘l e"la(s)ds ]dt

2>A(1—exp[—A/e]) >M>0,
where the positive constant A4 is defined by A=max g(x)and M may be chosen as M= 4

0<s<!

(1—exp[—.A]) . Therefore, if we have got approximate solutions -u}(x), =1, 2  such
that

lu} (x) —u(x) | M H2, »>0,
then
u* (x) =g (x)+ (p,—u2 (1)) /82 (1) -u! (x) 1.3)
satisfies

|u* (x) —u(x) <MK,

where (and throughout this paper) M,M,,.. will be used to denote generic constants
independent of & and the discretization mesh 4. Noting that (1.2).may be converted into the
following first-order iniual value problems

ety (x)+a(x)ui(x) =Gy (x) (i=1,2)}
us(0) =D, ,

1.4)

where

Gi(x)= j:F.(x)dx+eE.+a(o)D.,

we can get the solution of the original problem (1.1) through solving two first-order initial
value problems (1.4).

In sections IT and TII, we will construct a family of arbitrary order convergence schemes,
uniformly in the parameter e , for the initial value problems (1.4), so we also get an arbitrary
order acchrate,solution for the original problem (1.1) by relation (1.3). It’s evident that our
method is simpler than those in [3,7—10] due to the integration of equation (1.2). Some
numerical results will be given in section IV.

II. An Exact Scheme

In this section we will consider.the following general form of problems (1.4):

Lus=gy'+4 a(x)u=s (%), for0<lx<
]'} @.1

u(0)=up,
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and derive an exact finite difference scheme for (2.1).

Let N be a positive integer and define the uniform mesh length NA=1. Let the grid points
{xi}be given by x;=ih, i=0,1,--,N, and denote by u} the approximate value (to be
determined) for uy=u(x;) .

Because the soliition of (2.1) is uniquely determined by the right-hand side and an initial
value condition, we may represent the solution of (2.1) as

u(x)=vi(x)a(x)+o](x), forxe<A<Aeyy o (2.2)
where o] (x),k=0,1 satisfy ik
Lof(x)=8s(x),  k=0,1, for %<x sy,
} (2.3)
v (%) =0, v!(x)=1,

where #,(x)=0 and Bo(x)=%(x). Let x=x,+sh, wl (s) =v} (%s+sh) (k=0,1), and
t=h/e. Then (2.2) becomes
u(xe+sh)ymw! (s)u(x)+wli(s),  s€EL0,1], (2.4)
where w}(s), k=01 are the solutions of
lw!=dw}!/ds+va(xtshywh=rhs (xtsh),
s€(0,13, k=0,1, (2.5)
w!(0)=0, wi(0)=1.
From the maximum prirciple it follows that for 0<s<1,
o<wi (s)<<exp[—ars], (2.6)
and

lwd(s) I<M (1—expl—ars]), (2.7

where M =a™' max |k (x)],

o<sg<l
If we set s=1 in (2.4),then we get the following exact scheme for (2.1):

“(+|=w=(1)u‘+w: (1)! _i=0,1"“’N—1_’

} (2.8)
Bo=H -
This scheme has property.
lu | <lpl+o™ max |wi(1)], i=0,1,,N, (2.9)
O<yJ<N~1

where o=1-—exp[—ar]. In fact, from (2.6) - (2.8),we have

$ L 1
o =| Dot ) Mwi@+s Hoio)
=0 .

leg+1 =0

4
<§1‘11a§lw£ (1) Y expl—arjl+ |ul

I=0

<|pl4+o'max |wi(1)].
g<J<N-1

Since there are not, in general, explicit expressions for functions w}(s), the exact scheme
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(2.8) is not applicable. Thus, we will propose a truncated difference scheme which may be
as accurate as we hope. We first consider the following scheme

Zi,=AlZ+ 4;, i=0,1,,N—1 '}

(2.10)
Zy=u,
where A}, k=0,1 are approximations of w} (1)such that
(Al —w! (1) <y <a/2, |Af—wi (1) <y, (2.11)
About scheme (2.10) we have
Lemma 1 Letu and {Z} be the solutions of (2.1) and (2.10). Then
|1 Zl<lpl+ (o—v) "' max [4]], (2.12)
0<i<N -1
| Zi—u (%) | <<o™' (o+v, (1| + (0—v,) ™ max |A4}])). (2.13)
0<{<N—-1

Proof Analogous to the proof of (2.9) we have
|24 |<Ipl+ (1—4) 7' max [4]],
o<f<N-1

where A=max|A4}|.From the assumption (2.11) it’s easy to get 1—A>0—», Thus (2.12)
follows. ‘
To prove (2.13), let yi=2Z(—y, . From (2.8) and (2.10) we have y, =0, and for i=0,
1., n—1,
Yin—wl(Vyi=Ze,—w{ (1) Zi—w{ (1)
=2y = (1) Zi~ (24— AL Z))+ A} —w] (1)
= (A} -w{ (1)) Zi+ (A] —wi(1)).

