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Abstract  
We first establish the rigorous field equations of the two continuous stages before and 

after entering water. Then corre~pondently, we obtain the specific variational principles, 

bounded theorems, and boundary integral equations of  the second stage problems. The 

existence of  solutions are proved and the scheme of  solving the solutions are provided. 

Finally, as a numerical example, the ship's wave resistence problem is used to demonstrate 

the specific application of  the second stage problems and its accuracy. Then we provide a 

rigorotls and sound theoretical basis of  variational finite element method and boundary 

element method for calculating the accurately J'undamental equations. 

Key words variational principle, boundary integral equation, hydrodynamic 

impact problem 

I. I n t r o d u c t i o n  

The signification of hydrodynamic impact problems (e.g., missile entering water, ship 
slamming) is well-known, which they have not been solved. In ref. [l ], representative for the problem 
before entering water, the compressible air layer and the water region are simplified as one and two 
dimensional respectively. Then a difference soPution is obtained, in which the condition after 
entering water has not been considered. In ref. [2], representative for the problem after entering 
water, the effect of compressible air layer before entering water has not been included and moreover, 

only an approximately analysis solution is obtained. 
These problems, containing variational interface, copulating reaction of rigid-air-water, which 

are separated into two stages, before and after entering water, are unsteady and nonlinear problems, 
and obviously very difficult. Furthermore, the signification of these problems is that their 
mathematic modelling involve some other problems. For example, by modifying the problem after 
entering water, the ship's wave resistance problem which has not been solved yet can be modelled. 

The object of this research is to establish a rigorous theoretical system containing fundamental 

equations and theoretical basis of variational finite element method and boundary element method. 
Fundamental equations are separated into two stages. The interval "of 0 ~ t ~ T t i s  called the 

first stages from the rigid surface beginning to compress the air layer to the surface touching the 
water, the fundamental equation of which is improved from ref. [I] by extending from one 
dimension to two in air layer region and from two dimensions to three in water region. We don't 

consider the influence of the thickness ofairlayer becauseit isthin, sothe airlayer 
is almost a two-dimensional problem. The interval of T ~ t ~ T 2  is called the 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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second stage from the end of the first stage to the beginning stage after entering water, the 
fundamental equation of which is employed from ref. [2] but includes the actual condition of the end 
of the first stage. In other words, the dimension of flow field is extended to the reality and the two 
stages of distinctive physics are copulated. Obviously, the actuality can be modelled by the above 

model accurately. 
Furthermore the specific variational principles, bounded theorems, and the boundary integral 

equations for the second stage problem are es.tablished, and the existence of the solution is proved. 
As for a treatment, the method establishing the complementary variational principle in ref. [3] is 
employed, the improvement ofwhich compared with the representaive ref. [4] is at least that we can 
determine the same property in stationary point for a pair of complementary functionals by 
requiring only one determinative formula. Finally, employing three numerical examples of ship's 
wave resistencetSJ, we demonstrate the effective application and the accuracy of the degenerate 

condition of the second stage problem. 
The contents of this paper provide a rigorous theoreticalbasis of original numerical method for 

calculating the accurate fundame.ntal equations. 

II. F u n d a m e n t a l  E q u a t i o n s  

The quantities used below are all nondimensional. The (x, y) plane of Cartesian coordinates is 
set on the quiescent water surface and the Ozaxis is directed above. A rigid body, whose shape of 
surface touching the water is given, impacts downward to water vertically with prescribed velocity u. 
Velocity potential, density, and pressure, ofwater are ~b, Po and p, respectively. Velocity, velocity 
potential, density, pressure, and gas state constant of air layer are A, ~1, P , ,  Po and k 
respectively. The variational water surface represented by Z is separated into two sections, 
.S=.~1 U ~= (see figs. 1--3) It, 2j. In the first stage, ~ represents the section touching the 
compressed air layer; ~2 represents the section touching the atmosphere. In the second stage, 
Z t  represents the section embedded into watch The intersection o f ~ a n d  ~2 or the boundary of 
surface.~jisO~'~. In the first stage, surfacesZ~ andZ~are smooth and continuous on the intersection 
/9.~,, the outward unit normal of which isn. The difference between variational water surface 
and quiescent water surface in the first stage is ~ ,  the upwardness of which is positive. In the 

second stage s represents the difference between surface ~z and quiescent water surface. The 
thickness of air layeris h. The water domain is V, the boundary ofwhich is S, containing 
infinitesimal boundary S| , and the outward unit normal of S is N. 

