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A b s t r a c t  

A uniform high:order method is presented for the numerical solution of a singular 

perturbation problem in conservative form. We firest replace the original second-order 

problem (1.1) by two equivalent first-order problems (1 .4) ,  i.e., the solution of (.1.1) 

is a linear combination of the solutions of  (1.4). Then we derive a uniformly 

0 ( h  '~+1 )accurate scheme for the first-order problems (1.4), where m is an 

arbitrary nonnegative integer, so we can get a uniformly O( h m+l ) accurate 

solution of the original problem (I.1) by relation (1.3). Some illustrative numerical 

results are also given. 

Key words uniform high-order method, singular perturbation problem, 

initial value problem 

I. Introduct ion 

A number of finite .difference schemes or finite element methods were proposed for the 
numerical solution of singular perturbation problems in recent decades. Especially, uniform 
arbitrary order difference schemes were constructed for the selfadjoint and the nonselfadjoint 
singularly perturbed ordinary differential equations in [3 ,7-10] .  We may observe, however, 

that the difference scheme is very complicate if its convergence order is larger than two. 
In this paper we will derive a simple uniform high-order method for the following 

nonselfadjoint singular perturbation problem in conservation form. 

eu"4.  ( a ( x ) u ) ' = f  ( x ) ,  for 0 < x < l , ) .  
(1 Q1) 

J u(o) =/.to, u(1) = P l ,  

where e is a parameter in (0,1 ];/~oand Pl are given boundary data; the coefficient a(x) is in 

W " + I - ~ { F i F ( x ) E C ' E O ,  1-1~ F(m~ELipl} and f(x) in W m where m is an arbitrary 

nonnegative integer, and a ( x ) > a > 0  for some positive constant a .  
The basic idea of deriving our uniform high-order method may be described as follows. 

Let ui(x),i=- 1,2 be the solutions of the following second-order initial value problems: 

(a(x) u,(x) ) ' = F , ( x )  , for O < x < l ~  (1.2) 

m(0) = - D .  u~ (0) = E ,  , 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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where F t ( x ) f / ( x ) ,  F.(x) mO, EtffiDt=O, D r = # ,  
tion of (1.1) can be represented as 

,i(x) =u, (x) + ~ (x), 

.where 13---- (#l--u~(1))/uz(i) . Note that 

u,(1)=e't f;  exp[-- f :  e-ta(8)d* ]dt 

~.~A (1 -- e x p [ - -  A/e]) > / M > 0 ,  

where the positive constant A is defined by A = m a x  a (x) and M may be chosen as 
O~:s~l 

( 1 - - e x p [ - - A ] )  , Therefore, if we have got approximate solutions u |  (x) ,  i=1:,  2 

that 

and E2~-l/e . Obviously the solu- 

M = A  
such 

then 

satisfies 

lu| ( x ) - u , ( x ) I  ~ M h ' ,  p > O ,  

u'(x) --u~ (x)+ ( ~ , -  u~ (1) ) /u'~ (1) .u ~, (x)  (1 .s) 

lu' (x)-u(x)  I~<Mh' , 

where (and throughout this paper) M,M~ .... will be used to denote generic constants 
independent of �9 and the discretization mesh h. Noting that (1.2)may be converted into the 

( i = 1 , 2 ) }  ~1.4) 

following first-order iniual value problems 

e. i (x) + a (x) u, (x) = G, (x) 

u , ( O ) = D ~  , 
where 

G,(x)---- Ji F,(x)dx+eE,+a(O)D,, 

we can get the solution of the original problem (1.1) through solving two first-order initial 
value problems (1.4). 

In sections II and III, we will construct a family of arbitrary order convergence schemes, 
uniformly in the parameter e , for the initial value problems (1.4), so we also get an arbitrary 
order accurate solution for the original problem (1.1) by relation (1.3). It's evident that our 
method is simpler than those in [3 ,7-10]  due to the integration of equation (1.2). Some 
numerical results will be given in section IV. 