Therefore (2.13) follows from (2.9) and (2.12). The Lemma is proved.

III. A Truncated Scheme

We may see fromLemma 1 that the approximate difference scheme (2.10) is high-order
accurate if the coefficients A}, k=0,1 are high-order approximations of wj}(1) in (2.8). In
order to approximate wi (1), let

wh(s) =3 Awha(s)+h™rka(s),  k=0,1. (3.1)

By Tayor expansion of a(x+sh) and As(xi+sh) about s=0, we get from equations (2.5)
the following recursive relations for w}, (s); (for simplicity, we omit superscript i)

Iw,,.-=-dwp./ds+a(x.)rw..=fH.., s€E(0,11,
k=0’1, n=0,1,"’,m, (3-2)
Woy (0) =0, w;o(0)=1, wys(0)=0, forn>1; k=0,1,

where H o=, , and for n>1,
LY

Hll——'zl-S._ Za.-ls'—jw'l ’ (33)

=0
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coefficients hgn and as are defined by the formula go=y™ (x,) /n! . The remainder term rin

satisfies
Irsg=dram/ds+ a(xi+sh)tran=Thsms s€(0,1], (3.4
fln(o) =0,
where
¢.'==h-‘( ‘ka_ Eim )Sm'— Z h_l(an_n_'an-ﬁ)sm_'wln t (3 ,5)
a=0

Bo=0a(0:);, %<0, ,and hym is similarly defined.
The following lemma is a basic result for our future analysis.
Lemma 2 1If y(s) is in C’[0,1] such that y(0)=0 and |ly|<{M,r (or liyl KM 7). then

lyH ISMoSO<Mo , (3.6)

where o(s)=1—exp[—ars]
Proof Because
lo(s)=avexp[—ars]+ a(x+sh)v(1—e6xp[—ars]) >ar,

and To(s)ar , we may choose a™'M,(1--exp[—ars]) as a barrier function for y(s)
and get, from the maximum principle,
ly(s) |<a My (1—exp[—arsD),

which completes the proof of Lemma 2.
Now we analyze the functions wga(s)and rim(s) in (3.1).

Lemma 3 If a(x), A,(x)arein w™*!, then
jwan(®) | <Mo(s)<< Mo, n=1,2,,m; k=0,1, 3.7
Ir..(s)|<MG(s)<M0, k=0,1, (3.8)

Proof From the maximum principle we have jw(s) | <1y [wee(s) <KMo . Thus

| Hyy | <M,, k=0,1, andone may obtain (3.7)for =1 by Lemma 2. Assume inductively

(3.7) holds for 1<{j<{n—1 .Then we have |H,,|<{M, which follows (3.7) for n=j by
Lemma 2. Hence (3.7) is proved by inductive method. Noting that a(x), &z(x)is in =*!

and thus | @y | <M ,we get (3,8) by Lemma 2 again.

Lemma 3 is proved.
It’s evident that equation (3.2) have explicit solutions. Hence we discard the remainder

terms A™*'r;, and get the following truncated scheme
u=“=A';';u'|'+.A’;(, ‘.=0’1""9N_1!} (3.9)
13

Ug =1

where

:‘=Zh'w:n(1)’ k=0,1¢

fa=0
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Theorem 1 Assumea(x)>a>>0and A(x) are in W™*!. Let u(x) and {ut} be the solu-
tions of (2.1) and (3.9). Then

max |u} —u(x) |[<Mp™+?,

0S<f< N
Proof From l.emma 3 we have
[Ap—wi(D) |=b"*" ria(D) |<ve=M,i"*'0, k=0,1,

where h is assumed to be sufficiently small such that M,A=*'0<o/2 Noting that

I A’:l |=|E h"”:- (1)'<Zh-M01

n=g =0
we apply Lemma 1 to obtain
luf—a(x) | <o™' (w4, (0—v) " max |A4%])
0<f<N -1

Lo o+ My )M,

which completes the proof of Theorem 1.

Now we have constructed a uniform high-order scheme for the numerical solution of the
first-order initial value problem (1.4). Therefore, we can get a uniform high-order accurate
approximation for the solution of the original problem (1.1) by the technique introduced in
section 1. The details are described in the following theorem.

