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Abstrac t  
In this paper, a class of singularly perturbed initial-boundary value problems for the 

reaction diffusion systems is considered. Using the theory of differential inequality, we 
prove that the initial-boundary value problems have a solution and obtain their asymptotic 
expansion. 
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We consider the model of the reaction diffusion systems: 

8 u , / O t - ( e L + L l ) u ~ = f , ( t , x , u j , u . , e )  ( i = 1 , 2 )  

(x=--(x:,xz,  ... ,x.)~_~Q, t E ( 0 , T ] )  ( 1 ) 

B,u,=a,(x)Ou,/Ov+fll(x)u,-----fl ,(x,e) ( i = 1 , 2 )  xEO0 ( 2 ) 

u,(O,x,e)----h,(x,e) ,  ~ i = 1 , 2 )  ( 3 ) 

where e is a smallpositive parameter, ~ denotes a bounded region in R", OO signifies a smooth 

boundary of ~Q, O/Ov denotes the inner normal derivative on O~Q , a ~ ( x ) ~ a , < O ,  f l t ( x ) ~  
f lo~0,  and L means a second order strong elliptic operator: 

where 

xe.O 
II 

~ t $ - I  

u $,ER (i= 1,2 ..... n), a~x)= ao(x) and L I means a first order difterential operator: 

N 

Ll=-- ~ b , ( x )  O - ~ - - b ( x )  b ( x ) ~ b , > o  
i - I  

( 4 )  

( 5 )  
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Assume thatf,.,gt, h,, a o, a i , a, b, b. ct~ and ~ are sufficiently smooth functions at the definited 
regions oftheir variables, a , ,  f l , ,  b , ,  r and ~z are positive constants, v~ is the direction 
coefficient of the inner normal on i90 and' there exists a positive constant/, which satisfies 

liu,-l-fiu,~.-l<O (i=1, 2) ( 6 ) 
The reaction diffusion equations are applied widely in the biophysics, biomathematics and 

physical chemistry etc. This problem is studied in many modern works, e.g. [1] - [5]. The problem 
(1)-  (3) is a.model of a class Of problems which is considered widely. This paper makes use of the 
mothodt61 of multiple scales to solve the formal solution of the problem (1)-(3)  and prove 
corresponding uniformly validity by using the differential inequality[ 7],t~~ 

Now we first construct the formal asymptotic solution of the problem (1)-  (3). As e = 0, the 
reduced situation of the original pi'oblem becomes: 

{ Ou~/Ot-Llu,----f~(t ,x,ut ,u~,O) ( 7 ) 
(iffii,2) 

u,(0,x,0)=h~(x,0) ( 8 ) 

where h l (x,0) is a sufficiently smooth function which is h~(x,O) to extend from O to R". (7) is a 
symmetric hyperbolic system. Assume that 

u, ffiU,,(t,x) (iffil, 2) (9)  
is a group of sufficiently smooth solutions of Cauchy problem (7) and (8) in O .  Let the outer 
solution of (1) - (3) be 

U, ( t , x , e ) - . . ~ ' ]~U, j ( t , x )~  j (i----1,2) (10)  
$-0 

Devoleping f~ and h I in e , substituting (10) into (1), (3), equating coefficients of like powers of �9 
respectively and "considering that U,,  satisfies (7) and (8), we obtain 

# U , j / # t -  I .~U,$~FI j  + LU,(~=I~ (11)  

{ U,,(O,x)ffih,i (j=1,2,'"~ i=1,2) 
(12") 

with 

t , ( t . x . u , . u , . e ) - F , ( e ) ' - -  E F,jeJ 
J-O 

( i f f i l , 2 )  

hI(x,e)...E h,jeJ (i=1,2) 
$-0 

1 d~F'(e) 1 
Fu---- j !  de ~ l -o 

= t i,,,(t, x ,  U . ,  Uzo, o )U, j +/i,,~( t, x ,  U, , ,  U, , ,  0 )U2j 
+ Cu( t ,  x, Ut, ' U,, , . . . ,  U, (j_,~, U . ,  Uzt,'", U,,j_,~ ) 

(j=o,1,2,...) 

