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Abstract

We first establish the rigorous ficld equations of the two continuous stages before and
after entering water. Then correspondently, we obtain the specific variational principles,
bounded theorems, and boundary iniegral equations of the second stage problems. The
existence of solutions are proved and the scheme of solving the solutions are provided.
Finally, as a numerical example, the ship’s wave resistence problem is used to demonstrate
the specific application of the second stage problems and its accuracy. Then we provide a
rigorous and sound theoretical busis of variational finite element method and boundary

element method for calculating the accurately fundamental equations.

Key words variational principle, boundary integral equation, hydrodynamic
impact problem

I. Introduction

The signification of hydrodynamic impact problems (e.g., missile entering water, ship
slamming) is wellknown, which they have not been solved. Inref. (1], representative for the problem
before entering water, the compressible air layer and the water region are simplified as one and two
dimensional respectively. Then a difference solution is obtained, in which the condition after
entering water has not been considered. In ref. [2], representative for the problem after entering
water, the effect of compressible air layer before entering water has not been included and moreover,
only an approximately analysis solution is obtained.

These problems, containing variational interface, copulating reaction of rigid-air-water, which
are separated into two stages, before and after entering water, are unsteady and nonlinear problems,
and obviously very difficult. Furthermore, the signification of these problems is that their
mathematic modelling involve some other problems. For example, by modifying the problem after
entering water, the ship’s wave resistance problem which has not been solved yet can be modelled.

The object of this research is to establish a rigorous theoretical system containing fundamental
equations and theoretical basis of variational finite element method and boundary element method.

Fundamental equations are separated into two stages. The interval of 0<(¢<CT is called the
first stages from the rigid surface beginning to compress the air layer to the surface touching the
water, the fundamental equation of which is improved from ref. [1] by extending from one
dimension to two in air layer region and from two dimensions to three in water region. We don’t
consider the influence ofthe thickness ofairlayer becauseit isthin, sothe airlayer
is almost a two-dimensional problem. The interval of T ,<t<T, is called the
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second stage from the end of the first stage to the beginning stage after entering water, the
fundamental equation of which is employed from ref. [2] but includes the actual condition of the end
of the first stage. In other words, the dimension of flow field is extended to the reality and the two
stages of distinctive physics are copulated. Obviously, the actuality can be modelled by the above
model accurately.

Furthermore the specific variational principles, bounded theorems, and the boundary integral
equations for the second stage problem are established, and the existence of the solution is proved.
As for a treatment, the method establishing the complementary variational principle in ref. {3] is
employed, the improvement of which compared with the representaive ref. [4] is at least that we can
determine the same property in stationary point for a pair of complementary functionals by
requiring only one determinative formula. Finally, employing three numerical examples of ship’s
wave resistencel®, we demonstrate the effective application and the accuracy of the degenerate
condition of the second stage problem.

The contents of this paper provide a rigorous theoretical basis of original numerical method for
calculating the accurate fundamental equations.

II. Fundamental Equations

The quantities used below are all nondimensional. The (x, y) plane of Cartesian coordinates is
set on the quiescent water surface and the Ozaxis is directed above. A rigid body, whose shape of
surface touching the water is given, impacts downward to water vertically with prescribed velocity u.
Velocity potential, density, and pressure, of water are ¢, £, and p, respectively. Velocity, velocity
potential, density, pressure, and gas state constant of air layer are A, &,, Pa, pPa and k
respectively. The variational water surface represented by 2' is separated into two sections,
=22, (see figs. 1--3)!"2 In the first stage, 5 represents the section touching the
compressed air layer; 3, represents the section touching the atmosphere. In the second stage,
>, represents the section embedded into water. The intersection of 2’ and 3'; or the boundary of
surface2',is82}. In the first stage, surfaces 3', and 2';are smooth and continuous on the intersection
92, the outward unit normal of which isn. The difference between variational water surface
and quiescent water surface in the first stage is £ , the upwardness of which is positive. In the
second stage ¢ represents the difference between surface 2, and quiescent water surface. The
thickness of air layeris h. The waterdomainis ¥, theboundary of whichis S, containing
infinitesimal boundary S.. , and the outward unit normal of S is N.

