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Abstract
In this paper, a class of singularly perturbed initial-boundary value problems for the
reaction diffusion systems is considered. Using the theory of differential inequality, we
prove that the initial-boundary value problems have a solution and obtain their asymptotic

expansion.
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We consider the model of the reaction diffusion systems:

Qui/dt—(eL+ Ly )ug=f(t,x,uy,us,¢) (i=1,2)

(x=(%1,%;, % JEQ, t€(0,T]) (1)
Bu=ay(%)0us/v+ B 2 =gl x,6)  (i=1,2) x€40 (2)
u(0,x,8)=hy(x,¢e), (i=1,2) (3)

where ¢ is a small positive parameter, £2 denotes a bounded region in R?, 32 signifies a smooth
boundary of 2, 8/8v denotes the inner normal derivative on 39 , ay(x)<a,<0, Pu(*)=>
B+>0, and L means a second order strong elliptic operator:

9 g G
LE ;10‘,(96)3}—5’6—,-% § Gf(x) ax‘ +a(x)
$,4= -

(4)

3 au( %6 =>6,>0, x€Q

$,9=1

where VE&ER (i=1,2,...,n), a,.[x)=a,.j(x) and L, means a first order differential operator:

Li= T bix) omb(x)  b(x)>be>0

=1

(s)
[ib((x)vt ]an =>38,>0

=1
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Assume that £, gi, h, a4, 4, b, b. a; and B are sufficiently smooth functions at the definited
regions of their variables, a, , 8, , by , 6; and &, arepositiveconstants, »; isthedirection
coefficient of the inner normal on 8¢ and there exists a positive constant /, which satisfies

fin+Ffin<—-I<0 (=1, 2) (6)

The reaction diffusion equations are applied widely in the biophysics, biomathematics and
physical chemistry etc. This problem is studied in many modern works, e.g. [1] — [5]. The probiem
(1)~ (3) is a model of a class of problems which is considered widely. This paper makes use of the
mothod® of multiple scales to solve the formal solution of the problem (1)—-(3) and prove
corresponding uniformly validity by using the differential inequality(711101-113],

Now we first construct the formal asymptotic solution of the problem (1) —(3). As £=0, the
reduced situation of the original problem becomes:

au;/at—Llul=fl(t,xv“lvuh0) (7 )
{ (i=1,2)
u(0,%,0)=h!(x,0) (8)

where A! (x,0) is a sufficiently smooth function which is 4(x,0) to extend from £ to R". (7)is a
symmetric hyperbolic system. Assume that

w=Uyn(t,x) (i=1, 2) (9)

is a group of sufficiently smooth solutions of Cauchy problem (7) and (8) in Q. Let the outer
solution of (1)—(3) be

Uit o)~ S Us(t,2)? (i=1,2) (10)
=0

Devoleping f,and k! in ¢ , substituting (10) into (1), (3), equating coefficients of like powers of &
respectively and considering that U, satisfies (7) and (8), we obtain

U /ot — LyUsy=Fy+ LU s (41 ] (11)
{ (J=1s2"“3 '=1’2)
Uiy(0,x)=hiy (12)

with
f{(t’x’“l’qus)EF‘(e)~ZF‘JE! (’.=172)
gm0

B )~ S b (i=1,2)
3=0

1 d’F((e)
F” j| de’ &=0
=f|'u,(f,x,U“ 1U20'0)Ull+f€“2('1x'UIO’U20!O)Ull
+C‘!(tvx!UlloUll) e ’Ul(l-l)’UN’Uﬂt'" vUZ(j-!))
(J=0v1 tzs"')

__1 %k
- jl 38’ 2=0

hlj (j‘—"ovlvz"")
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which C, is a determined function in j, whose construction is omitted.

From the linear problems (11) and (12), we can solve U, (i = 1,2) successively. Substituting them
and (9) into(10), we obtain the outer solution for the original problem. But it may not satisfy
boundary condition (2) so that we need to construct the boundary layer terms.

We now set up a local coordinate system (0, @) , where @=(@y,Ps," - ,Pa-1) is 2
nonsingular coordinate system of the point on (n—1)-dimensional manifold 8§ . Define the
coordinate of every point Q in the neighborhood near 892 in the following way: The coordinate
( p<<po) is the distance from the point Q to the boundary 8§2 , where P is small enough such
that the inner normals on every point of 8§2 do not intersect each other in this neighborhood near
89 . The coordinate @ of the point Q is equal to the coordinate @ of the point P at which the inner
normal through the point Q intersects the boundary 40 .