s.. s ,  s., 

Fig. 1 The middle process  Fig. 2 The end of  the first stage Fig. 3 The middle process 
of  the first stage or the beginning of  the of  the second stage 

second stage 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
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We introduce the interface variable family @, @-----0 is defined on the water surface ~ in the 
first 

and 

stage and the ~72 in the second stage, and the domain V is defined as @~0 . 
The dimensionless fundamental equations of the first stage are 

V: A@=0 (2.1) 

,V , :  a(p~ �9 (pohA)=0 (2.2) 

P=P~ (2 .3 )  

~'=: P----P*o (2.4) 
2: a@/at+v~ �9 V~=O (2.5) 

S. :  V@=0 (2.6) 
t----0: h=h, (2 .7 )  

t=T,: h = 0  (2 .8 )  

~----~t ( 2 . 9 )  

O.V~: p~ (2.10) 

V: -p~ 'p=a@/at+ I v r  (2.11) 
~a: A=VI@I (2.12) 

P~ (2.13) 

t-----0: 

- -  p~ ' p .  = ( k - -  1 ) (ar + A z / 2 )  - 1 

h+Iiudt-ho+~=O 

~----0 

(2.14) 

(2.15) 

(2.16) 

The following eqs. (2.17)-(2.19) can be derived from the above. From the definition of 
interface family ~ we know 

and obtain 

,i,=C-z (2.17) 

~r ~ (2.18) 

and by substituting eq. (2.18) into (2.15), we obtain 

Z I :  6h=  --6~b (2.19") 

( o V = S = 2 U S ~ ,  2=2 . ' iU  X D  

where V t = iO/ax + jai l99, V is a three-dimensional operator, h0 is the prescribed value of 
the air layer at the instant of behaving compressiby (i.e., the initial constant density and pressure,p a 0 
andPa0, as well as the quiescent water surface begin varying), and it is the value ofz coordinate of the 
section of rigid body compressing the air layer. T ~  ~r~ and (hA) are prescribed values 
determined below. The value on ~1 is determined from eqs. (2.8) and (2.15) as 

~,t = ho - j'oT'udt (2.20) 
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in which the time Tx is determined by the maximum value of h0 on 0,.,~1, i.e., h0] max, 

corresponding to zero of ~rx (see Fig. 2): 0-----h0l,-ax-i TI udt . The remainders of prescribed 
d 0 

values, ~rLon ~Tzand (hA) on 0~'1 , are determined below. 
Fundamental equations are constructed by the following reasons and the combination of the 

stationary condition of a functional (see beiow).The liquid flow equations are usual (or see [2]). The 

air layer equations are obtained as follows: eq. (2.2) is extended from one dimension in ref. [I] to two 
dimensions, Eqs. (2.12) - (2.14) are usual (see [7]), and eq. (2.15) presented here is the integration of 

transverse continuity condition in ref. [!] from the velocity form to the displacemnt form and is 
extended to two dimensions. The interface variable family ~b is introduced and the relative eqs. 

(2.15), (2.17) - (2.19) are presented here, by means of the variational method of mixed continuat3, 5.6. 

s~ and they play important part in establishing the variational principles of rigid-air-liquidcopulated 

problem and can be seen later. 
The remainders of the prescribed values in fundamental equations and variational functionals 

mentioned above are the ~'t  on~2and  the ( h ^ )  on o ~  , which are not known in advance and 

should be determined iteratively in the following ways. From eqs. (2.4), (2.11) and (2.17) we can 

determine the following on ~'2 

s162 vr ' /2)I  ~,:.1~ --,q-'P;'P,,o 

~, - g - ' ( a C / a t +  I Vr 1'/2) I,,-o,r-r,- a- 'p;" P~,o (Z. 21) 

and the property employed above is valid as follows. 

P r o p e r t y  1 When the defined domain ~Y of the independent variable of the height ~ of 

water-free surface is replaced by z=  0, the error of  r is infinitesimal and is allowable. 