S.. Seo S

-

Fig.1 The middle process Fig.2 The end of the first stage Fig.3 The middle process

of the first stage or the beginning of the of the second stage
second stage
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We introduce the interface variable family , $=0 is defined on the water surface 3 in the
first stage and the X', in the second stage, and the domain ¥ is defined as $>>0 .
The dimensionless fundamental equations of the first stage are

Vs Ad=0 (2.1
2 a(Pah)/at+Vx « (PahN)=0 (2.2)
P=1pa (2.3)
213 =g, 2.4
2 ay/ot+ v » yy=0 (2.5)
S.: V=0 2.6)
t=0:  h=h, 2.7
t=T13 h=0 (2.8)
=L, (2.9)
8311 pahA=pa(AN) (2.10)

and
V: — P57 p=3¢/0t+ |Vd|*/2+ gz (2.11)
2 A=V (2.12)
ba=p? (2.13)
—Pa'Pa=(k—1)(0¢,/3t+ A%/2)—1 (2,14)
h+ j‘udt_ho+g=o (2.15)

[}

t=0:  ¢=0 (2.18)

The following egs. (2.17)—(2.19) can be derived from the above. From the definition of
interface family ¢ we know

p=E(—z (2.17)
and obtain
Sp=35¢ (2.18)

and by substituting eq. (2.18) into (2.15), we obtain

2t Sh=~3y (2.19)

(V' =S=2S.y 2=2,U2D
where y,=13/8x+jd/0y, Vv is a three-dimensional operator. A, is the prescribed value of
the air layer at the instant of behaving compressiby (i.e., the initial constant density and pressure, g,
andp, , as well as the quiescent water surface begin varying), and it is the value of z coordinate of the

section of rigid body compressing the air layer. T,, {p, and (hA) are prescribed values
determined below. The value on 2, is determined from eqs. (2.8) and (2.15) as

Ty
§m=ho—L udi (2.20)
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in which the time T, is determined by the maximum value of A, on 92, ie., hs|max,
Ty

corresponding to zero of {r, (see Fig. 2): 0=ho|max—j udt . The remainders of prescribed
[}

values, {r,on 2, and CAN) on 82, , are determined below.

Fundamental equations are constructed by the following reasons and the combination of the
stationary condition of a functional (see below).The liquid flow equations are usual (or see [2]). The
air layer equations are obtained as follows: eq. (2.2) is extended from one dimension in ref. [1] to two
dimensions, Egs. (2.12) — (2.14) are usual (see [7]), and eq. (2.15) presented here is the integration of
transverse continuity condition in ref. [1] from the velocity form to the displacemnt form and is
extended to two dimensions. The interface variable family ¢ is introduced and the relative egs.
(2.15), (2. 17) - (2.19) are presented here, by means of the variational method of mixed continual3 &
8 and they play important pari in establishing the variational principles of rigid-air-liquidcopulated
problem and can be seen later.

The remainders of the prescribed values in fundamental equations and variational functionals
mentioned above are the {r, on2';and the UJG on d2; , which are not known in advance and
should be determined iteratively in the following ways. From egs. (2.4), (2.11) and (2.17) we can
determine the following on 2,

¢n=—g7(3¢/0t+| vé| */2) | Iury) 97 pi " buo

~—g ' (34/3t+ | VP|*/2) | zeorrari— 9 05" Pay (z.21)

and the property employed above is valid as follows.

Property 1 When the defined domain 2 of the independent variable of the height £ of
water-free surface is replaced by z=0, the error of ¢ is infinitesimal and is allowable.

So we replace the defined domain 2' by z=0 in some proper place later on.

The new value of {r;can be determined by the value of ¢ of the last iterative procedure.