In the above local coordinate system, in the neigborhood of 32 p<p} the original
problem (1) - (3) is represented by
Ou;/0t—(eL+L))uy=F:(t,0,9,4y,4;,¢) (i=1,2) (13)
Bl“lEE&l(¢)a“‘/ap+B‘(¢)“l]on=gl(¢?,8),og (i=1,2) (14)
u(0,0,0,8)=hip,p,e) (i=1,2) (15)
where

n-1 2 -1 2

— az a a
L=au(p, @) g+ 2o 8a(0,9) 5a57 + 2%, :0.9) 5050,

f=1
] -1 ]
+ 3a(p,@) 55+ 2 8, @) 55 +a(e.9)
=1

_ 8 a
E:=5,.(p,¢)-ap—+ ‘Z_E 55(P.‘P)T¢“—6(Pv¢)
Fi(t,0,0,uy,us,8)=fi(t,x,uy,4y,8)
g‘(‘pye)sg‘(xye) I 11 ﬁ,(p,(p,e)Ehs (x,s)
Gi(p)=aux) oy Bu(@)=B(x)|00

We lead in the variables of multiple scalesS!:

B=k(p,p)/e, B=p, p=gp

where k(p,@) is an undetermind function decided below. Hence we have

o _ ke B 8
3p ¢ 0B ' 0@

9 kot ke 8° ke 8 &
= T 3 Ti T amas e a5 tamr

For convenience, we still substitute ©# for © below. Then

9/8t—(eL+ L)) =e"'K + K +eK,

“where



402 Mo Jia-qi

ot ]
KoE—[auk:W'f- 6.kpﬁ] (16)

a~1 2

a 9
KlEa—t [26,,.12; abap + BanRer—5=x— 5 + Zgilkﬂ apa¢ +ask9 aﬁ

d
S 7
a,ap+z]5,a¢ 5 | (17)
3 ¥ & 8 )
K [ﬂ.- apz -+ Za(l apaq" + "2: an aw + al ap

%1
+Ya a(; +a] | (18)

f=1

We assume that a group of boundary layer terms [J; of the solution for the original
problem(1) —(3) is

U‘('a s, p,cp,e)'\-ZU‘,(t,b,p,qJ)e’ (i=1,2) (19)
i=1
Let
u=U,4+0, (i=1,2) (20)

Substituting (20) into (13), we have
al;/dt— (eL+ El)ﬁ¢=f¢(t,p,(p,Ul+Ul,U,+Uz,e)—f,(t,p,<p,U1,Uz,e)
(i=1,2)
and substituting (16) —(19) into the above equatity, we obtain

e Y (Ko[Ue 1+ K[ Ui 4-n1+ K[ O45-y1)e?

=1

=Fi(t.0.0, >: Upe' + So0use!, 3 Uuef+z:m,e 2)

i=1 1=0

"f‘(t.P»%EUUE’.ZUUG’se )EEFUE’ (i=1,2) (21)
=0 =0 I=1
The above and following values of U, and others for the nonpositive subscript are zero, while
i 3'F, . R
T = I

F.=§, (f PP, Z Uye? + Zuue’ ZUzJG’-F 20216 € )

w0

-fl(top)¢’EUl!e!v ZU;JC’,S ) ('=112)
=0 j=0
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Equating coefficients of like powers of & for (21), we obtain

K,,[Un].=_—[a.., ;a;’;,;* + bake agﬁ.l ]=o (i=1,2) (22)
KolOyl=—=K, (011 = KilUs¢s-01+ Fags-> (i=2,38,-y i=1,2)
(22);
Let
k’=6”(pv¢)/a"l(pf¢)
that is,
— ’ 5-(3.9'0)
kp.p)= I a5, 90 (23)

From (22),, we have
Un=pu(t,p,p)exp[— #1=Fu(1,0,p)expl —k(p,p)/e] (i=m1,2) (24)

where By is an undetermined function decided below. From (4) and (5), it is easily seen that for
sufficiently small 0<Pp<Pe<Ps , (23) decides k(p,p)>0 .The O, (i=1,2) of (24)isa
function possessing the boundary layer behavior.

