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Abstract 
An ADI scheme is suggested to simulate the Marangoni convection controlling with 

emphasis on investigating application of the technique numerically. Numerical experiments 

conducted in the present paper turn out both successful and efficient. Hence, ADI Scheme is 

expected to be extended to the study of other convection processes related to material 

manufacturing. 
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I. Introduction 

It is a common impression that usually natural convection driven by bouyancy will no longer 
occur in low- or micro-gravity environments. This kind o f  phenomenon may provide an ideal 
condition for manufacturing high quality materials. Nevertheless, in the liquid bridge model of 
crystal growth experiment in a floating zone, the complicated flow due to surface tension will 
become dominant over those due to other factors. It is of significance for us to gain a penetrating 
insight into this complicated flow through numerical simulation so as to avoid unnecessary failure 
in the experiments aboard spacecraft. 

In this paper we concentrate on the numerical simulation of the Marangoni convection 
controlling in the liquid bridge model by using one of the finite difference schemes: implicit 
alternating directions iterative method (ADI method). Numerical experiments conducted in the 
present paper show that the ADI method is both successful and efficient in the computation, 
especially for medium Reynolds number cases. 

II.  M a t h e m a t i c a l  F o r m u l a t i o n  

Consider the liquid bridge model of crystal growth experiment in ~ floating zone, in which the 
Marangoni convection due to surface tension becomes prevailing. The configuration studied is 
illustrated in Fig. 1. 
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The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



394 Huang Wei-zhang, Zhang Suo-chun, Xie Zuo-heng and Li Jia--chun 

A liquid bridge is formed between two differentially heated cylindrical rods. The top one is 
maintained at a higher constant temperature while the bottom one at a lower constant temperature. 
The surface tension gradient induced by the heterogeneous temperature distribution on the free 
surface of the liquid bridge is the main factor to drive melt in motion. 

It is assumed as in [2] that the free liquid surface is flat, the flow is incompressible and 
axisymmetrical, and the heat loss from the free surface to the ambient air is negligible. Under these 
assumptions the non-dimensionalized differential equations governing the liquid bridge model in 
cylindrical coordinate, (see Fig. 1) are represented in the form of stream function-vorticity as 

follows 

0 0 0 u~ Gr O0 
~ = - u ~ - t ~ z ~ + r -  R~. Or 

1 0 z 1 0 ~ ~ 0 z 
+T, 

80 O0 00 ,  1 F OaO , 1 00+ OzO-I -r--#- 

o'~o 1 O~ L a '9  - r ( :  
0 = ~  r Or " Oz 2 
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Fig. 1 Simulated floating zone 
configuration 

where r, u and z, o are the radial non-dimensional coordinate, velocity and axial non-dimensional 
ones respectiveFy, 0 is the non-dimensional temperature, parameter G,=~SgATLS/v  2 denotes 
the Grashof number, R , ~ ( O c r / O T ) A T .  ( L / # v )  -- the Reynolds number, M , =  (Ocz/OT) 

A T .  ( L / # K )  -- the Marangoni number, cr the surface tension, T--the temperature, L--the 
length, # and v the viscous coefficients, /3 the volume expansion coefficient, K the heat diffusion 
coefficient, g the acceleration of gravity. The stream function 9 and vorticity ~ are defined by 

1 0 9 1 0 9 
u------ o = -  (2 2) r - - ~ - '  r Or 

and 

8u 8v 

The boundary conditions are specified as 

O~ 
, p r o ,  - - ~ - = o ,  0 = 0  

a9 9 = o ,  - d F - = 0 ,  0=1  

09 00 = o 
9 = 0 '  ---0-;-r = 0 '  Or 

( 2 . 3 )  

on z-----0 ( 2 . 4 a )  

on z----1 ( 2 . 4 b )  

on r=O ( 2 . 4 c )  

00 00 
9----0, ~ = - ~ - - r ,  -a-~-----0 on r ~ l  ( 2 . 4 d )  

r in (2.4d), the controlling parameter, represents the value of forces imposed on the free liquid 
surface by air jet. Specifically, r = 0 means that there is no force applied on the liquid surface. 

Equation (2.1) and boundary conditions (2.4) make up the mathematical model describing the 
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controlled Marangoni convection in the liquid bridge model. 

III. Difference Schemes  

1. General  remarks  
Scheme 2 in [1], an ADI method, is used for numerical calculation of equation (2.1). The 

numerical experiments for Taylor vortex in [1] show that this scheme possesses good numerical 
stability (in particular, for medium Reynolds numbers) and has the advantage of dealing with 
boundary conditions more easily. 

