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Abstract
An ADI scheme is suggested to simulate the Marangoni convection controlling with
emphasis on investigating application of the technique numerically. Numerical experiments
conducted in the present paper turn out both successful and efficient. Hence, ADI scheme is
expected to be extended to the study of other convection processes related to material
manufacturing.
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I. Introduction

It is a common impression that usually natural convection driven by bouyancy will no longer
occur in low- or micro-gravity environments. This kind of phenomenon may provide an ideal
condition for manufacturing high quality materials. Nevertheless, in the liquid bridge model of
crystal growth experiment in a floating zone, the complicated flow due to surface tension will
become dominant over those due to other factors. It is of significance for us to gain a penetrating
insight into this complicated flow through numerical simulation so as to avoid unnecessary failure
in the experiments aboard spacecraft.

In this paper we concentrate on the numerical simulation of the Marangoni convection
controlling in the liquid bridge model by using one of the finite difference schemes: implicit
alternating directions iterative method (ADI method). Numerical experiments conducted in the
present paper show that the ADI method is both successful and efficient in the computation,
especially for medium Reynolds number cases.

II. Mathematical Formulation

Consider the liquid bridge model of crystal growth experiment in a floating zone, in which the
Marangoni convection due to surface tension becomes prevailing. The configuration studied is
illustrated in Fig. 1.
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A liquid bridge is formed between two differentially heated cylindrical rods. The top one is
maintained at a higher constant temperature while the bottom one at a lower constant temperature.
The surface tension gradient induced by the heterogeneous temperature distribution on the free
surface of the liquid bridge is the main factor to drive melt in motion.

It is assumed as in [2] that the free liquid surface is flat, the flow is incompressible and
axisymmetrical, and the heat loss from the free surface to the ambient air is negligible. Under these
assumptions the non-dimensionalized differential equations governing the liquid bridge model in
cylindrical coordinates (see Fig. 1) are represented in the form of stream function-vorticity as
follows
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wherer, u and z, v are the radial non-dimensional coordinate, velocity and axial non-dimensional
ones respectively, § is the non-dimensional temperature, parameter G,=fgATL*/v* denotes
the Grashof number, K,=(80/8T)AT - (L/uv) —the Reynolds number, M,=(80/9T)
AT -(L/ux) —the Marangoni number, o the surface tension, T—the temperature, L—the
length, 4 and v the viscous coefficients, 8 the volume expansion coefficient, x the heat diffusion
coefficient, g the acceleration of gravity. The stream function % and vorticity £ are defined by

-1 9% =1 9
=T Bz 'TTTF Tor (2.2)
and
f= du du
=% " Tor (2.3)
The boundary conditions are specified as |
a
$»=0, —a%=o, f=0 on z=0 (2.4a)
3
P=0, ——ag——=0, =1 on z=1 (24b)
) ad
p=0, —'a%‘=0, —a—r“=0 on r=0 (2, 4¢)
af 86
¥=0, {=—7—7, 5 =0 on r=2] (2,4d)

7 in (2.4d), the controlling parameter, represents the value of forces imposed on the free liquid
surface by air jet. Specifically, r=0 means that there is no force applied on the liquid surface.
Equation (2.1) and boundary conditions (2.4) make up the mathematical model describing the
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controlled Marangoni convection in the liquid bridge model.

III. Difference Schemes

1. General remarks

Scheme 2 in [1], an ADI method, is used for numerical calculation of equation (2.1). The
numerical experiments for Taylor vortex in [1] show that this scheme possesses good numerical
stability (in particular, for medium Reynolds numbers) and has the advantage of dealing with
boundary conditions more easily.

A rectangular mesh is selected for (r, z) domain [0, 1] x {0, 1].