Let the right-hand side of (22) ; be equal to zero:

— K [O04]+ Feoy=0 (25)

Substituting (24) into (25), we have

ap, n-1 3
=2 a;_l +[ 28nnks —5— ﬂ — @nakesfi + ,21 a’”k'apai:: —8akpPuy

a Pl
ba £;l+251 Bu —5!3‘1]

= _[}‘Nl(t9p»'p’Ulo 1U2010)ﬂll+f"“z(tvpiwaIO’Uzo’O)ﬁf-l] (i=l 12)

(26)
Substituting (20) into (14), (15) and equating the coefficients of like powers of &, we obtain
-, ol ,
[Gckp a—;~]m=[?to—BfUm]op (5=1,2) (27h
G144 - 00y-1 &

[ diks :] a=[91(1-1)—B‘U~lu-n—“‘ _ygiﬁ‘_vin-l)]’m
(j=2130'"' ’.=102) (27)J
Ul;li.o=0 (Jj=1,2,:+3 i=1,2) (28),

where
1 g : .
y‘l="T!— ae; g-0 (]=011’2|"'} ‘.=1,2)

Substituting (24) into (27), and (28),, we admit
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Bulso=| ~—=—(gu—BUW) | (i=1,2) (29)

Bu(0,0,9)=0 (30)

From the linear problems (26), (29), and (30), we derive B,;(t,0,9) , which is substituted
into (24), and then we obtain U4 (i=1,2). Considéring (22) jand noting (25) we find a group of
solutions:

Uiu=Fu(t,p,9)expl—B1=Fu(t,p,p)exp[—* p,p)/e]
(i=1,2) (31)

where 8, is defind by the system of linear partial differential equations which equates the right-
hand side of (22), to zero and by the boundary and initial conditions (27), and (28),. Using this way,
we can define successively

Uiy=Bis(t,p,plexp[ —k(p,@)/e]  (j=3,4,y i=1,2) (32)

Clearly, U,, is a function possessing boundary layer behavior.
Let

Oiy=9l0:y  (j=1,2, i=1,2) (33)

where ¢ is a sufficiently smooth function on 2 +38Q and satisfies

0, 20,/3< p and other points but except p< 0, .

Then we can construct the following formal asymptotic solution of original problem (1) —(3):
o0 o0
u‘N'Z U”e’-i- 2 0‘]6’ (34)
5=0 11

Now we proceed to prove the uniformly valid expansions of (34).
We first construct the functions m(#¢,x,e) and M(1,x, ¢ ) (i=1,2):

m;(l‘,x,e)=2;ml(t,x,e) —(y/e™. (35)
M(t,x,e)=2a(t,x,e) +(v/)e™ (36)
where
m-1 =
Z;.(t,x,e)=2 Ugel+ ﬁu&’ (i=1,2) (37)
=0 J=1

and ? is a large enough undetermined positive constant,
Obviously, from (35), (36) and (37), it is easily seen that m, and M, are sufficiently smooth
functions for variables t,x and satisfy

m(t,x,e)M(t,x,e) (i=1,2) (38)

From

n-1
9:(p,e)=3_ 9,7 +0(e™)  (i=1,2) (0<ekl)
=0
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then selecting e’ small enough as 0<e<Ce’ , there is a positive 4", such that
m-1
\gt(%e)—)'_'lyue' \<d’s" (i=1.2)
§=0

Therefore

B[mi(t )xve)] ' = B[Z‘m(tvx 98)]Iaﬂ—ﬂ‘(x)Tyem o0

<ad@.so+ (¢ —L)en  (i=1,2)

Selecting p large enough as p>9/=Id’/f, , we have

BLmi(t,2,6)1|0a<q(@,&)|00=g(%,6) 20 (i=1,2) (39)
Analogously, we have
BIM(t,%,6)1]00294(%,6)|0a  (i=1,2) (40)

We now prove some differential inequalities below.
(i) As x€f£2 but except p<2p,/3 , from (33), Uiy=0(j=1.2,..;i=1,2,), then

-1
mi(t,x,e)=Y_ U;,e’-—-—};—e‘ (i=1,2)
J=0

3 *traU
¢ —(eL+L)m= ’);;[—a;i—(eL+L1)Uu]e’+(ea(x>—b(x))—’}e"
m-]
<T [Pt~ (Lt LUy |ef+ Jra(edemrt (i=1,2)
J=0

and be

m-1 m-1 m-1
flt,x, X Uye?, T Usge? e )= Fuse? +0Ce™)
i=0 =0 $=0

(i=1,2) 0<ek1

therefore for €1>0 small enough as 0<e<Ce; , there are d,>0, M >0, such that

m-1 m-1 m-1
fi(t % D Une?, X Vet o) =S Fue!|<dpem  (i=1,2)
=0 Je0 =0

|LLU ym-1 ]| <M (1=1,2)
la(x) <M

From (6) and the mean value theorem, there are 0<6;,8,<1 , such that
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m-1 m-1
fi(t,%,my ,my )= f(t x, EUue’ ZU;:«B’,&’ )+[ aau, f¢(f.x, 3 Uye?