A rectangular mesh is selected for (r, z) domain [0, 1] x [0, 1]. 
Let 

h,= i / ( l  - - i ) ,  h , = i / ( ] - l ) ~  

where I and J are certain integers, and let 

~-----(i--1)h,~ ( i - - 1 , 2 . . . , I )  

~-----(1-1)h, ,  ( j - - - -1 ,2 , - . . , I )  f (3 .1)  

Then the mesh is defined by 

(ri,zy)----f(~l)~ f (~)) ,  (iffil,...,1; j = l , . . . , Y )  (3 .2)  

where the function f is defined by 

~ h b ( x  i b -~)+th-~ (3.3/ 
f ( x ) :  2 t h b  

2 

and b > 0  is an adjusting parameter. The mesh defined in (3.2) is nearly uniform when b is small 
enough (such as b=10  -1~ ) by noticing f(x)-~x asb-~0. Thus the uniform mesh is denoted by 
b = 0 hereafter for the sake of simplicity. 

It is obvious from (3.3) that the bigger b is, the denser the meshes near boundaries are. In 
contrast, the increment of time At is kept invariable in the whole procedure of calculation. 

It is assumed that if the values ~ , ~m and 0" are given the computational procedure to go 
ahead from time nat to t ime(n+ 1 )At involves the following steps. 

l" Compute ~m§ from eq. (2.1a), using 0",-~" and boundary conditions deduced from (2.4). 
2"Compute ~=§ from eq. (2.1b), using ~m§ and boundary conditions (2.4). 
3" Compute 0 ~+~ from eq. (2.1c), using ~,+1, ~§ and boundary conditions (2.4). 

2. Difference schemes  of  the equat ions  for vorticity ~ and temperature  0 and  
corresponding boundary condit ions  
The general form of eqs. (2. l a) and (2. l b) is 

Or : A  ~-z +B-~-r +C~+D 

where jO= 1 for ~ and 0 for 0 .  Define 

o 1 o, o # 1 ]  
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A ' = A f f z + ~ -  ~0~  t (3 .5 )  

and the corresponding difference operators as At , ,  A~, and A~,~ A2,,respectively. 
Eq. (3.4) is integrated by a method of factorization in two fractional steps: 

---2-  + AtC$ +AtD ( (3 .6 )  

J 
where Eis the identity operator, A, B, Cand D take the corresponding values on time nat the finite 

difference operators A,= and A=. are defined l~y 

A+IAI d,, , j+t-~,, j+A-I-AI 6,,,-,#,,J-, 
A,=~,,s= 2 " z j . , - z j  2 z~-z~_, 

Z [ ~,,,_,-4,,~ 
+ R(z,j,-z/~,) z,+,-zj  Zj ~ Z j _ t  

A,=$,,j= A+IAI . ~,,j.-~,,j_, 4 

2 z j  - -z j_~ 

A--IAI ~,,j+,-~,.J 
2 Zj+l ~ Z j  

+ R(z~+1-zj_D k z~,~-zj Zj - -2 j_ t  

(3 .7 )  

and the finite difference operators A,,  and At, have similar expressions with At, 

respectively. 
Eliminating ~* we get for overall step 

~R+l~d~m 1 "" (A, . r  m+,+ + 

and A==, 

+Cr (A,=A,,$ *§ - Az=A2,r (3 .8 )  

Scheme (3.8) is consistent with (3.4) with an error for a steady state solution of order 

O(h|)+O(h;)+O(At ~= �9 h , ~ )  if "a uniform mesh is used. Therefore, 

we have to restrict time step At small enough to minimize the truncatmn error. 

Although scheme (3.6) is not of the second order, we are still capable of yielding solutions with 

high accuracy by choosing suitable time steps. Notice that ill the scheme the operators ( E _  A__~t 
2 

Art)and ( E  - - ~ - - A , , )  give tridiagonal matrices with diagonal dominance. Then mere is no 

restriction in this scheme on the mesh Reynolds number. 