1 ~'hl. I ( j r 0 , 1 , 2 , ' " )  hu---- j !  Oe~ I , -~  
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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which C o. is a determined function in j, whose construction is omitted. 
From the linear problems (11) and (12), we can solve U o (i = 1,2) successively. Substituting them 

and (9)into(10), we obtain the outer solution for the original problem. But it may not satisfy 
boundary condition (2) so that we need to construct the boundary layer terms. 

We now set up a local coordinate system ( p ,  q~) , where ~----(~pt,cp~,-.-,~,-1) is a 
nonsingular coordinate system of the point on ( n -  1)-dimensional manifold 8 ~  �9 Define the 

coordinate of every point Q in the neighborhood near 0 ~  in the following way: The coordinate 
( p E P ,  ) is the distance from the point Q to the boundary 8~Q , where Po is small enough such 
that the inner normals on every point of 8D do not intersect each other in this neighborhood near 
i9~. The coordinatetp of the point Q is equal to the coordinate ~p of the point P at which the inner 

normal through the point Q intersects the boundary 8 ~  . 

In the above local coordinate system, in the neigborhood of 0O p E P '  the original 
problem (1) -  (3) is represented by 

Ou,/Ot--(eE+ E l )u ,=~ , ( t , p , cp ,u  1 ,uz,e) ( i = 1 , 2 )  ( 13 )  

B'u'=--[a'(q~)au'/aP+JI,(rP)u,]oa=g,(cp,e)Ioa ( i=I ,2) (14) 
u,(O,p,q~,e)=li , (p ,q~,e)  (i----1,2) (15)  

where 

Oz ,.-1 Oz .~-1 Oz 
~ - - ~ . . ( p . q ,  a)--6~Tp, + Yq. a , . (p .q , )  a--'E~-, + ' , " '  O~,a~,, 

f - I  

0 , , - I  8 
+ ..(p,q,)--T;-+ +"(0,9') 

/~,-t~,,(p,~o) a-~-+ E/i,(p,w) -/~(p,e) 
I1-1 

y,( t ,p ,q,  ,u, , u , , e ) -  / , (  t ,x ,'u~ ,u , ,e)  

g,(,p,e) -o,(x ,e) I ~ ,  ,L(p,~,e) -h~ (x,s) 
a,(q~)--a,(x)lo~, B ,(~)-----,e,(x)l,~ 

We lead in the variables of multiple scales[61: 

~--k(p,~)le, ~--p, q,-~, 

where k(p,q~) is an undetermind function decided below. Hence we have 

0 kp 0 8 
0-~  - =  e 0.a + 0,'~ 

8 2 k~ 0 ~ kp 8 z kpp 0 
o p 2 - - 7 ~ - b  r + 2  e a~-~  "~ e a~ 

For convenience, we still substitute P for/5 below. Then 

O/Ot-- (~I,+ L l )  = e -  tKo -a t. K 1 -t" eK2 

where 

0 z 
- - +  a~z 
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o, o] 
L o~0 

0 
Ot i ' !  

(16) 

+ ~  + YG, ~,-~-,  - ~  ] 
I - !  

( l r )  

(~9. 0* *-s 8* 8 

We assume that a group of boundary 
problem(l) - (3) is 

layer terms 

(18) 

U~ of the solution for the original 

U',(t, .a, p,,p,e) " - 'E  V,j(t,,~,p,~,)eJ 
$ - 1  

( i--1,2) (19) 

Let 
u,--U,+O, ( i = i  ,2) (20) 

Substituting (20) into (13), we have 

aV, /o t -  (eL + E,)U,--],(t  ,p, ~, U, + gL, U, + 0,,  e) - ],(t,  p ,q~, U~, U,, e) 