Let

=1/(I-1), he=1/(J—1),
where I and J are certain integers, and let

Fe=(i—1Dh,y (i=1,2.--,1)

2]'—"'(].—1)":7 (j=1s27""") } (3'1)
Then the mesh is defined by
(r‘,21)=f(7()y f(zl))) (i=1""’1) j=1"°‘,]) (3.2)
where the function f'is defined by
tho(x —)+th >
f(x)= (3.3)

-
2th~§—

and b>>0 is an adjusting parameter. The mesh defined in (3.2) is nearly uniform when 6 is small
enough (such as 6=107'" ) by noticing f(x)-> x asb->0. Thus the uniform mesh is denoted by
b=0 hereafter for the sake of simplicity.
It is obvious from (3.3) that the bigger b is, the denser the meshes near boundaries are. In
contrast, the increment of time A¢ is kept invariable in the whole procedure of calculation.
Itis assumed thatif the values £* , 9® and §* are given the computational procedure to go
ahead from time nAt to time (n+ 1) At involves the following steps.
1° Compute £**! from eq. (2.1a), using §*,¥"and boundary conditions deduced from (2.4).
2°Compute $*** from eq. (2.1b), using £**! and boundary conditions (2.4).
3 Compute g%+ from eq. (2.1c), using y*+1, £#*! and boundary conditions (2.4).
2. Difference schemes of the equations for vorticity / and temperature § and
corresponding boundary conditions
The general form of egs. (2.1a) and (2.1b) is

% 42482 1c44p

ot
8¢ a¢ ¢, 3% 3.4
+R T oy —ﬂrz"far]

where B=1 for { and O for § . Define
a _B ]
n=Bl+ AT 1 8 L]

r r
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2 (3.5
51 ]
az R 6z*
and the corresponding difference operators as A,y Azrand Az, Ajz,respectively.

Eq. (3.4) is integrated by a method of factorization in two fractional steps:

(E———-sz)¢* “(E+ Azz)(E+ Azr)¢"
+AtC¢”+AtD (3.6)
(E-— _gf_Al')¢n+1=¢*

A=

where E is the identity operator, 4, B, C and D take the corresponding values on time nAt the finite
difference operators A, and A, are defined by

A __-A+|A, ¢4,;+;—¢t,1 "|-A| ¢‘9!"‘¢lyl-l W
sbirs= 2 2541—2y 2y—25
+ 2 [¢l’!-1_¢"l - ¢171_¢‘11-1 ]
R(zg~25.0) 244123 Z2y~—2Z5.1 \ 3D
A+|A| ¢tu—'¢4u_1 A_IAI _¢I;J+1_¢‘.J
Ausders= 2 T zi—z, + 2 Zj1— 23
2 [¢I,J+1—¢i,! iy —Bays ] J

+ R(zy,1—24.1)

2gs1—2y 2y—25.

and the finite difference operators A;, and Az» have similar expressions with A,z and Age,
respectively.
Eliminating ¢* we get for overall step

n+l__ Am 1 s n
'¢——A—t—¢-=":zl‘(Au‘ﬁ.“"‘An’ﬁ")’F?(Au‘ﬁ ’+A,,¢)

+c¢-+D——A—’(A,,Al,¢ " A Ased) (3.8)

Scheme (3.8) is consistent with (3.4) with an error for a steady state solution of order

O(h§)+0(h§)+O(At . hzg—;)+O(At-h,§;-) if a uniform mesh is used. Therefore,

we have to restrict time step A¢ small enough to minimize the truncation error.
Although scheme (3.6) is not of the second order, we are still capable of yielding solutions with

high accuracy by choosing suitable time steps. Notice that i the scheme the operators ( E -

At
A,,)and (E —-——Z—A,,) give tridiagonal matrices with diagonal dominance. Then there is no

restriction in this scheme on the mesh Reynolds number.