So we replace the defined domain ~Y by z = 0 in some proper place later on. 

The new value of~rxcan be determined by the value of ~b of the last iterative procedure. 

The new value of (hA) can be determined from eqs. (2.12). (2.15) and (2.17) by the value of 
r ~0 of the last iterative procedure. 

The convergence of the two iterative precedures is given in property 2 later on. 

Tim fundamental equations of the second stage are 

V: Vr (2 .22 )  

s 2" 8~/Ot + Vr V d2 = 0 (2 .23)  

--P;xP--=Sq~/St+[ Vr 12/2+gz -- --P~lPao (2 .24)  

271: (Vr  u).N-----0 (2 .25)  

S,,: V r  (2 .26)  

t=T1: r (2 .27)  

t = T z :  ~----r (2 .28)  

(aV--'S--" ~'1 U ~'z U S| 
The above equations are usual (e. g. see [2]). The surface embedded into water, Zx, is 

determined, i.e., the intersected line 8)_2t (see Fig. 3) can be determined by the rigid body entering 

the quiescent water. The value of Tz is defined at the end of the second stage (the beginning stage of 

entering water), and is determined. The value of Cr~ is determined by the first stage. The value ofseT~ 

should be determined by the same relationships of the first stage, i.e. (2.24), according to the similar 

equation, eq. (2.21) of the first stage, from the following iterative procedure 

~r,---- -g-t(ar qr '/2)1 z=o,~=~,--g-lpE'p,,o (2 .29 )  
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We shall prove the existence of the variational solutions of the two-stage problems later. So 
there is 

Property 2 Three iterative procedures for the calculations of the ~'1 on Z~ , the (hA) on 
03271, and the ~r l ,  are convergent. 

III. Stationary Principles (Generalized Variational Principles) 

The sense of the generalized variational principles here is relative to that of the c.onstraint 
variational principles later, because some constraint conditions must also be satisfied in the 
generalized variational functionals. 

Theorem 1 Setting eqs. (2.11)- (2.16) satisfied a priori from the following functional, the 
stationary condition of which is the solution of the first stage problem, eqs. (2.1)-(2.16): 

H ( ~ ,~x ,~b )~ -- iT,l tvk-l pU ( ~ )d V d t-- ~T~ f ,slk-' hpod Sd t 

+ jo(r'['Jz, k- 'P~176162 ~.~1 p~176176 ##' ]"~ dV 
TI 

--Io fO2., pa~ (hA).nc~,dc. (3.1) 

where U(~#) is the Heaviside function. 
Proof Using the propcrty of Heaviside function, noting eq. (2.19), and cmploying the 

following relationships. 

-- c3(k- 'p.)= -- p~-~c3pa-~ pac3(O~,/dt-I-AZ/2) (3.2) 

we have proved theorem 1: 

TI 
(~H'(2"ll)'(2"1e'--I~llv k-l p~ Io I2~{ k- ' (pa-p)c~-  ~ O(pah)ot 

�9 : ~ 

+ J=c ( pooh~ poh>  , I,.o+ I,=,, J aS+ I:~ 
Tz r r 

- u(~r,)]~.l , fr ,  dz + Jo Joz,[p. hA- pao(hA) l . nr3rk ld cd t (3.3)  

(3.4)  - - - -0#(2 .1)N(2 .10)  

Theorem 2 Setting eq. (2.27) satisfied a priori from the following functional, the stationary 
condition of which is the solution of second stage problem, eqs. (2.22)- (2.28): 

H(q~,~P) = -  ITT.'II v po~PU(~O)dVdt-I;1,IT, uN~dSdt 

T~ 

P r o o f  We have proved theorem 2 from 
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"J J T1 J ~'1 

JT~ an** 

= 0 ~ ( 2 . 2 2 ) ~ ( 2 . 2 6 ) ~  ( 2 . 2 8 )  

( 3 . 6 )  

( 3 . 7 )  

IV. Cons tra in t  Var ia t iona l  Principles  and B o u n d e d  T h e o r e m s  

T h e o r e m  3 Setting the equilibrium conditions, eqs. (2.3), (2.4) and the continuity condition, 
eqs. (2.1), (2.2) and (2 .5)-  (2.10), satisfied a priori from functional/7,  eq. (3.1) of  the first stage 

problem respectively, construct functionals l-/t and--_/"1 respectively. Then 
(i)/7~ a n d / ~  have the same property in stationary point: 