( i=~ ,z )  

and substituting (16)-(19) into the above equatity, we obtain 

e -1 ~ ,  (K01-Uo] + KI[U.~-I~] + K~EU.j-,~])eJ 
J - t  

=l,(t,p,~,E u,,~,+ E v,,~', E u,,~,§ v,,~,,e 
J - o  l - t  J - o  J - I  

C,O ~ : l  

-1,(,.p.,.Eu,,~,,Eu,,~,.~ )---~.~,,e, (,---1,,.) (21) 
$ - 0  J - O  $ - t  

The above and following values of U~j and others for the nonpositive subscript are zero, while 

1 0~g' I (./----1,2 ...j i-----1 2) 
P~J-- Jt Oel t-o ' ' 

P,~-I,(,,p,9,,.E u , # +  E v , # ,  ~ u,,e,+ v,,e,,~ 
1 - 0  J = l  J - o  J - ' l  ' 

) -- l~(t,p,qD, ~ Ul~e ~ , U,jeJ,e (i-----1,2) 
.,," = 0 J - o  

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



Initial-Boundary Value Problems of Reaction Diffusion Systems 403 

Equating coefficients of like powers "of e for (21), we obtain 

- 82U,~ .4_ 5.k,  # O ~ ] _ _ . 0  KoEU~]--  - ~ n . . k ~ _  

KoI-U ~,] = - Kts ,r ] - K,.E g,(,-~:] + F,<~-,~ 

( i = 1 , 2 )  (22)t  

(j-----2,3.-'., i----1,2) 

(22) ,  

Let 

kp==$. (  p ,cp ) / l J . . (  p ,  cp ) 

that is, 

/~p,qo)--_ I :  5"(s,qa)ds n..(s,q~) (23) 

From (22), , we have 

U,t~flq(t,p,q~)expE-~'l-- '--~Oq(t,p,qJ)exp[-k(p,q~)/e] ( i - - 1 , 2 )  (24) 

where flq is an undetermined function decided below. From (4) and (5), it is easily seen that for 
sufficiently small O<p~po<Pg , (23) decides k ( p , ~ ) ~ 0  . The Uo (i= 1,2) of (24) is a 
function possessing the boundary layer behavior. 

Let the right-hand side of (22)j be equal to zero: 

-K f f lT , ( ]  + P~t----O (25) 

Substituting (24) into (25), we have 

o~',t 
#t 

~_[ - . a.0,1 ,,-1 
. . . .  z n . . ~ ,  ~ - a.ok,,~,~ + ,-,E ~ ,. k 'epeq,,~ - a.k,~,, 

where 

t - I  

ffi - E ]~ . , ( t ,  p ,  q,, U~o, U . ,  0 ) P ~  + ] ; . , ( t ,  p ,  ~ ,  U~, ,  U , ~  0 )# , t  ] ( i f f i l , ~ )  

( 2 6 )  

Substituting (20) into (t4), (15) and equating the coefficients of like powers of e ,  we obtain 
a/7,1-I 

[ ~,k, - - ~ - j , o  ~ l -g ,o -  B,U,,-16o (i--- ! , 2 )  (27)1 

alT~,a v a Uq:_o ~ , - U , r  
~,k ,  - . - -~ -J .  f L g , ~ , _ l , - B , U , . _ . - ~ ,  Op ,,, 

(iffi2,3,...j /--1,2) (27)~ 
U,,l i . ,~-o ( j - - I , 2 , . . .  ~ i - 1 , 2 )  (28)~ 

1 Osg, ] 
g"---- Jl Oe' 6-0 (Y---0,1,2,...~ i--1,2) 

Substituting (24) into (27), and (28)m, we admit 
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~q I ~-----[--~-~kp (~2'*-B~U~*)]~z (i----1,2) (29)1 

~, ,(0 , p , ~ ) = 0  (30)  

From the linear problems (26), (29)~ and (30), we derive /981(t, p,cp) , which is substituted 
into (24), and then we obtain /Tq (i= 1,2). Considering (22)i and noting (25) we find a group of 
solutions: 