The new value of (AA) can be determined from egs. (2.12). (2.15) and (2.17) by the value of

&1» ¥ of the last iterative procedure.
The convergence of the two iterative precedures is given in property 2 later on.
The fundamental equations of the second stage are

V: vé=0 (2.22)
2, Gy/0t+ve-vP=0 (2.23)

—p;t p=0¢/0t+| V¢ */2+gz= — p5* pa, (2.24)
e (Vo—u) N=0 (2.25)
S.: Vé=0 (2.26)
t=T,:  d=dn, (2.27)
t=T,:  {=(n, - (2.28)

(W=S=3,J2,USD)

The above equations are usual (e.g. see [2]). The surface embedded into water, 2',, is
determined, i.e., the intersected line 92", (see Fig. 3) can be determined by the rigid body entering
the quiescent water. The value of T is defined at the end of the second stage (the beginning stage of
entering water), and is determined. The value of ¢ is determined by the first stage. The value of {r,
should be determined by the same relationships of the first stage, i.e. (2.24), according to the similar
equation, eq. (2.21) of the first stage, from the following iterative procedure

Lra=—g7"(38/3t+| VO| /2 ,0 pep,— 9 P57 Pas (2.29)
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We shall prove the existence of the variational solutions of the two-stage problems later. So
there is .

Property2 Threeiterative procedures for the calculations of the £, on X, ,the (A7) on
82, and the {5, , are canvergent.

III. Stationary Principles (Generalized Variational Principles)

The sense of the generalized variational principles here is relative to that of the constraint
variational principles later, because some constraint conditions must also be satisfied in the
generalized variational functionals.

Theorem 1 Setting eqs. (2.11) —(2.16) satisfied a priori from the following functional, the
stationary condition of which is the solution of the first stage problem, egs. (2.1) - (2.16):

-

T T
Ih,butr=-=| | kpUwrdrde— [ [ khpodSar
T
+j‘o ljzz k-lﬁaowdet‘FjElpau ho ¢1 It-O dS—jvpok—lU(wT‘)(tlt:TldV

T —_—
—jnljazlpao (hA)nd,dc - a3.n

where U(y) is the Heaviside function.
Proof Using the property of Heaviside function, noting eq. (2.19), and employing the
following relationships.

~8(k™'pa)=—pa~'0pa=pa0(d¢:/3t+ A*/2) 3.2)

we have proved theorem 1:

T1 Tl
STk 2e10) _}’ S k! p,AbSSdV dt+ L jzl{k_l(f’a—ﬁ)a'/’— a(g:h)
o Jv

910 Coabh) =k (-2 9 - gp)oofasdr—| [ ko
o= pe)swt o Z5-+v9 - vp)os |dSdt+ | OTJ s Pk N-y43¢d Sdt
+j 5, [(Pashs— pah)ddsiest PahSs] g, ) ds+[yp.,k-'£U

T -
~ U108l ,o7, @V + [ [45,000 hA— pacCil>] - nd dodt (3.3)

=0=>(2.1)~(2.10) (3.4)
Theorem 2 Setting eq. (2.27) satisfied a priori from the following functional, the stationary
condition of which is the solution of second stage problem, eqgs. (2.22) - (2.28):

¢4, p)=— S:SV it pU(pYV dit - S; f 5, uNgdSdt

T, .
=1 - dV (3.5
+5T:.§2; P! parpd Sdt _LU(‘/’T,)‘M t=T,

Proof We have proved theorem 2 from
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SITE2 j T’LAéééd Vdi— 5; j 2’[(%+v¢-v¢)é¢

Ty

T
+ 651 (p—ban) 6w]det+j j (vh—u)-NogdSdt
T923,
o 5 av
+[ ], vo-Negdsar+ | (U-Uwr18811r, (3.6)
=0=>(2.22)~(2.26), (2.28) (3.7)

IV. Constraint Variational Principles and Bounded Theorems

Theorem 3 Setting the equilibrium conditions, egs. (2.3), (2.4) and the continuity condition,
egs. (2.1), (2.2) and (2.5)—(2.10), satisfied a priori from functional II, eq. (3.1) of the first stage
problem respectively, construct ﬁfunctionals IT,and —I'y respectively. Then

