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Abstract
For the bending, stability and vibrations of rectangular thin plates with free edges on
elastic foundations, in this paper we give a flexural function which exactly satisfies not only
all the boundary conditions on free edges but also the conditions at free corner points.
Applying energy variation principle, we give equations defining parameters in flexural
function, stability equation, frequency equation, and general formulae of minimum critical

Jforce and minimum eigenfrequency as well.
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I. Introduction

V.Z. Vlasov!"), Y.S. Kononenko! and Zhang Fo-vanP! researched the bending, stability and
vibrations of rectangular thin plates with free edges on elastic foundations, but their methods are
complicated. Paper {4] discussed the above problems, but we point out that the flexural functions
does not satisfy conditions that moment of bending must be zero on boundary (see the end of the
paper), and the main results were only for a case of square plate. This paper gives a flexural function
which exactly satisfies all the boundary conditions on free edges and at corner points. For general
rectangular plate, we give general formulae of problems and prove total antiforces on foundations
equal to total loads on the plate. Hence the method is not only simple but also reliable. Fiflally, we
give results for square plate a=», #=0.167.

II. The Problem and Flexural Function

Supposing a rectangular thin plate on elastic fundations, the middle plane is Q={x,
y|0<#<a, 0<y<<b} and the boundaries of the plate are free that is, boundary conditions are:
on the x=0, a,

Wey + pyy==0 (2.1)
Waas + (2= 1) Wiy =0 2.5
on the y=0, b,
W,y + pW,e =0 (2.3)
Wygy+ (2= ) Wyaa=0 (2.4)
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at four corner points
Wey=0 (2, 5)

We give the following flexural function

x+fzcos A y+f3cosz xcos—z-z—

w=f,cos il

+f‘x(x—-a)+fsy(y—b)+f. (2.6)

where a, b are respectively length of thin plate along x-axis and y-axis, coefficients f,~f, will be
defined parameters. Without difficulty we prove that function (2.6) satisfies conditions (2.2), (2.4)
and (2.5), and substituting (2.6) into expression (2.1} and (2.3), we obtain:

f‘=_( #+—§;)%, fz='—( ,u+g;)%

2.7)
f4="‘%§z"fa’ =""_z'fa
or
4 mt
F1=8fss Fi:=Psfs f4=,B4Fz'f3, f5=ﬂs'a—zfz (2.8)
Such the flexural function (2.6) may be written
w=f, [ﬂlcos T %+ B, cos iﬂ y+cos ‘21” xcos 2” y
”2 n,z
+ 851 —0) +Bs 3 y(y—b) |+, (2.9)

and so flexural function (2.9) satisfies all conditions (2.1)—(2.5), where it includes only two
parameters f,, f, will be defined.

III. The Problem of Bending

If the plate is acted on by outer loads, deformation potential energy is

U =%H[w,. +w}, + 2uw, wy, + 2(1 —pwi,ldxdy +—I§'ﬂwzd"d9 (3.1)

where D is bending rigidity of the plate, K is coefficient of elastic foundatons, the domain of double
integral is €2, and the potential energy of outer forces is

W=”pw(x,y)dxdy (3.2)
for the case of uniform distribution loads
W= |[wdudy=——L2 (5,4 +-E2)f,+ pabf, (3.3

for the case of concentrated force at the center of the plate

W= Pw(%, %)=P(—ﬁl_ﬂz+1 Bun’ A2 i’;z)fs'i'Pfo (3.4)
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where A =a/b. Based on energy variation principle, when the plate is in stable equilibrium state,
total potential energy JT=U— W must be minimum, namely, §J7=0. Hence variating two
independent parameters, we obtain algebraic equations including f;.

Kabn? 2, Ps
Afy— KL (g2 1581 = ,
: 3.5
_Lg"_(ﬂ‘;ﬁ +‘§%‘)fs+Kabfe=

where

___"b“ ( BA + ) p » the case of distribution lodds,

B= . . (3.6)
—8, — - B s _ﬂs” th
Bi—b.+1 1 A vy P, thecase of concentrated load,

{ bpab, the case of distribution loads,
P, the case of concentrated load, (3.7)
A=2DE [+ 181 +201+ 2 + o p1ac+ BE)
1
+ﬁﬁ.ﬁ;A*]+K[?(ﬂ’+ﬁ“ +~— +—(ﬁ21‘ ,1‘)
4
+ﬂ1ﬂ.12 + ﬂigﬁs+ﬁ‘fsuu ]ab (3.8)

And so by expression (3.5) we may find f,, f,, and furthermore, we may find deflection and inner
forces.
To pay attention to the second equation of expression (3.5), the total antiforces of foundations

R,=Kﬂwdxdy —K"b” (ﬁ‘,p BNt 1 Kabfy= {f:b’ (3.9)

Hence for general rectangular thin plate, the total antiforces of foundatons with outer total loads is
always in equilibrium.