Theorem 2 Assume a(x)>a>0is in /™+! and f{x) in W™. Let u be the solution of
(1.1) and {ut;}, {u?,} the solutions of scheme (3.9) for problems (1,4). Then we have

A .+l\
Ei)fllu, u(xy) | <SMA™*,

where uj=u},+(u,~uly)/uln-ul, -
IV. Numerical Results
In this section we present some numerical resujts to illustrate Theorem 2 that have been

previously discussed. The problem on which the numerical experiments were conducted was

eu” +u'=f(x,8), °<x<1.} @1

u(0) =uyy u(l)=uy, ’
where the right-hand side f(x,e) and the boundary data u,, u, were determined by the exact

solution u(x) of equation (4.1)

u(x)=sinx+ (exp{—x/e]—exp[—1/e])/(1—expl[—1/e]).

In order to conveniently generate a wide variation of ¢ and A, problem (4.1) was run with
e=h* for various values of s . For each value of s the mesh length h was successively halved
starting with /=1/8 and ending with A=1/256. The numerical results are presented in Tables
1 — 3 where we.only list the maximum error E Eorgziflu:—u(x.) | and the numerical rate

of convergence Rate=(InE.~1nE2)/In2 , where EL and E? are the maximum errors



A Uniform High-Order Method for a Singular Perturbation Problem

915

corresponding to h=1/N-and A=1/(2N).

We can see from the tables that the numerical rates of convergence agree fairly well with
the analytically predicted ones.

Table 1 Numerical results for uniform high-order method with m=0

e=hi/1 e=h e=h3/1 e=h? =h8 /1
N "Es  -Rate Es  Rate E.  Rate Es  Rate E.  Rate
8 1.6E—2 2.6E—2 3.6E—2 4.5E—2 4.9E—2
0.77 0,79 0.77 0,83 0,87
18 9 5E~3 1.5E~2 2.1E—2 2.5E—2 2.7E—2
0.81 0.91 0.85 0.91 0,94
32 5.4E—3 8. 0E—3 1.2E-2 1.4E~-2 1.4E-—2
0,86 0.96 0.90 0.96 0.97
64 3.0E—3 4.1E-3 6.2E—3 7.0E—3 7.1E—-3
0.90 0.98 0.93 0,98 0.99
128 - 1.6E—3 2.1E-3 3.3E—3 3.5E—3 3.6E—3
0,93 0.99 0.96 0.99 0,89
256 8.3E—4 1.0E~3 1.7E—-3 1.8E—3 1.8E—-3
Table 2 Numerical results for uniform high-order method with m=1
e=ht/3 e=h e==hd/a e=ht e=H3/3
N Ex  Rate Es  Rate E,  Rate E.  Rate Ex  Rate
8 6.4E—4 1.6E-3 3,0E~3 4.6E—3 5.4E—3
1.59 1.687 1.685 1.73 1,83
16 2,1E—4 5.1E—4 9.6E—4 1.4E—3 1.5E—3
1.68 1.81 1.717 1.87 1,93
32 6.8E—5 1.5E—4 2.8E—4 3.8E—4 ~ | 4.0E—a4
1,74 1,89 1,84 1.94 1,97
84 2. 0E—5 3.9E-5 7.9E—5 3. 8E—5 1.0E—¢
1.81 1,94 1.89 1.97 1.99
128 5.8E—8 1.0E-5 2.1E-5 2.5E—5 2,5E—5
1.84 1.97 1.92 1.98 1,99
256 1.6E~8 2,8E—8 5.6E—¢ 6.3E—8 8.4E—8
Table 3 Numerical results for uniform high-order method with m=2
g==h /2 emh e==ha/s eg=h e=h32
N Eo Rate Ew Rate Eo Rate Eo Rate Ex Rate
8 2.2E-5 3.7E—5 5.9E-5 9 0E—5 11E—4
2,79 2,77 2.85 2.65 2.75
16 3.1E—8 5.4E—8 9.4E—s 1.4E-5 1.8E—5
2.84 2.90 2.74 2.81 2.89
32 4.4E—7 7.3E—~7 1.4E—¢ 2.0E—¢ 2.2E—8
2.90 2.96 2,80 2.980 2.95
84 5. 9E—8 9 4E 38 2. 0E—7 2.7E—7 2.8E~7
3.1 2,98 2.85 2.95 2,98
128 6.8E—8 1.2E-~8 2. 8E—38 3,5E—8 3.6E—8
2,93 2.89 2,97 2,99
256 - 1.5E—~9 3.8E-—9 4,5E—9 4,5E~9
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