Consider the treatment of corresponding boundary conditions. The boundary conditions for
vorticity ¢ deduced from egs. (2. lc) and (2.2)—-(2.4) are

1 — —1 )
== 6 on 2=0 and z=1
1 3%
f==— ongr=={;
2 03’3 > (3.9
0 —
{= 5z ~F onr=] J
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The treatment of the third equation in (3.9) is trial. The discretization of others in (3.9) is

£l — a 2(z5—2)9i,2 2(z,—2, )91 ,3 ] \
f5! rs (22—21)2(23_22) (Zs—zl)z(za_zz)
+(1_a)£:u ('.=29"',I—1)
Eret =E_[ 2(2y—25_2)¥1y7 _ 202y ~25_ )Pt ,5_2 ]
9 T l(2i =25 )25 —25_2) (Zr—25_0)(z2s_1—21_7) ) (3.10)
+(~a)Xi,s (=2.-- I—-1)
Cun —_ 3a [ ¢: 2J ¢; LX)
i ra—~raL(ra—=r))* (ry—ry)*
+(1=a)li,y G=1,,0) 7

where a€(0,1] is (boundary) relaxation parameter. If a uniform mesh is used, the first and second
formulae are of order 2.

Fhe discretization of boundary conditions.on z=0 and z = 1 for temperature § in (2.4)is trial.
The boundary conditions on r=0 and r=1 for § in (2.4) are discretized in an order 2 method
(c.f.[5]). For instance, the discretization of the boundary condition on r=20 is

2 2
011.4.1__("3—"1) 1y —(ra—r)0%5)

% imr ==yt U=t (3.11)

The values of $* on z=0 and z=1 are needed in scheme (3.6). These values are obtained from the
second fractional step applied on the boundary (z=0 or z=1)

¢
t*1eo=( E— 500 )e2s (3.12)

3. Difference scheme of equation for the stream function ¢

The difference scheme of eq. (2.1c) is discretized by central differences and solved by a line (r
direction) SOR iterative method with a value 1.5 of parameter. The test of iteration convergence is
as follows:

max gt —pi® -4 313
Toman el S 1%

where s is the iteration number.
4. Criterion of convergence towards a steady state solution
Let

max|¢iy; —di,,!

Rr= 19 [k —_ G.
Smaxpgm 0 TP

The criterion of convergence towards a steady state solution is as follows
]‘ L L] n

e max{R},R} ,R}}<E;,

A (3.14)

Except for being otherwise stated, the value isE ,o=10"" .

IV. Results and Discussion

The analysis in 3.2 showed thzt although there is no limit in ADI method (3.6) on time step A#,
the choice of At exerts effects on the truncation error of scheme (3.6) for a steady flow. In order to
investigate the effect of choosing At on the accuracy of simulation, the numerical results with



398 Huang Wei-zhang, Zhang Suo-chun, Xie Zuo-heng and Li Jia-chun

several time steps under a typical group of pararﬁeter values are shown in table 1 and table 2 for a
uniform and a nonuniform mesh, respectively. It is not difficult to know by comparing these results
that there is no significant effect of time step A# on the resuits, except for vorticity ¢ . As far as the
vorticity is concerned, the effects of time step A¢ on the results is also minor for sufficiently smali
At(hereAi<€0, 3). In tables 1 and 2, the relative errors of all the variables are found less thanl 0,

The results accounting for the selection of mesh size are listed in tables 3 and 4, from which we
conclude that the effects of mesh are conspicuous. For example, the relative error of values of
vorticity ¢ between mesh 11x 11 and mesh 41 x41 in table 3 reaches 46.7% . Hence, the
sufficiently finer mesh should be used to produce numerical solutions with better accuracy. The
relative errors of all the variables between mesh 31 x 31 and mesh 41 x 41 in table 3 are less than
7% . Then fairly accurate solutions can be obtained if the uniform mesh 31 x 31 is employed.
Table 1 Effect of choice of Af on accuracy of solutions R,=10>, M,=103, G,=1, =0, [xJ=31