T~ Vdt+~T, jT lhaZ=(1 a-2A2)(6A)=dSdt J k-'pol vfr 

( 4 . 1 )  
where a is acoustic velocity and m =  (k - -1  ) - t  

(ii) At least when -//~a~ there exists a solution and the following holds 

/ / ~> /711  o---- - F~ I ,>~  - F I  ( 4 . 2 )  

where ( ) [ 0 is the value in the point of  exact solution. 
P r o o f  (i) From eq. (3.3) we have proved the stationary condition: 

a H x =  c~H I ~1.8)(z.r ( 4 . 3 )  

(The right-hand side of  equality of  the above equation indicates that eqs. (2.3), (2.4) are 

satisfied a priori in c3/7  (see eq. (3.3)); It is similar later on) 

= 0 ~ ( 2 . 1 ) ( 2 . 2 ) ( 2 . 5 ) - - ~ ( 2 . 1 0 )  ( 4 . 4 )  

- ~ F ~ = ~ H  I ~2.1~=.~.~.~2.10~ ( 4 . 5 )  

- - - - 0 ~ ( 2 . 3 ) ( 2 . 4 )  ( 4 . 6 )  

(ii) From the conditions, eqs. (2.3), (2.4) and from eqs. (2.11), (2.17), we obtain 

Ivr  
= - -9 -1po  I (p=--p)-----O ( 4 . 7 )  

~2: ~=-g-lPffaPao-g-'(dr l v ~ l ' / 2 ) l z , - t  
= - - g - l P o l  (P.o--P)-- - - -O (4.8) 

,/,= -o- '  pz'p.-a-'(ar I v, l V2) I . . , -z  ( 4 . 9 )  

(x ,u) E.~2: @= -9-~p~*P.o-o-'(d@/Ot+ I V r  =/2)  I .-o - z  ( 4 . 1 0 )  

eqs. (4.9), (4.10) are continuous on (x,y)Ed~l , and so they are continuous in all domains. 
We note that eq. (4.8) contains eqs. (2.21) and (2.29) at t=T~ and T~ respectively employed 

above. 
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From eqs. (4.7), (4.8) we know that eqs. (2.3), (2.4) are equivalent to 

~ :  ~ = 0  (4.11)  

and are also equivalent to the following equation when eqs. (2.3), (2.4) are satisfied a priori: 

~': ~=0 -(4.12) 
and simultancously, the variable ~ in the variational principle, cq. (4.4), should bc substituted by 
eqs. '(4.9) and (4.10). 

Through the following relationships 

aZ=l--(2m)-lA z, p~ z'' (4.13) 

we take the variation of eq. (3.2) again: 

_SZ(k-lpa)=a2,~( l_a-2Mz)( ~A)z/ 2 (4.14) 

Taking the variation of eq. (3. l) twice, from eqs. (2.19), (4.12) and (4.14), we obtain the value of 
c$z/'/t in eq. (4.1). 

Taking the variation of eq. (4.5) again, noting eqs. (2.1 l)-(2.19), we obtain 

eTI t 1 rTI 

_I:'Sv_~_~k-,c~F , d ,  . 1 T, )] 
a~l 1 , 

(9r 1 2 _ afr, f x k_,p. ( - - ~ + ~ l v * [  +a:)  T, 

,~r x . fnf k_,po~Z( O• +llv,blZ+gz)UdZd t - - I ' ( w ' 4 - ~ - A  ) - l ] ) h d S d t + j o  J,  V-~-i- 

Tx 
--~~ I.,ssk-ZSZpahdSdt (4.15) 
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-Jo J,, 2 -~-  ~- lvr  
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+[T,{ 

... fr,f  1 a~, 1. 

(4.16) 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



572 Jin Fu-sheng 

I TI 
at t V t . ( p . h A )  ] 3~dSdt 

rTxe 1 -j. 
Substituting eqs. (4.14), (4. i 6) and (4.17) into eq. (4.15), satisfying identical conditions, eqs. 