U,, =fl , , (  t, p ,  q~)ex p/- -- ~53 =fl,=(t ,  p ,  ~)exp/-  -- k(p, ~v)/e3 

(~=1,2) (31) 

where /ff~z is defind by the system of linear partial differential equations which equates the right- 
hand side of(22) 3 to zero and by the boundary and initial conditions (27) 2 and (28)r Using this way, 
we can define successively 

U~,-~fl~j(t,p,q~)exp[-k(p,q~)/e] ( j = 3 , 4 , ' " 1  i f f i l , 2 )  (32)  

Clearly, U~t is a function possessing boundary layer behavior. 
Let 

"IT,,---IOU,, ( . /--1,2, . . .  j i---1,2) (33) 

where ~ is a sufficiently smooth function on Q + #~Q and satisfies 

It 

0, 

O~p~p, /3  

2 p o / 3 ~ P  and other points but except P~Po �9 

Then we can construct the following formal asymptotic solution of original problem (1) -  (3): 

o o  

u,~.~--~, U,,eS + ~ l~,~eJ (34)  
j = o  J - t  

Now we proceed to prove the uniformly valid expansions of (34). 
We first construct the functions m~t,x, e) and M(t,x, e ) (iffi 1,2): 

m,(t, x ,e) ~Z,~(t,~ ,e) -.(~/l)e". 
g , (  t ,x ,e) ~ Z , . (  t ,x ,e) + ( ~/l)e" 

where 

(3S) 
(36) 

m - I  m 

Z,.(t,x,e)=~-~, U,,eJ-I- Y~, O,,e' (i----1,2) (37) 
$ - 0  $ - 1  

and ~, is a large enough undetermined positive constant. 
Obviously, from (35), (36) and (37), it is easily seen that m I and M; are sufficiently smooth 

functions for variables t,x and satisfy 

m,( t ,x ,e)<M,( t ,x ,e)  ( i=1,2)  (38) 
From 

m - !  

g,(V,e)----- E g,jeJ+O(e ") (~= s 1,2) (0<e<<l) 
$ - 0  
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then selecting e' small enough as 0 < e ~ e ' ,  there is a positive d', such that 

m - I  

1 .q,0p,e)- 5-~, g,,e' [ <d/e'~ ( i = 1 . 2 )  
$ - 0  

Therefore 

BCm,(' , - ,e)] i , := B C Z , . ( t , - , e ) l i , : - n , ( - ) ~ e ' l ,  ~ 

<O,(m,e)l,~+ (d' - - -~ )e"  (i----1,2) 

Selecting y large enough as 1 ,>l /= ld ' / f l o  , we have 

B [ m , ( t , x  , e ) ]  [ ag~<g,(~0,e)[ og----'g,(x ,e)  [ ao 

Analogously, we have 

B[M, ( t , x , e ) ] loQ>/g , ( x , e ) l oQ  ( i = 1 , 2 )  

We now prove some differential inequalities below. 

(i) As 

(i=i,2) 

x~Q. but except p<~2Po/3 , from (33), U,~ =0  ( j =  1,2 .... ; i= 1,2,), then 
w6-I 

m,(t,x,e)= Y]~ U,,e'--~-e" (i----1,2) 
,,,t- 0 

(39 )  

(4o) 

Ore, 
Bt - (eL + L ,  )m, = ~'r au. (eL + L,)U,,]e' + (eo(.)- b(~))~e" L - ' ~ -  

$ - 0  

and bee 

<~='~,u,,L__~:_ (.L + L, w,,]., + -~(.~.-. '  (i=1,2) 

m - I  m - I  m - I  

i,(,,~, E v,,~,,E U.e',e )=EY,,e'+O(~') 
.~=o j = 0  ~-0 

(i~-I,2) O<e<< 1 

therefore for e ,>O small enough as O < e < e l  , there are d I >0, M>O, such that 
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