(1) IT,and I"; have the same property in stationary point:

T, =Ty= ([ Lkt oy yop|®d Vi " Lpgini— gt gy
1 =], ),k Pl VoS )5, Fhatm(1— a7 A (3 4) dSdt

4.1
where a is acoustic velocity and m=(k—1)"!,
(ii) At least when 4<Ca, there exists a solution and the following holds
I >0\ ;=—I|=-T, (4.2)
where ()|, is the value in the point of exact solution.
Proof (i) From eq. (3.3) we have proved the stationary condition:
oll,= 551 (248) (2+4) 4.3

(The right-hand side of equality of the above equation indicates that egs. (2.3), (2.4) are
satisfied a priori in 8] (see eq. (3.3)); It is similar later on)

=0=(2,1)(2,2)(2,5)~(2.10) 4.4)
— O =01I| (2.1) 2.2) (2:8) . (210) (4.5)
=0=>(2.3)(2.4) (4.6)
(ii) From the conditions, egs. (2.3), (2.4) and from egs. (2.11), (2.17), we obtain
2 p=—g"'pi' pa—g~'(3/3t+ |VE|*/2)| 5 —E
.7

=~g'pi' (pa—)=0
2y p=—g7'05" Pay—g~"(39/0t+ | V$|*/2)| 5,— ¢

=—~g"'pi' (Pay—p)=0 (4.8)
(%,)ESy: p=—g7' pi'pa—g~'(3¢/3t+|V|*/2)|sa0—2 (4.9
(%,y) €23 ¥=—97'p5 ' Pas—g ' (9¢/0t+| V§|*/2) | 10— 2 (4.10)

egs. (4.9), (4.10) are continuous on  (%,y)EF2; , and so they are continuous in all domains.
We note that eq. (4.8) contains egs. (2.21) and (2.29) at t=T, and T, respectively employed
above.
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From egs. (4.7), (4.8) we know that egs. (2.3), (2.4) are equivalent to
2 =0 (4.11)
and are also equivalent to the following equation when eqs. (2.3), (2.4) are satisfied a priori:
3 8p=0 : (4.12)

and simultaneously, the variable ¢ in the variational principle, eq. (4.4), should be substituted by
eqs. (4.9) and (4.10).
Through the following relationships

a*=1—-(2m)~ 'A%, pa=a*" (4.13)

we take the variation of eq. (3.2) again:
— 8%k pa)=a*"(1—a 21*)(4)*/2 (4,14)

Taking the variation of eq. (3 1) twice, from eqs. (2.19), (4.12) and (4.14), we obtain the value of
8T, in eq. (4.1).
Taking the variation of eq. (4.5) again, noting eqs. (2.11)—(2.19), we obtain

a=r=’T‘»j Lkrscp—p )5¢det+r‘j L k18 popd Sdt
! Jo > 2 a o JZ22

- LT‘I v—;—k"é[p, g—‘f+ %I Vol + gz )] SUdV dt— j :ljzl%k"d{pa[(k

1)(‘7¢1 +1a )=1]} shdsds

- —aLT‘L%k-* poa(g—‘f+ %[ vé(*+gz) Udth—aj:' Szl%k-la{p.,[(k

—0(Z+2a)-1]} hdet+f1jyk"po3’ (L +31vo1+92)Ud vai

Ty
_L .‘z,k-laz“"ds‘“ (4.15)

where

—]lev Kion(-Gh+ 3 1v41+g2)Udv ds

0

=—{ Li1p8Uy 7 dv + T‘j L =15, AdSGdV dt
), 2% e U 5y +{ | 5 ki, Ageg

+.-:‘1Izl%""P"(%*‘W'V¢)<‘¢def-f’Lav¢~N6¢de: (4.16)