(2.1), (2.2) and (2.5) - (2. ! 0), we obtain the value of  3z/ 'tin eq. (4.1). We have proved eq. (4. I). From 

the mechanism of constructing functionals H ,  and /"x, we can pro~,e /7,1 ,---- -- F l l ,  in eq. (4.2) 
easily. When A~a~ we can prove that formula (4.1) is uniformly positive, which is the sufficient 
condition for functional to be a minimizer, so we have proved eq. (4.2). The equivalence between the 
minimum principle and existence of  the solulion is tha.t the harmonic operator is positive in domain 

(see eq. (2.1)). Up to now, the proof of  theorem 3 has been completed. 
T h e o r e m  4 Setting the equilibrim condition, eq. (2.24) and the continuity conditions, eqs. 

(2.22), (2.23), (2.25), (2.26), (2.28), satisfied a priori from functional/-/'~ eq. (3.5) of  the second stage 
problems respectively, construct functionals/-/ ,and - -F~ respectively. Then 

(i) /-/',and F~ have the same property in stationary point as follows 

T~ 
c~ZH,~3z.F't~ ~Tl~V+l V~qb,2dVdt ( 4 . 1 8 )  

(ii) The solution exists and moreover 

/7,>_.1-I, I0= - F ,  I 0>~-F,  ( 4 . 1 9 )  

P r o o f  (i) From. eq. (3.6) we have proved the statmnary condition easily: 

a/7,=~HI <2.~,~ (4.20) 
= 0=~ ( 2 . 2 2 ) ( 2 . 2 3 ) ( 2 . 2 5 ) ( 2 . 2 6 ) ( 2 . 2 8 )  (4 .21)  

-- JFI---- ~ H  I ~2.2~ ~. z,~ ~2.Jv ~.2,~ cz. 2v ( 4.22 ) 

=0=>(2 .24)  (4 .23)  

(ii) Similarly we can prove that eqs. (4.8), (4.10) (in which the defined domain ofeq .  (4.10), 
(x,y)Ez~2, is modified in all regions, and is still indicated by eq. (4.10) later on) are valid in the 

second stage problem. So eq. (2.24) is equivalent to 

~2: ~b=0 (4 .24)  

and when eq. (2.24) is identical, it is also equivalent to 

~'2: ~ = 0  (4 .25)  

Simultaneously, variablbe tb in the variational principle, eq. (4:21), should bc substituted by eq. 
(4. i 0). 

Taking the variation ofeq. (3.5) twice, using eq. (4.25), we obtain the value of  ~z/-/,in eq. (4.18). 
Take the variation of  eq. (4.22) again: 

z 1 rT'f 1 [7", l- 
c]/",=--:-_/ I p~' JpJ~bdSdt= t~p~UdVdt 

7. J T i J ~  I "2-JTzJr t-'ff 

x afr ' f  . =-~- jT,jlv p~' 6pUdVdt- iT, v P~t3zpUdVdt (4 ~.6) 
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w h e r e  

1 [ T , f  ljv(3q~U)l l rTzr I c9r 

, 1 rTJr 1 rTsr 
"b V~" V~ )~r ~ z,us Vt~'N~q~dSdt+-~J T,~ Aq~c}~dVdt 

(4 .27)  

Substituting (4.27) into (4.26), satisfying the identical conditions, eqs. (2.22), (2.23), (2.25), 
(2.26), (2.28), we obtain the value of 3z/" t in eq. (4.18). 

Eq. (4.18) has been proved. We can prove that formula (4.18) is uniformly positive, which 
satisfies the sufficient condition for the functional to be a minimizer, and know similarly that 
H~10---- -/- '~ [ 0- in eq. (4.19) ~ so eq. (4.19) holds. The existence of  the solution is equivalent to the 
minimum principle because the harmonic operator is positive. The proof of  theorem 4 is completed. 

N o t e  1 Theorem I - 4 is the continuity of the work of complementary variational principles 
in ref. [3], the improvement of  which (compared with the classical results, e. g. ref. [4]) is at least that 
only one determinative formula is required to determine the same property of  a pair of  
complementary functional in stationary point. 