X 31 (unirorm mesh), ¢ <0.5

]
1

At max max|u| max|v ax 1 N 1yle 0, L [/ -l-.-l— g(1, - i

vl lul lv| mex(¢l |9 (., 2)!( 70y ) 8(1,) |cpu time

\ e

0.5 [3.94(—3)*% 2.74(—=2) 3.77(—2) 13.16 |—1.75(—3) ! 0,159 0,306 0.669 (11 %*
0.3 {3,98(—3) | 2.77(—2) 3.79(—2) 7.80 [—1,76(—3) | 0,157 0,305 0,668 1556
0.1 4.04(—3) | 2.85(—2) 3.82(—2) 8,06 —1.82(—3) 0.168 0.314 0.673 3143
0,03 |3.97(—3) | 2.86(—2) 3.80(—2) 8,00 |—1.76(~3) ) 0,157 0.304 0.668 8023

*: a(— b) means
**: The unit of CPU time is second,and all the calculations are performed on Micro VAX 2 computer

Table 2 Effect of choice of Af on accuracy of solutions B, < 103, M,=103, G, =1, =0, IxJ=21
X 21 (nonuniform mesh, b=2), ¢=0.5

11y | 1 11 i o
At max|¢| | max|u| max|v| max|¢| | p (—2—. T)JB (0.?) 0 (7. 7) 6 (l,?) CPU time
0.5 (3.02(—3)( 2.79(—2) 3.79(—2) 14,79 |—1,73(—3) | o0.159 0.302 0.672 315
0.3 (3.94(—3) | 2.84(—2) 3.81(—2) 8.77 |—1.74(—3) | 0.158 0.302 0,671 471
0.1 J4.00(—3) | 2.92(—2) 3.84(—2) 8,01 [—1,79(—3)| o0.166 0,308 0.674 1104
0.03 [3.96(—3) | 2.93(—2) 3.83(—2) 7.85 [—1,74(—3) | 0,154 0.300 0.669 3239

Table 3  Eftect of mesh on accuracy of solutions R,=103, M,=10%, G,=1, v= 0 (uniform mesh), A¢

=01, a=0.5
| 1 1 1 o1 1 _
IxJ max|y| max|u| max|uv| max|{] | ¢ (-i. 7) 9 (O.-2~) 0 ('2 . 7) [/ (1,?) CPU time
1111 [3.80(—38) | 1.87(—2) 2.11(—2) 462 |—1.53(—3)| o.118 0,218 0.568 379
2121 (3.90(—3) | 2.52(—2) 3.29(—2) 6.88 |—1.89(—3) | 0.146 0,282 0,650 1368
31x31 |[4,04(—3) | 2.8(—2) 3.82(—2) 8,08 |—1,82(—3)| o0.168 0,314 0.673 3143
4141 [4,09(—3) | 2.98(—2) 4.12(—2) 8.67 |—1,88(—3)| 0,170 0,322 0,678 8173

Table 4 Effect of mesh on accuracy of solutions R, =103, M,=103,G,=1, v=0 (nonuniform meshes
(b=2), At=0.1, ¢=0.5

11 1 1 1 1 .
IxJ max|y| max || max|v| l max|{| | ¢ (—z—. T) 9 (0.?) [} (?. ?) (] (l,?) CPU time
11X11 (8,77(—38) | 2.23(—2) 2.72(-2) 5.38 |—1.684(—3)| o0.114 0,238 0.611 ! 357
21X21 [4,00(—3) | 2.92(—2) 3.84(-2) 8,001 |—1,79(—38) | o,188 0,308 0.674 | 1104

The comparison of table 3 with table 4 also implies that the more accurate solution can be
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obtained if a nonuniform mesh (3.2) is preferred to a uniform mesh with the same number of grid
points. For example, the results obtained by using the nonuniform mesh 21 x 21 nearly have the
same accuracy with those obtained by using the uniform mesh 31 x 31.

The results with different Marangoni number and values of controlling parameter r are
illustrated in table 5. Figs. 2a —c¢, 3a—c and 4a —c describe the configurations of temperature 4 ,
stream function ¥ and vorticits ¢ with M =1000 and several different values of controlling
parameter r, respectively. It can be seen from table 5 and Figs. 2 — 4 that the adverse air jet control
(i.e.7>0) slows down the convection and reduces the variation of temperature ¢ inradial direction
(i.e., it reduces the twist degree of isotherms), and that the favourable air jet control (i.e.7<{0) speeds
up the convection and increases the variation of temperature @ in radial direction, which seems to
agree well with the physical arguments. For more detailed analyses in this respect, refer to [6].