II. An Exact  S c h e m e  

In this section we will consider the following general form of problems (1.4): 

L u m e u ' +  a ( x ) u = ~  (x),  f o r O ~ x ~ l ~  (2.1) 

u(0) = # ,  
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and derive an exact finite difference scheme for (2.1). 
Let N be a positive integer and define the uniform mesh length Nh=l. Let the grid points 

{x,}be given by xz=ih~ i = 0 , 1 , . . . , N ,  and denote by u] the approximate value (to be 
determined) for nz=ntx,)  . 

Because the soliation of (2.1) is uniquely determined by the fight-hand side and an initial 
value condition, we may represent the solution of (2.1) as 

u(x)=v~ (x)u(x,)+vl, (x) , forx, -~x~x,+l  , (2.2) 

where n~(x),k=O,1 satisfy i k 

Lv| (x) -----~,(x), k = 0 , 1 ,  for x,~x.~x,§ l 
1 v;(~ , )=o,  v f 0 , , ) = l ,  

where ~ l (x ) -~0and  ~ 0 ( x ) = ~ ( x ) . L e t  x=:~+$h, w'. ($)-~v~ (x,+sh) 
v~h/e. Then (2.2) becomes 

n(m+d,),=,n' (s) uCx,) +,,,! (~), sEE0,t~, 
where ta](3) ,  k----0,1 are the solutions of 

lwl=--drzl/ds+va(az+sh)wl----r~*w] (0) = 0 ,  wl (0)sE(0'I]'----t �9 k----0,1 ~ (x ,+sh) ,  } 

From the maximum prisciple it follows that for 0 < s < l ,  

and 

where M=a ~' maxlh ' ( x )  I.  

O<w ~ (s) ~exp[-- -  ars ] ,  

Iwo' (s) I < M ( 1  - e x p [ - a v s - l ) ,  

If we set s=  1 in (2.4),then we get the following exact scheme for (2.1): 

.~ uz+,=wl(1)u,+wl(1), : 0 , 1 , - . - , N - I ~ ] ,  

J 
I; o ~ / , ~  �9 

This scheme has property 

[szl~]#[+a -~ max [w](1)[, i----0,1,..-,N~ 
O<, f<N-  1 

(2.3) 

( k = 0 , 1 ) ,  and 

(2.~) 

(2.~) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where a-----1--expE--ar'l. In fact, from (2.6)-(2.8),we have 
i Z-  Z 

n w..(1)+. L 
$ - 0  Z-.,'+ l $ - o  

( 

~ m a x l w l  (1)[ ~-~'~ exp[ ' --  a r j ] +  [#[ 
o~$~z J - o  

< l ~ l + a - '  max Iw~ (1) I. 

Since there are not, in general, explicit expressions for functions wi ( s ) ,  the exact scheme 
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(2.8) is not applicable. Thus, we will propose a truncated difference scheme which may be 
as accurate as we hope. We first consider the following scheme 

Z,+,=A~Z,-bA',, i----0,1,...,N-1 "I. 
(2.10) Y 

Z0=# , 

where A~, k=0,1 are approximations of w~ (I) such that 

--  A0 - -wo (1) {<vo  (2 .11 )  IA l  w l ( 1 ) l ~ v t ~ c r / 2 ,  I j ' 

About scheme (2.10) we have 
L e m m a  1 Let u and {Z~} be the solutions of(2.1) and (2.10). Then 

IZ, I~I/~I+ (a-v,)- '  m a x  IA~'I, (2.12) 

IZ,-u(x,) I~<cr- '(v0+v,(I/~l+ (o r -v , ) - '  max IA0' I)). (2.13) 
O C ; ~ . l V - I  

Proo f  Analogous to the proof of (2.9) we have 

IZ,+II~IIJI+(1-A)-' m a x  IA,~Ir 

where A = m a x l A o l  [ .From the assumption (2.11) it's easy to get 1 - A > a - v ,  .Thus (2.12) 

follows. 