Consider the treatment of corresponding boundary conditions. The boundary conditions for 
worticity g deduced from eqs. (2.1c) and (2.2)-(2.4) are 

~_--!r 0 ~  on z = O  andz-----1 

~ =  1 0sfp o n r ~ O  
2 Or 8 ( 3 . 9 )  
oo ~-" -- r on r---- 1 
aZ 
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The treatment of  the third equation in (3.9) is trial. The discretization of  others in (3.9) is 

~.+, __aa[ .2(z,-z,)~,, Z(zz-z,)~,~ ] 
',' - r, L (z, -zt )Z(z, --zD - (z, -zt)'-(z, -z,) 

+ ( i  - - a ) ~  i , ,  ( i = 2 ,  ... , I  --I)  

~,,+t a [ 2 ( z j -  z.r_,)l#] , J - t  2 ( z j -  Z.r_, )Ib| ,.r_, ] 
"J =~-, L(zj --z,_,)'(zj_t " z,_,) - -  (zj -zj_,)2(zj_, --zj_,) J 

+ ( 1 - - a ) ~ | , j  ( i = 2 . - . . I - - 1 )  

t" = r,---r, t(r,-r,)" " ( r , - r , )  J 

( 3 . 1 0 )  

+ ( 1 - - a ) ~ ,  s ( j - - - - i , . . .  , J )  

where a E ( 0 , 1  ] is (boundary) relaxation parameter. If  a uniform mesh is used, the first and second 

formulae are of  order 2. 

The discretization of  boundary condit ionson z = 0 and z = 1 for temperature 0 in (2.4) is trial. 

The boundary conditions on r = O  and r =  I for 0 in (2.4) are discretized in an order 2 method 

(c.f.[5]). For  instance, the discretization of  the boundary condition on r =0  is 

[ r  r . , za .§  z .+ O.+! . a - -  tJ v z , i - - ( r z - - r t )  0 . , ~  
( r a _ r , ) ~ _ ( r z _ x ) z  ~ (j----1 , - . . , J )  ( 3 . 1 1 )  

The values of  4'* on z = 0 and z =  1 are needed in scheme (3.5). These values are obtained from the 

second fractional step applied on the boundary (z = 0 or z = l) 

( 3 . 1 2 )  ~ , 1 ~ . 0 = (  E At . \~.+l - - ~ - - A , , ) ~ - o  

3. D i f f e r e n c e  s c h e m e  o f  e q u a t i o n  for  t h e  s t r e a m  f u n c t i o n  ~b 

The difference scheme of  eq. (2. lc) is discretized by central differences and solved by a line (r 

direction) SOR iterative method with a value 1.5 of  parameter. The test of  iteration convergence is 

as follows: 

m a x  I'P~ +, ~ ' ' + ' )  -~,,i '"" + ' ('~ --  [ ~<10 -4 ( 3 . 1 3 )  

where s is the iteration number. 

4. C r i t e r i o n  o f  c o n v e r g e n c e  t o w a r d s  a s t e a d y  s t a t e  s o l u t i o n  
Let 

m4"1 n 
I P i  ! R~= m a x l r  -4'  ,Jl r  

m a x l r  i , 4 t i  

The criterion of convergence towards a steady state solution is as follows 

1 max{R'~,R;,R;}~<Ep, 
At (3.14) 

Except for being otherwise stated, the value isEp,----10 -3 . 

IV.  R e s u l t s  a n d  D i s c u s s i o n  

The analysis in 3.2 showed the t although there is no limit in ADI method (3.6) on time step At,  

the choice of  At exerts effects on the truncation error of  scheme (3.6) for a steady flow. In order to 

investigate the effect of  choosing At on the accuracy of  simulation, the numerical results with 
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several time steps under a typical group of  paran~eter values are shown in table 1 and table 2 for a 

uniform and a nonuniform mesh, respectively, ft is not difficult to know by Comparing these results 

that there is no significant effect o f  time step At on the results, except for vorticity ~ .  As far as the 

vorticity is concerned, the effects of  time step At on the results is also minor for sufficiently small 

At(here A t e 0 . 3 ) .  In tables 1 and 2, the relative errors of  all the variables are found less thanl 0 ~. 

The results accounting for the selection of  mesh size are listed in tables 3 and 4, from which we 

conclude that the effects of  mesh are conspicuous. For  example, the relative error of  values of  

vorticity ~ between mesh 11 x 11 and mesh 41 x41 in table 3 reaches 46.7% . Hence, the 

sufficiently finer mesh should be used to produce numerical solutions with better accuracy. The 

relative errors of all the variables between mesh 31 x 31 and mesh 41 x 41 in table 3 are less than 

7 a ~ .  Then fairly accurate solutions can be obtained if the uniform mesh 31 x 31 is employed. 