-, 15, o8 em1(B+ 1t )1 hudsas

2 5.3 paho( 2+ 5t Yasar




572 Jin Fu-sheng

1 rogoy LT [0Coah) |,
=—jzl—2—(l3ah5¢'1)lo‘d5+ ZL jzl[——at—{—vl (PahA)]5¢1det

T
—j 1[ L (pahh)-ndg dedt (4.17)
0 Jaz, 2

Substituting eqs. (4.14), (4.16) and (4.17) into eq. (4.15), satisfying identical conditions, eqs.
(2.1),(2.2) and (2.5) — (2.10), we obtain the value of 5*I",in eq. (4.1). We have proved eq. (4.1). From
the mechanism of constructing functionals IT, and I",,wecanprove II,|o=—1I"1|o ineq.(4.2)
easily. When 1<{a, we can prove that formula (4.1) is uniformly positive, which is the sufficient
condition for functional to be a minimizer, so we have proved eq. (4.2). The equivalence between the
minimum principle and existence of the solution is that the harmonic operator is positive in domain
(see eq. (2.1)). Up to now, the proof of theorem 3 has been completed.

Theorem 4 Setting the equilibrim condition, eq. (2.24) and the continuity conditions, egs.
(2.22), (2.23), (2.25), (2.26), (2.28), satisfied a priori from functional [ eq. (3.5) of the second stage
problems respectively, construct functionals /T,and —I'", respectively. Then

(i) IT ,and I"; have the same property in stationary point as follows

) |
62H1=5‘F1=L'L%lV5¢l“dVdf (4.18)
1

(i1) The solution exists and moreover
H1>H1|o=_r1[o>“‘r! (4.19)

Proof (i) From eq. (3.6) we have proved the stationary condition easily:

OI1,=3I| (.24 (4.20)
=0=3(2,22)(2.23)(2,25)(2,26)(2,28) (4.21)
—OI" = 0IT| (2.22) (2.28) (3.39) (2.20) (3.2) (4.22)
=0=>(2.24) (4.23)

(i) Similarly we can prove that eqgs. (4.8), (4.10) (in which the defined domain of eq. (4.10),
(x,y)€Z,. is modified in all regions, and is still indicated by eq. (4.10) later on) are valid in the
second stage problem. So eq. (2.24) is equivalent to

=0 (4.24)
and when eq. (2.24) is identical, it is also eQuivalcnt to
2 Op=0 (4.25)

Simultaneously, variablbe 4 in the variational principle, eq. (4:21), should be substituted by eq.
(4.10).
Taking the variation of eq. (3.5) twice, using eq. (4.25), we obtain the value of §2[1,in eq. (4.18).
Take the variation of eq. (4.22) again:

1 T: 1 T:
3 i -1 = -
8= 2 [TI ! Py ! Opdyd Sdt= 2 LJ' pitépoUdV dt

1

_1 Ty s Ty sz
- 6Jr,Iv pit spUdVdi— | le' pi18*pUdV dt (4.26)
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" where

% j rT I , pi'8pUdVdi=~ %L(&tU >\ =129V +%j T’j z,(%f‘

1

+vy - vé )6¢det—-%j:s vé-NSdSdt+—+ j j AdSdVdt

Z1USw
4.27)

Substituting (4.27) into (4.26), satisfying the identical conditions, egs. (2.22), (2.23), (2.25),
(2.26), (2.28), we obtain the value of %I in eq. (4.18).

Eq. (4.18) has been proved. We can prove that formula (4.18) is uniformly positive, which
satisfies the sufficient condition for the functional to be a minimizer. and know similarly that
Il |,=—1T",| ineq.(4.19), soeq. (4.19) holds. The existence of the solution is equivalent to the
minimum principle because the harmonic operator is positive. The proof of theorem 4 is completed.

Notel Theorem | —4isthe continuity of the work of complementary variational principles
in ref. [3], the improvement of which (compared with the classical results, €. g. ref. [4]) is at least that
only one determinative formula is required to determine the same property of a pair of
complementary functional in stationary point.