=0 J=0

+6y( m— ZUue’)m,, e )|(m— ZU,,e’)+[———f 2 T Ue?, fU,,e:

f=0 =0 j=0

--]

+om S U), o)) (m-TUwe)

m-1 -1
>f (t x, Y Upe, ZU,,e’ )+‘ye (i=1,2)
=0 =0

then as 0 <e<e!==min(ey,l/2M) ,
Omg/at—(eL-}-»Ll)m« "‘fl(t VX, 178, 170y 98)

<}:[6U"(eL+L,)UU Jef +Jamrenst= fuct,xmy me.e)
< aU“—Ll[Um] —fi(t,x Un.U:o.O)]

(aU‘ 2~ LU ;1—=LMU 4¢5:15] —Fu)e’
;-1

- L[Ut(m-l):]en + (d1 —‘}’/2)8-
<(M+dimp/Den  (=12)

(i) As po/3<P<2P:/3 , because Uss (j=1,2,..,m; i=1,2) and all its partial derivatives
asymptotically tend to zero and they are o(eﬂ) , 80 we can obtain estimation using method of (i )for
e,>>0 small enough as g<le<Ce] . .

(i) As 0Lp<P/3 , U4y=U4y(j=12,...,m; i=1,2), then

-1

my(t,x e)==E U‘,e’+}: U.,e’~—l-e"

51

= —(*L+Ln>m'—>:‘[ R = (eL+ LUy Je?

I=0

+ E [6 - (3L+L,)U.,]e’+ (ea(x)—b(x))—}’-e'

1=1

alu,
ST (Lt LU o603 (KB

J=0 e
+ KOsy ]+ KalO4s.01)e? +Jt’—a(x)e'+‘

~(K1[Oa] + K[ Oim-1y]+eKs[Uin] )e™



Initial-Boundary Value Problems of Reaction Diffusion Systems

407

and from

-1
f((f X Z,..,Z,..,e)=2 F.,e’+ ZF‘,BI'I'O(E')

j=0 F=0
for e,>>0 small enough as 0<e<Ce, , there ared;>0, M’>0, such that

f(t X me.sz,G) ZF[,E’ EF{JB’I<d38“ (i=1,2)

J=0

ILLU¢m-plI<M’  (i=1,2)
| K101+ Ks[Us(m-1y]+ K [Uim1| <M’ (i=1,2)
la(x)| <M’
From the mean value theorem, we have
f‘(tvxvmlvmlte)>fi(t,x,Zlnnzlm:e)+yem (i=1'2)
then as (<e<ei=min(es, I/2M’),
omg /0t —(eL+ Lyymi— fo(t,x,my,m;,€)

aU‘o aU”

<8 1,03~ fi(t 5 Ui Uin,0) |+ 5 [Pt L]

=1

—L[U{u-p] —FU]G,'F&-IZ (Kn[UU] + Kl[:U‘(J-l.‘]

F=1
+K3[Ug-001—Fosnp)e! +_1;°(x)8""L[U‘<m-v]e”

—(K [0+ KO imary]+eKs[Tin1)e™ +(ds—p)e™
<(2M’ +ds—vp/2)e™  (i=1,2)
To sum up (i) — (iii), selecting eo=min(e{,e],€3) and o large enough as
0<Le<e,, Y=Y, » We yield differential inequality
am;/at—(eL+L,)m.<f‘(t,x,m,.m,,e) (i=1,2)
0<e<e,, (1,%)€(0,TIXQ

Analogously, we have

oM, /ot—(eL+L )M =fo(t,x M, M,,e) (i=1,2)
0<e<les, (t,x)€E0,TIXK

Finally, from (9) and (28) i it is easily seen that
mc(O,x,e)<hg(x,e)<M4(0,x,e) (’=112) (0<8((1)

(41)

(42)

(43)

From (38) — (43), using the comparison theorem!®+?), for & >0 small enough, there is a group
of solutions uft,x, ¢ ) (i=1,2) for the initial boundary valie problem(1) —(3), which satisfies the

inequality
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mi(t,x,e)<ut,x,e)<M(t,x,¢e) (i=1,2) (¢t,x)El0,TIx(R2+8Q)

Then we obtain uniformly valid expansion

»-1 m
u(t,x,e)=3 Uie! +3 0’ +0(e™)  (i=1,2) (0<eK1)
1=0 i=1
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