To prove (2.13), let y,==Z,-u, From (2.8) and (2.10) we have //0 =0, and for i=0, 
1..., n--I ,  

Yi+,--w] (1)yi..~Z,+,--w~ (1)Z, - -wI  (1) 
! ! = Z,+,-w~ (I) Z~- ( Z,+t- A~ Z,) q'- A, --w, (1) 

-~(AI w~(1))Z,+ ' ' --  (A0 --COo (1)). 

Therefore (2.13) follows from (2.9) and (2.12). The Lemma is proved. 

III. A T r u n c a t e d  S c h e m e  

We mayseefromLemma 1 that the approximate difference scheme (2.10) is high-order 
accurate if the coefficient~ A~, k = 0 , 1  are high-order approximations of w~(1)in (2.8). In 
order to aporoximate w[ (1), let 

III 

w~(s)=y'~h~w~.(s)+h"+'r~,m(s), k----0,1. (3.1) 
II--0 

By Tayor expansion of a(x~-bsh) and ht(xj-bsh) about s=0, we get from equations (2.5) 
the following recursive relations for wJ,= (s): (for simplicity, we omit superscript 0 

Twj.=--dwb./d~+a(x,)rwi=~rH~., sE(0,13, 1 

k=0,1, n-~O,1,...,m, ) ( 3 . 2 )  
| 

wo0(0)----0, w , 0 ( 0 ) = l ,  w~.(0)----0, forn>~l, k=0,1,j 

where H~a=hJo , and for n > l ,  
l l - - I  

1,1, .=1i , .s ' -  ~ a._js'-~to,, , (3.3) 
Y - O  
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coefficients h~. and a, are defined by the formula y.=y('~ (xs) ~hi. The remainder term r,,. 
satisfies 

where 

Ir , , , ,~drt . /ds + a ( x,+ sh ) r r  ~ .  = vCh, ,  

r,,,(O) = 0 ,  

sE(0,1], (3.4)" 

m 

r ~ . -  ~.~ ) s " -  Y-~ h- ' (a , ._ . -  a,._.)s~'-'w.. , (3.5) 

a,----a,~(OD, xt~O~,(x~+~ , and ~ , ,  is similarly defined. 
The following lemma is a basic result for our future analysis. 

L e m m a  2 Ify(s) is in C'EO, I] such thaty(O)=O and Ilyl~M~'r (or ITyI~Mor'J. then 

[u(s) I ~ M c r ( s ) ~ M a  , (3.6) 

where cr(~) - -1--  exp [ - - a r s - I  
P r o o f  Because 

la(s) = a r e x p  [ -- ars'l + a(xj +.~h) r (1 - oxp  [ -- a r s ] )  ~ a r ,  

and l c r ( $ ) ~ v  , we may choose a- tMl(1- .exp[- -ars] )  as a barrier function for y(s) 
and get, from the maximum principle, 

l y (s )  l ~a-~Ma( 1 -  e x p [ - -  avs]), 

which completes the proof of Lemma 2. 
Now we analyze the functions tut , (s)and r ,m(s) in (3.1). 

L e m m a  3 If a(x)~ h',(x)are in tu "§ 

Iw,.(s)l~Ma(s)<~Ma, n = l , 2 , . . . , m j  k=0 ,1  ~ (3 .7)  

[ r j . (~ )  [ ~Ma( s ) ~Mc t ,  k=O,1, (3.8)  

Proof  From the maximum principle we have Iwt~(s) l ~ l ,  l w , ( s )  l ~ M o  . Thus 

I / - / , t l ~ M t ,  k-----0, 1, andone may obtain (3.7) for n--i  by Lemma 2. Assume inductively 
(3.7) holds for 1 ~ ] ~ n - - 1  .Then we have /-/~. ~ M ~  which follows (3.7) for n= j  by 