V. The Boundary Integral Equation for the Second Stage Problem

Theorem 5 Settingeq. (2.24) satisfied a priori (in which variable g should be substituted by
variable ¢ from eq. (4.10)), the solution of the second stage problem exists and is determined by

( )j ¢( X, W—LL(vw-Vrr‘%—r-'aw/a:)de:

1
f:
_—[7',L:1N (Yrrig+tur ‘)det+jV[U(w)—U(¢T’)]r" g dV,
Xi€le, r=|r=r| (5.1)

Moreover, it satisfies the relationships of water surface shape and the surface embedded into water
as follows

j:j <aw/a:)de:+[T’j u-NdSdi+ (U,

11 2 7Y%,

-Uwp g, dV=0 (5.2)

Proof Taking Jd¢=r-! and | in eq.'(4.21), integrating the term of j VéSgdy ineq.
| 4

(4.21) by part once and twice respectively, we obtain egs. (5.1) and (5.2) respectively. Because eq.
(5.1) is equivalent to (4.21), then from theorem 4 we know that the solution exists. It is eq. (5.2) that
is the condition of existence of Neumann problem. The proof of theorem 5 is ‘completed.

VI. The Linearization of Water Surface Integral Region and the Alternative Form
of Constraint Variational Principles

By a way similar to property 1, the following holds:
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Property 3 When the water inierface 2’ or 2',0f three-dimensional integral region ¥ and of
surface integration in theorems 1— 35, is substituted by z=0, the error of the integration is an
allowable infinitesimal value.

Note 2 Properties | and 2 are capable of solving variables ¢ , ¢, and y from variational
equation or boundary integral equation once; Property 2 guarantees the convergence of iterative
procedure for some undetermined value. So properties 1 — 3 provide the capability for calculus of
theorems 1—5.

Variable ¢ in constraint variational equation &II,=0 of two-stage problems should be
substituted by relationships (4.9), (4.10) which are dependent on velocity potential so that the
nonlinearity of the variational equation increase. Following corollary 1 provides an alternative way
of iteration which is valid obviously for decreasing the ﬁonlinearity of variational equation.

Corollary 1 (i) Fromegs. (3.1), (4.12), the variational equation of the first stage problem is

equivalent to
T

Ty
o= —{ ( kr8pU(p)d Vdt - k™*hdpad Sdt
o 0 |4 4 21

+{ _ posheddil,oodS—{ Pk U081, g,V

L

rT[
1 I ,an(hl\)'ﬂ5¢1dc=0 (6.1)
921

where integral region V and 2, are determined iteratively by egs. (4.9), (4.10) of the interface
function y.
(i1) Fromegs. (3.5), (4.25), the variational eq. (4.21) of the second stage problem is equivalent to

S8, = —j:jvpo-l spUp)dV di _j ::jzlu-NSquSdt

= U101, rdV =0 | (6.2)

where integral region V' is determined by eq. (4.10) of interface function ¥ .

We note that the treatment in corollary 1 is inverse in note 2: taking the reality (determined by
iteration) of water surface boundary, decrease the nonlinearity of variational functional. But the
effect of the two is equivalent.

VII. Application in Ship’s Wave Resistance Problem

The variational solution of flow past floating body was presented in ref. [5]. For the application
in ship’s wave resistance problem, the primary effect has been seen in three numerical examples!®..
This problem is the degenerate condition of the second stage problem in this paper: let the stage be
steady, and the prescribed velocity u horizontal and constant. As a special application of the second
stage problem, the further result of ref. [6] is written here as follows:

Theorem 6! The solution of ship’s wave resistance of the variational element method and
boundary element method exists, and is unique, the accuracy of which achieves the engineering
requirement.
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Otherwise the following holds obviously.

Corollary 2 The second stage problem provides a rigorous theoretical basis of the
variational finite element method and boundary element method for calculating the unsteady rigid
body-water coupled problem, containing ship’s unsteady wave-making problem.
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