Table 1 Effect of choice of At on accuracy of solutions R,,= 10o, M,=10  s, G,= 1, r = 0 , / X  J=31 

>(31 (urmorm mesh), ~r =0.5 

At maxlr 

3.94(--3)'I 
3.96(--3) 
4.04(--3) 
3.97(-3) 

maxlul maxlvl 

2.74(--2) 3.77(--2) 
2.77(--2) 3.79(--2) 
2.85(--2) 3.82(--2) 
2.86(-2) 3.8o(-2) 

=axlr 

13.16 
7.80 
8.06 
8.00 

0.5 

0.3 

0.I 

0.03 

0 I)o( i  i )  }) 
1 

- - I .75( - -3 )  ] 0.159 0,308 0.669 

- -1 .76(--3)  t 0.157 0.305 0.668 
-- 1.82(--3) 0.168 0.314 0.673 
-1 .78(-3)  i 0.157 0.304 0.668 

CPU time 

1111 ~* 
1556 

3143 
8023 

*: a(-b)  means 

**: The tinit of CPU time is second, and all the calculations are performed on Micro VAX 2 computer 

Table 2 Effect of choice of At on accuracy of solutions Ro_--103, Me=10s, G,----1, r = 0 ,  I x / f 2 1  
X21 (nonuniform mesh, be2), a=0.5 

At 

0.5 

0.3 
0.1 

0.03 

=axlr 

3.92(--3) 

3.94(--3)  
!4.oo(-3) 
3.96(~3)  

=axlul =axlvl 

2.70(--2)  3,79(--2) 

2.84(--2)  3.81(--2) 

2 .92(--2)  3,84(--2) 

2 .93(--2)  3.83(--2) 

max[el r (-~-, + )  

14.79 - -1 .73(- -3)  

8.77 i--1.74(--3) 

8.01 -- 1.79(--3) 

7.05 - -1 .74(- -3)  

0 (%)0 
0.159 0.302 0.672 

0.158 0.302 0.671 

0.166 0.308 0.674 

0.154 0.300 0.669 

I 
CPU time 

315 

471 

1104 

3239 

Table3 Ef l~tofmeshonaccuracyofsolut ionsRo=los ,  M , = l o s ,  G , = 1 ,  r f 0 ( u m ~ r m m e s h ) ,  At 

=0.1, a=0.5  

I x /  =axlr 

l l X l l  3 . 8 0 ( - - 3 )  

21X21 3.90(--3)  

31X31 4.04(--3)  

41x41 4.09(-3) 

,~axlul maxlvl 

1.s7(-2) 2.11(-2) 
2.52(-2) 3.29(-2) 
2.85(-2) 3.82(-2) 
2.98(-2) 4.12(-2) 

I ,-axial 

4.02 

6.88 

8.06 

8.67 

, ( } .  (o.I_)o ( I . 
- l . S s ( - a )  0 .110  0 . 2 1 8  O.TOS 
- -1 .89(--3)  0.146 0.282 0.650 

- -1 .82(- -3)  0.168 0.314 0.673 

- -1 .80(- -3)  0.170 0.322 0.678 

',PU time 

370 

1368 

3143 

6173 

Table 4 

l x l  

llXll 

21X 21 

Effect of mesh on accuracy of solutions R o e  10s. M , =  103,G,= 1, v=  0,(nonuniform meshes 
(b=2), At =o.1, a=0.5 

""~1r ',,',,axl=l ',,,',axlvl 

3.77(-3) 2.23(-2) 2.72(-23 
4.00(-3) 2.02(-2) 3.84(-2) 

=*xlCI T) 
0.114 0.238 0.011 

0.188 0.308 0.074 i 1104 
5.36 

8.01 

The comparison of  table 3 with table 4 also implies that the more accurate solution can be 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
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obtained i fa  nonuniform mesh (3.2) is preferred to a uniform mesh with the same number of  grid 
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The under-relaxation factor a is taken as 0.5 in all the calculations in this paper. The results in 

Table 1 and Table 2 also indicate that the iterations are convergent for either greater or smaller time 

steps, implying a feature of  scheme (3.6): the requirements on relaxation factor a of  the scheme are 

not severe for medium Reynolds numbers. There are more detailed discussion about this point in [ 1 ]. 

Based on the discussion above we are able to come to the following conclusions: 
1 ~ The ADI method proposed by this paper can be used successfully and efficiently to simulate 

the Marangoni convection control in liquid bridge model. The results turn out both accurate in 

mathematics and reasonable in physics. 
2" Although the special truncation error of  ADl method (3.6) in involving the effect of  time step 

At is not of order 2, the influence of At on the accuracy of  numerical solutions is minor. One can 

manage to solve the problems with good accuracy by adopting suitable scheme with nonuniform 

meshes. 
3" It is easier to treat the boundary conditions for intermediate variables by using this kind of  

scheme. Furthermore, the requirements in choosing (boundary) relaxation factor are not so severe 

for medium Reynolds numbers. 
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