Table 5 Effect of control and M, values on flow R, =103, M =10}, G,=1, r =0, nonuniform meshes,
21 x21 (b=2), a=0.5

! ; 11y 1 11 1
M,| max|p| | max|ul  mexlvl lmax|¢| ‘,p (3 7)‘\ 8(0.5) (5. 5) 0(1-5)
0.5 [4.34(—3) 2.55(—2) 4.44(~2) 1.4 |—1.83(—3) 0,414 0,436 0,562
100, 0.0 |[7.82(—3) 4,93(—2) 7.88(—2) | 3,43 |—~3,10(—3) 0,362 0,387 0.596
—0.5 I1,04(—2) 7.12(—2) 0,104 5.72 '—4,19(—3) 0,324 0,347 4,611
0.5 |1.78(—3) 1.81(—2) 2.43(—2) | 4.30 |—7 42(—4) 0,218 0,288 0,852
10000 - 0.0 {3,94(—3) 2.84(—2) 3.81(—=2) | 8,77 |—1.74(—3) | o0.158 0.302 0.871
—-0.5 (7.86(—3) 4.08(—2) 7.58(—2) | 11,31 |—3.37(—3) 0,133 0.337 0,598
0.5 l1,19(~3) 1.51(—2) 1.79(—2) | 5.83 l-4,31(—4) 0.190 0.277 0.672
2000 0.0 13.12(—3) 2,10(—2) 3.26(-2) | 11,19 ‘—1,37(—3) 0.143 0.361 0.657
i
—0.5 [1.56(—3) 3.77(—2) 17.26(—2) | 13.64 '-—3,29(—3) 0,128 0.403 0.576
1,007 — \ 'R 1,00
0.80 —Nﬂ 0.80
0.7
0.60pF 1 0.60
0.3 v.6
T D 0.5 1 0.40
v.2 .
0.1

0.20

v.20 \ Ab

; ~R K
0,00 .20 0,40 v,60 U.BY 100 0.00 6.20 G40 p.u 080 P00 0.00 0,20 040 060 0.80 1.00
{a) r=0.5

(b} =0 €}y r=-0,"5
Fig. 2 Isothermals for R,=103, M,=103,G,=1 and three different control parameters r

1.0 |'Uz- L

ooy 0.8

[N 0.6

0.4 0.4

0.2 9.2

0.0 0.2 04 b6 08 ‘1. 0.0 0.2 04 086 08 10 g9 vz 04 06 048 10
@ r=y5 thy r=o (c) r=—05

Fig. 3 Flow patterns for R,=103, M,=102, G,=1 and three different control parametersr
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Fig. 4 The configurations of vorticity for R, =103, M,=103, G,=1 and three control parameters r

The under-relaxation factor a is taken as 0.5 in all the calculations in this paper. The results in
Table 1and Table 2 also indicate that the iterations are convergent for either greater or smaller time
steps, implying a feature of scheme (3.6): the requirements on relaxation factor a of the scheme are
not severe formedium Reynolds numbers. There are moredetailed discussion about this pointin[1].
‘ Based on the discussion above we are able to come to the following conclusions:

1° The ADI method proposed by this paper can be used successfully and efficiently to simulate
the Marangoni convection control in liquid bridge model. The results turn out both accurate in
mathematics and reasonable in physics.

2° Although the spacial truncation error of ADI method (3.6) in involving the effect of time step
At is not of order 2, the influence of At on the accuracy of numerical solutions is minor. One can
manage to solve the problems with good accuracy by adopting suitable scheme with nonuniform
meshes.

3° It is easier to treat the boundary conditions for intermediate variables by using this kind of
scheme. Furthermore, the requirements in choosing (boundary) relaxation factor are not so severe
for medium Reynolds numbers.
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