V. The Boundary Integral Equat ion for the Second Stage Problem 

Theorem 5 Setting eq. (2.24) satisfied a priori (in which variable ~p should be substftuted by 
variable ~ from eq. (4.10)), the solution of  the second stage problem exists and is determined by 

, rT2 rT2r 
2# TI T~J~'2 

_iT. i~, .(Vrr_2~+ur_~)dSdt+iv[U(o)_U(lor~).lr_~lt_7. 

Xo~VS , r f l r - r o l  ( 5 . 1 )  

Moreover, it satisfies the relationships of water surface shape and the surface embedded into water 

as follows 

j T, r rT, r 
| (dTp/tgt)dSdt+| | u.NdSdt-}-  EU(~T~) 

TI,I ~ |  d Tt . l .~ l  V 

--U(~) ql t=rf lV=O ( 5 . 2 )  

Proof  Taking di~-----r -1 and I in eq.'(4.21), integrating the term of ~ Vq~cS~dV in eq. 
J F 

(4.21) by part once and twice respectively, we obtain eqs. (5.1) and (5.2) respectively. Because eq. 
(5.1) is equivalent to (4.21), then from theorem 4 we know that the solution exists. It is eq. (5.2) that 
is the condition of  existence of Neumann problem. The proof of theorem 5 is'completed. 

VI. The Linearization of  Water Surface Integral Region and the Alternative Form 
of  Constraint  Variat ional  Principles 

By a way similar to property 1, the following holds: 
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P r o p e r t y  3 When the water in~.erface )_," or2,'zofthree-dimensional integral region Vand of 
surface integration in theorems I - 5 .  is substituted by z = 0, the error of  the integration is an 

allowable infinitesimal value. 
N o t e  2 Properties 1 and 2 are capable of  solving variables ~ ,  ~bl and r from variational 

equation or boundary integral equation once; Property 2 guarantees the convergence of iterative 
procedure for some undetermined value. So properties 1 - 3 provide the capability for calculus of 

theorems 1 - 5. 
Variable r in constraint variational equation OH~----0 of  two-stage problems should be 

substituted by relationships (4.9), (4.10) which are dependent on velocity potential so that the 
nonlinearity of  the variational equation increase. Following corollary 1 provides an alternative way 
of  iteration which is valid obviously for decreasing the nonlinearity of  variational equation. 

C o r o l l a r y  1 (i) From eqs. (3.1), (4.12), the variational equation of  the first stage problem is 

equivalent to 

c51-I,= -ITllvk-,~,U(~b)d Vdt -~TJl ,  k-Xh~p~dSdt 

q- $ ,1  p~176 I t=o d S -  I p, k-'U ( ~b7.~.)6q~ l t=7.,d V 
Tt 

--~o ~a~S, pao(hA)'ncSq~tdc=O (6.1) 

V and ~ are determined iteratively by eqs. (4.9), (4.10) of the interface where integral region 
function #. 

(ii) From eqs. (3.5), (4.25), the variational eq. (4.21) of  the second stage problem is equivalent to 

8H1= - pff l 
T~ v' a T l a ~ l  

--IvU(~bT.)diq~l t=TdV=O (6.2) 

where integral region V is determined by eq. (4.10) of  interface function ~0. 
We note that the treatment in corollary 1 is inverse in note 2: taking the reality (determined by 

iteration) of water surface boundary, decrease the nonlinearity of variational functional. But the 
effect of the two is equivalent. 

VII. Application in Ship's Wave Resistance Problem 

The variational solution of flow past floating body was presented in ref. [5]. For the application 
in ship's wave resistance problem, the primary effect has been seen in three numerical examplestSL 
This problem is the degenerate condition of  the second stage problem in this paper: let the stage be 
steady, and the prescribed velocity u horizontal and constant. As a special application of  the second 
stage problem, the further result of ref. [6] is written here as follows: 

Theorem 6161 The solution of  ship's wave resistance of  the variational element method and 
boundary element method exists, and is unique, the accuracy of  which achieves the engineering 
requirement. 
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Otherwise the following holds obviously. 
Coro l l a ry  2 The second stage problem provides a rigorous theoretical basis of the 

variational finite element method and boundary element method for calculating the unsteady rigid 
body-water coupled problem, containing ship's unsteady wave-making problem. 
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