Lemma 2. Hence (3.7) is proved by inductive method. Noting that a (x ) ,  h , (x) i s  in I4z=+~ 

and thus [r ~ M  ,we get (3,8) by Lemma 2 again. 
Lemma 3 is proved. 
It's evident that equation (3.2) have explicit solutions. Hence we discard the remainder 

terms h'+~r~, and get the following truncated scheme 

m u~+z=A~ua+Ao~, i = 0 , 1 , . . . , N - 1 ~  } (3.9)  

where 

1ira 

A"g,= Y-~.h'w~.O), k----O,1. 
g ' O  
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T h e o r e m  1 A s s u m e a ( x ) ~ a ~ 0 a n d  h(x) are in W =+t. Let u(x) and {uJ} be the solu- 

tions of  (2.1) and (3.9). Then 

m a x  I ' |  - ' ( x D  I < M h  " §  . 

P r o o f  From l.emma 3 we have 

l A ~ , - w ~ ( 1 ) l = h = + l l r ~ = ( D  I<~v~----Mlh=+l~, k----0,1, 

where h is assumed to be sufficiently small such that Mth=+h7~g/2  .Noting that 

I A;, I-'-I h'w~,,(1)l<~'5-~.h"Ma, 
ge-O m-O 

we apply Lemma 1 to obtain 

l u | - u (x , )  I < ~ a - ~ ( V o + V ~ ( o - v ~ )  ~ m a x  IA~,I)  
0(tI~X--I 

< a ' t ( v o +  M t v D < M h " §  , 

which completes the p r o o f o f  Theorem 1. 

Now we have constructed a uniform high-order scheme for the numerical solution of  the 

first-order initial value problem (!.4). Therefor.e, we can get a uniform high-order accurate 

approximation for the solution of the original problem (1.1) by the technique introduced in 

section I. The details are described in the following theorem. 

T h e o r e m  2 Assume a ( x ) > a > O  is in W =+t and f(x) in W "=. Let u be the solution of  

(1.1) and ~{u~.f}, {u~:~ the solutions of  scheme (3.9) for problems (1,4). Then we have 

m a x  lu,J - . ( x . D  I ' ~ M h ' §  
O < $ < N  

where u ) = u ~ + ( t t t  i , , . 

IV.  N u m e r i c a l  R e s u l t s  

In this section we present some numerical rest~ts to illustrate Theorem 2 that have been 

previously discussed. The problem on which the numerical experiments were conducted was 

e u ~ + u ' = f ( x , e ) ,  0 < x < l , }  ( 4 . 1 )  

u(O) = p o ,  u(1) =# ,  , 

where the right-hand side f ( x , e )  and the boundary data #0, # twere  determined by the exact 

solution u(x) of  equation (4.1) 

u (x )  = s i n x +  ( e x p [  -- x / e l  -- o x p [  -- 1 / e l ) / ( 1  -- e x p [  -- 1 / e l ) .  

In order to conveniently generate a wide variation of  e and h, problem (4.1) was run with 

e = h  ~ for various values of s . For each value of s the mesh length h was successively halved 

starting with h- -1 /8  and ending with h =  1/256. The numerical results are presented in Tables 

1 - 3 where we only list the maximum error  Eoo----max lu~-u(x,)  I and the numerical rate 

of convergence R a t e - - ( l n E ~ - l n E D / l n 2  , where E~  and E t_ are the maximum errors 
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corresponding to h = 1 / N  and h = 1/(2N). 

We can see from the tables that the numerical rates of  convergence agree fairly well with 

the analyticafly predicted ones. 

