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A b s t r a c t  
For the bending, stability and vibrations of rectangular thin plates with free edges on 

elastic foundations, in this paper we give a flexural function which exactly satisfies not only 

all the boundary conditions on free edges but also the conditions at free corner points. 

Applying energy variath~n principle, we give equations defining parameters in flexural 

function, stability equation,frequency equation, and general formulae of minimum critical 

force and minimum eigenfrequency as well. 
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I. In troduct ion  

V.Z. Vlasovln, Y.S. Kononenko [2j and Zhang Fo-vanPJ researched the bending, stability and 

vibrations of rectangular thin plates with free edges on elastic foundations, but their methods are 
complicated. Paper [4] discussed the above problems, but we point'out that the flexural functions 
does not satisfy conditions that moment of bending must be zero on boundary (see the end of  the 
paper), and-the mainresults were 6r~iy for a case of square plate. This paper gives a flexural function 
which exactly satisfies all the boundary conditions on free edges and at corner points. For general 
rectangular plate, we give general formulae of problems and prove total antiforces on foundations 
equal to total loads on the plate. Hence the method is not only simple but also reliable. Finally, we 

give results for square plate a=b, #=0.167. 

][I. The Problem and Flexural  F u n c t i o n  

Supposing a rectangular thin plate on elastic fundations, the middle plane is f2----~x, 
y lO<~X<~a, O<~y<~b~ and the boundaries Of the plate are free that is, boundary conditions are: 
on the x = 0, a, 

w , , + ~ v n m O  (,2.1) 

w,..+ 
on the y = 0, b, 

WIF+#W..--O (2.3) 

w,,, + o (2.4) 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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at four corner points 

W,i-----0 

We give the following flexural function 

2~ 2z~ x + f= eos---g--y + fs cos w----" f le~ a 

+/ ,x (x -a )  +/~y(y-t,) + 1, 

(2 .5)  

23~ 2~ a xcos--g-y  

(2 .6 )  

where a, b are respectively length of thin plate along x-axis and y-axis, coefficients f ~ f ~  will be 
defined parameters. Without difficulty we prove that function (2~6) satisfies conditions (2.2), (2.4) 
and (2.5), and substituting (2.6) into expression (2.1) and (2.3), we obtain: 

2~r 2 ~ _ 2_~a~ fs  / ,  = --~-g~- I ~,, Y~= 

or 

yg2 

Such the flexural function (2.6) may be written 

w=f.~ [ Btcos 2z~ 2~ 2~ 2~r x + .8= cos--~---y + cos :~cos--~---,j 
G G 

..~g ,/$.2 
+ ~ ,~x(x-a)  + ~, -~ y(y-b  ) ] +f ,  (2.9) 

and so flexural function (2.9) satisfies all conditions (2.1)-(2.5), where it includes only two 
parameters f3, f6 will be defined. 

III. The Problem of  Bending 

If the plate is acted on by outer loads, deformation potential energy is 

u----DII[w2ffi.+w~,+ 2pw..w,,+ 2(1--p)w~,]dxdy+-~IiwZdxdy (3 .1)  

where D is bending rigidity of the plate, K is coefficient of elastic foundatons, the domain of double 
integral is ~ ,  and the potential energy of outer forces is 

w=iip=(x y)a ay (3.2) 

for the case of uniform distribution loads 

W=P IIwdxdy---- pabn'Z (fl'2~ + ~ )  (3 .3 )  

for the case of concentrated force at the center of the plate 

" - ~ - - -  - - ~ - ] ~ , + p . f ,  ( 3  r 
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where A = a/b. Based on energy variation principle, when the plate is in stable equilibrium state, 
total potential energy /-/= U - W  must be minimum, namely, 81-I = 0. Hence variating two 
independeht parameters, we obtain algebraic equations including f6. 

where 

Af , Kabtr~6 (fl"~ + ~ i )  " f ' = B  } 

6 

b~ ~ /~o . . . --"~'-(fl,2 + - ~ z ) P '  the case ofdlstnbutlon loads, 
B ~ ,  

I ~ ~z .Q ~,2,~ t--flt--fla+l 4 2 '  - - ~ ) P  , the case of concentratedload, 

Dab, the case of distribution loads, c={ 
P, the case of concentrated load, 

~D~r" r + + A 

1 \  ~ t _ 2 . 4  P | \  

+,e,,e,a, -,e"~ _,e, p . , , " l .  
1 ~ v -  T U - j a o  

} 
(3.5) 

(s.6) 

(s.7) 

(3.8) 

And so by expression (3.5) we may find f3, f6, and furthermore, we may find deflection and inner 

forces. 
To pay attention to the second equation of expression (3.5), the total antiforccs of foundations 

P. 
Hence for general rectangular thin plate, the total antiforces of foundatons with outer total loads is 
always in equilibrium. 

IV. Problems of  Stability and Vibration 

(1) We know distribution force Px and p,  along directions of x-axis and y-axis act respectively 
on the free edges of the plate on elastic foundations, and then the potential energy of outer forces is 

w = l  I I (p.vo2. + ,,w~ )dxdy ( 4 . 1 )  

Supposing pw=~,op., ~0 is the the parameter of critical force, and then we have 

~0c 2"~ '"~LXkO + ~) + a p , ( + a l  1 .p.+ 4/~. )]}= f,.z/;t ( , . , )  + 
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Similarly, we obtain algebraic equations including parameters f3, f6 

where A t  = . 4  - p x L  

determinant must equal zero. Therefore we obtain the stability equation 

. 4 - - p , I  K~6 # ' (~ , ,~  +/~,/,~')~---- 0 

from expression (4.4), we find minimum critical load as follows. 