IV. Problems of Stability and Vibration

(1) We know distribution force p_and p, along directions of x-axis and y-axis act respectively
on the free edges of the plate on elastic foundations, and then the potential energy of outer forces is

W=%H( Paw? + pyw)dxdy (4.1)
Supposing  p,=1°p,, ¥° is the the parameter of critical force, and then we have

w=2d 32 (g 4 1)+ AR B+ 48, )

+ 21”2 (81 + 17) + Aﬁ,(—%ﬂﬂs +46,)] =2plf} (4.2)
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Similarly, we obtain algebraic equations including parameters f,, f;

4f =BT (g0 1 Biyg o
(4.3)
~KabT (a2 +£8)f,+ Kabf =0

where 4,=A4— p I In order that equations (4.3) may have nonzero solution its coefficient
determinant must equal zero. Therefore we obtain the stability equation

Kaba

A—pJ— (B2 + Bs/A*) =0 (4.4)

from expression (4.4), we find minimum critical load as follows.

(Por)min=—F + 4 _K “b” 2T (Buir + B ]

=L D% 81+ 2By +2(1 + 1)

+2(B2A%+BY) + uB.BA* 1+ K [%(ﬁ% +Bi+ —;—)

*180 (ﬂ“‘+ )+ﬂ.ﬂ.l’ +%ﬁ,&]}>o (4.5)

where
1=n{3(p1+ 5)+185 ¥'n'B.+48.)

e d) o (Eawnrin)] @
(2) We know the moving energy of the thin plate with distribution masses is

= Lo ([ g
W zm*gﬂw*dxdy .7

where @ is eigenfrequency of thin plate free vibrations, y and g are respectively specific gravity and
gravitation acceleration of the plate material. Substituting expression (2.9) into the above
expression, we have

W, =000k abco ‘P’l {[ﬂz_‘_ﬁ__*_ +— ﬁ’1‘+&)+ﬂ|ﬂ‘ﬂ.’

M+18mﬁ,]f +fi=Z(par +61.1.) (4.8)

Substituting W by W, and take variation, we have

Af s "'g'bi(K ‘Yh)(ﬂvv' + Et)f +=0

: (4.9)
G T MU
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where

— OB o'y B B} 1 = o B
Ay=A——grabl=d— g“b[z + +4+3o(ﬂ“+1‘)

2
+ B84 ‘B’B“+lsﬂ.ﬂ.] (4.10)
To find nonzero solution of f;, f,, we may obtain frequency equation
4 mzygabj_ abn* /K @ 7”‘)(;9‘).’ ﬁs) =9 (4.11)

Therefore we can find minimum eigenfrequency of free vibration of the thin plate as follows

_[ A—(abKn*/36)(BA*+8s/A)* g ¥
oai={ e L 'W} (4.12)

where
a-K a1 B) IO [uprr it 420447
+2 (ﬂf/l‘+ e )+ uﬁ‘ﬂsl’]+K[—(ﬁ’+ﬂ’ )
+1—;%(ﬂw+%—)+ﬁxﬁ.l’+ﬁ’f"]ab » (4.13)
1- H(pa+ By =8y By Ly X (piaer £
+opipar+ o) )
V. Example

Suppose the square plate on elastic foundations is acted on by a concentrated force at the center
of the plate, and #=0.167, A=a/b=1, Ka*/D=10%
It follows from expression .(2.8) that
Bi=p,=—6,98802, B,=Ps=—11,97605 (5.1)
(1) From expressions (3,6) —(3,8), we have
1943.4280f+39,39956f,=74,07538Pa*/D, 39,39956fs+ fs=10"*Pat/D
(5.2)
Hence we find
f+=0,08866 x10"*Pa*/D, f,=—2, 49323x10 *Pa*/D
and from expression (2.9) we can count maximum deflection of the center of the plate
w(a/2, 6/2)=4.07440% 10 *Pa*/D (5.3)

and prove antiforce R,= P without difficulty.
(2) Supposing P,=P,, y°=1,from expression (4.4) or (4.5) we may find minimum critical
load is
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D D

391.10810 grgr 3IL 10870 104 Z5=218.868 (5.4)

(Per)min=17569.3120  © ~ 17869, 3126

If the square plate is acted on only by uniformly unilateral pressure p,=p ,then p,=0or
»*=0, and so we may find minimum critical load is

(Por)min=437_736D/a* (5.5)

(3) From expression (4.11) or (4.12) we can find minimum eigenfrequency

_f 391,10310 Kg }
@aia={ 374.69269 } ={ 10522.216 Yha*
= 2L [ 9D 5.6
1,02570 X 10 TR (5.6)
(4) Next we calculate moments of bending on free edges and at the center by paper [4]
Molomora=M,|guo,o=—24,45913 X 107*P (5.7
M,(a/2,8/2)=M,(a/2,a/2)=96,947036 X 10~*P (5.8)

Obviously, moments of bending on free edges do not equal zero and the ratio of them with (5.8) is
absolutely 0.25229. Hence they are not small quantities.
And we can calculate by this paper

M:lr-om=0a My‘y-o,b=0
M.(a/2,8/2)=M,(a/2,8/2)=57 08753 X107 *P (5.9)

Thus the ratio of (5.8) and (5.9) is 1.69822, that is, (5.8) is nearly 70% larger than (5.9).
Because moments of bending on free edges do not equal zero but negative, the calculated

results by paper [4] for moments of bending and maximum deflection at the center are that

minimum critical load is larger, and eigenfrequency is smaller in comparison with the results of this

paper.
V1. Conclusion

From the above discussion, because flexural function satisfies all boundary and corner
conditions, and total antiforces of foundations equal total outer loads, the method and results of the
paper are reliable, and the method is simple, by which we can find approximation solutions of
bending, stability and vibrations of elastic thin plate with free edges on elastic foundations.
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