Table  1 Numer i ca l  resu l t s  for  un i fo rm h igh-order  m e t h o d  with  m=0  

e=h  I/= e = h  e=h=/= e =  h ~ e = h  =/= 

N E=o Rate Eoo Rate Eoo Rate Eoo Rate Eoo Rate 

8 

16 

32 

64 

128 

256 

1.6E--2 

0.77 

9..5 E - 3  

0.81 

5 . 4 E - 3  

0.86 

3 . o E - 3  

0.90 

1.6E-3 

0.93 

8.3E--4 

2 . 6 E - 2  

0.79 

I .5E~2 

0.91 

8 . 0 E - 3  

0.96 

4.1E--3 

0.98 

2 . 1 E - 3  

0.99 

1 .oE-3 

3.8E-2 
0.77 

2.1E-2 
0.85 

! . 2 E - 2  
0.90 

6.2E--3 

0.93 

3 . 3 E - 3  

0.96 

1.7E-3 

4 . 5 E - 2  
0.83 

2.5E--2 
0.91 

1 . 4 E - 2  
0.96 

7 . 0 E - 3  

0.98 

3.5'F.-- 3 

0.99 

I . s E - 3  

4 . 9 E - 2  

0.87 

2.7E-2 
0.94 

1 . 4 E - 2  
0.97 

7.1E--3 
0.99 

3.6E--3 
o .99 

1 . S E - 3  

T a b l e  2 N u m e r i c a l  r e s u l t s  f o r  u n i f o r m  h i g h - o r d e r  m e t h o d  w i t h  m-----1 

e=hJ/z e=h e=M ~=h s/s 

N Eoo Rate E=o Rate Eoo Rate E=o Rate 

8 

16 

32 

64 

128 

256 

6 .4E--4  

1,59 

2 . 1 E - 4  

1.68 

8.8E-5 
1.74 

2.0E-5 
1.81 

5.8E-8 
1.84 

1.8E-6 

I . e E - 3  

s . I E - 4  

] . s E - 4  

3 . 9 E - 5  

1 . 0 E - 5  

2.8 E--~.6 

s 3/~ 

Eoo Rate 

3 . o E - 3  

1.67 1.65 

9 . 6 E - 4  

1.81 1.77 

2 . 8 E - 4  

1.89 1.84 

7 . 9 E - 5  

1.94 1.89 

2 . 1 E - 5  

1.97 1.92 

5.8E-8 

4 . 8 E - 3  

1.73 

1.4E-3 
1.87 

3.8E-4 _.. 

1.94 
9 . 8 E - 5  

1.97 

2 . 5 E - 5  

1.98 

6 . 3 E - 6  

5 . 4 E - 3  

1,83 

1.5E-3 
1.93 

4.oE-4 
1,97 

1. o E - 4  

1.99 

2,5E-5 
1.99 

6.4E-8 

Table  3 Numer i ca l  r esu l t s  for  un i fo rm  h igh-order  m e t h o d  wi th  m ~ 2  

N 

8 

16 

3,; 

64 

128 

256 

e=hl/J 

Eco Rate 

2 . 2 E - s  
2.79 

3 . 1 E . 6  
2.84 

4.4E--7 

2.90 

s . g E - e  
3.11 

e .8E-9  

e=h 

E ~  Rate 

3.7E-5 
2.77 

5.4E-e 
2.90 

7.3E~-- 7 
2.96 

9.4E-s 
2.98 

t . 2E-s  
2.93 

1 . 5 E - 9  

e=/~s/I 

Eco Rate 

5.9E-5 
2.65 

9 . 4 E - 6  

2.74 

1.4E-6 
2.80 

z oE-7 
2.85 

I 2.8E-8 2.89 

3.~E-9 L 

E~ 

9.0E--5 

1.4E-6 
2.oE-6 

2.7E-7 

s . s E - s  

4.5E-9 

Rate 

2.65 

2.81 

2.90 

2.95 

2.97 

Eao Rate 

I . I E - 4  
2.75 

1.8E-5 
2.89 

2.2E-6 
2.95 

2.8E--7 

2.98 

3 . 6 E - s  

2.99 

4.5E-9 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 