K a b #  4 ^ .~ 

1 f 2D# - ^ ;  

+.(.,~:,~.+,a~) +.a.,8,,~.~+K [~(~ +8; +~-) 

where 

( 4 . s )  

In order that equations (4.3) may have nonzero solution its coefficient 

( 4 . 4 )  

( 4 . ~ )  

o 2 2 1 1 

(2) We know the moving energy of the thin plate with distribution masses is 

where co is eigenfrequency of thin plate free vibrations, 1, and g are respectively specific gravity and 
gravitation acceleration of the plate material. Substituting expression (2.9) into the above 
expression, we have 

+ ~. -+T~a,B.]t, +f l  - 

Substituting W by W, and take variation, we have 

ab~r t ,yh z +~)fe----O 1 

1 " "  
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where 

co ='h ,- o z  o z  1 ~r 4 

+/~,/~,~" T-~--~ y~ p,~,,j (4.10) 

To find nonzero solution o f f  3, fo  we may obtain frequency equation 

A --~=?hab. r -  ab~r'lK c~ ^ A = 
a - ~ - ~  - a A ~' + x ' / = ~  

(4.11) 

Therefore we can find minimum eigenfrequency of free vibration of the thin plate as follows 

c~ f A_(abK~r*/36)(fl,A= + fl,/M)= . g .~-Jk (4. 12)  L z-(,,,/~e)(/~,a,+~,/z,), ~-K~j 

where 

A abK_~a'=la~v,).= -r -~ . ] •  fl"'~= = ~D~-~--[ 4 (.8 z + ,,1.,fl == ) + 2( 1 + ,,t")" 

+'- (p:~'+ ~ ) +  '* ,"d + K[~-(t,: +p; +~-) 

~r' , , p; 

~r' + 2 . ~ m +  1 g '  = , Jt 4 
, _  ~ . , + ~ ) ' =  ~ T+,w(p,~ + p; 

+o~,p,~,+ ,~ . )  

V .  E x a m p l e  

(4.13) 

1 
Suppose the square plate on elastic foundations is acted on by a concentrated force at the center 

of  the plate, and /==0.167, ,~=a/b= 1, Ka4/D= I04. 
It follows from expression (2.8) that 

/ ~ ,= f l= - - - - - -6 .  9 8 8 0 2 ,  f l ,  f f l , =  - - 1 1 . 9 7 6 0 5  ( 5 . 1 )  

(I) From expressions (3,6)-  (3,8), we have 

1943. 4 2 8 0 / , +  39. 39956feffiffi74. 07538Pal~D, 39. 39956f=+I, f l O " P a t / D  

Hence we find 

fs = O. 08866 x Io-'Pa=/D, f , = =  - -  2 .49323  x IO'*Pat/D 
and from expression (2.9) we can count maximum deflection of the center of the plate 

w(al2, a/Z)----4.07440 X Io-'Pat/D 
and prove antiforce Rs-= P without difficulty. 

(2) Supposing P . f P w ,  
load is 

(5.2) 

(s.3) 

?D = 1, from expression (4.4) or (4.5) we may find minimum critical 
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391.10310 , ,  ,_391 .10310  D D (n 
r~ ~ a  --17869~3126 x l 0 '  ----218.868 ~-f 

,then 

(5.4) 

p,==0 or 

(5 .5 )  

If the square plate is acted on only by uniformly unilateral pressure po==p 
1~~ and so we may find minimum critical load is 

(P,)-in----" 437. 736D/a: 

(3) From expression (4.11) or (4.12) we can find minimum eigenfrequency 

co=,.=,{ 391.10310 K g  "~ S gD } ~  
374.69269 " " ~  J~f f i f t  10522.216 ~,ha" 

(5.6) 

(4) Next we calculate moments of bending on free edges and at the center by paper [4] 

M,  [ ,-o, ~ = M ,  J ,-0, , - -  - 24.45913 x 1 0 " P  (5 .7 )  

M,(a/2 ,a /2)  =M,(a/2, a/2) ' -  96,947036 X 1 0 " P  ( 5 . 8 )  

Obviously, moments of bending on free edges do not equal zero and the ratio of them with (5.8) is 
absolutely 0.25229. Hence they are not small quantities. 

And we can calculate by this paper 

M=r ] z .0 ,o~0 ,  Mr]r.o,b----O 
Mf(a/2 ,a /2)  =M, ( a /2  ,a/2) = 57. 08753 x 10-4P (5 .9)  

Thus the ratio of (5.8) and (5.9) is 1.69822, that is, (5.8) is nearly 70% larger than (5.9). 
Because moments of bending on free edges do not equal zero but negative, the calculated 

results by paper [4] for moments of bending and maximum deflection a[ the center are that 
minimum critical load is larger, and eigenfrequency is smaller in comparison with the results of this 
paper. 

VI. Conclus ion 

From the above discussion, because flexural function satisfies all boundary and corner 
conditions, and total antiforces of foundations equal total outer loads, the method and results of the 
paper are reliable, and the method is simple, by which we can find approximation solutions of 
bending, stabifity and vibrations of elastic thin plate with free edges on elastic foundations. 
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