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Abstract In this paper, an attitude maneuver control problem is investigated for a rigid
spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs)
with gimbal axes skewed to each other. A mathematical model is constructed by taking
the spacecraft and the gyroscopes together as an integrated system, with the coupling
interaction between them considered. To overcome the singular issues of the VSCMGs
due to the conventional torque-based method, the first-order derivative of gimbal rates
and the second-order derivative of the rotor spinning velocity, instead of the gyroscope
torques, are taken as input variables. Moreover, taking external disturbances into account,
a feedback control law is designed for the system based on a method of nonlinear model
predictive control (NMPC). The attitude maneuver can be realized fast and smoothly by
using the proposed controller in this paper.
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1 Introduction

Control moment gyroscopes (CMGs) obtain the angular momentum via high speed spinning
rotor, and export torques owing to the change of angular momentum. CMGs are widely used
in large spacecrafts due to their merits of producing larger torques, having simpler physical
structure, longer life span, higher precision, and higher stability than conventional flywheels or
jets[1–2].

Currently, CMGs are mainly divided into some sorts according to their structures, such
as single gimbal control moment gyroscopes (SGCMGs) and variable speed control moment
gyroscopes (VSCMGs). An SGCMG holds the constant rotor spinning velocity and produces
output torque on account of the change of angular momentum caused by the rotation of gimbal
axis. The SGCMG has a simple structure and large torque amplification ability, and is widely
used in the field of spacecraft control. However, an SGCMG can only produce gyroscope
torque in one direction. In order to realize three axes control of the spacecraft, more than three
SGCMGs are needed[3]. In addition, the configuration of SGCMGs is usually designed to be
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redundant to keep the system from unexpected failures caused by the breakdown of SGCMGs.
For instance, Chinese ‘Tiangong-1’ space station is configured with six SGCMGs[4]. Moreover,
the SGCMG has a singularity problem[5]. Inevitably, there are some combinations of gimbal
angles such that SGCMGs cannot produce demanded torques[6]. For the design redundancy,
many steering laws have been used such as the Moore-Penrose pseudo-inverse steering law.
However, these steering laws cannot make the system escape from singular states[7]. Faced
with this problem, many researchers designed various improved steering laws such as singularity
robust inverse (SRI) and pseudo-inverse with null motion. Nevertheless, as far as we know, no
simple and effective steering law can solve the singularity problem completely.

In contrast, reaction wheels (RWs) can produce output torques owing to the variation of
the spinning rates of rotors. Different from that, VSCMGs have both the features of RWs and
SGCMGs. While the rotor spinning rate of the SGCMG remains constant, the rotor spinning
rate of the VSCMG is allowed to vary in a continuous manner. Therefore, a VSCMG can
produce output torque by virtue of the rotation of gimbal axis and change of rotor spinning rate.
Since a VSCMG has an extra degree of freedom, its structure will be more complex compared
with SGCMGs. Ford and Hall[8] introduced the equations of motion of a spacecraft which
contained several VSCMGs. However, the RW and CMG modes were operated exclusively, not
simultaneously in their control laws. Schaub et al.[9] designed control laws which can change
modes of RW and CMG automatically in their paper. Schaub and Junkins[10] also proposed
steering laws with null motion, which can make VSCMGs escape from singular configuration
under the circumstance of generating no output torques. Cui and He[11] designed steering laws
for two parallel VSCMGs. Kanzawa et al.[12] proposed steering laws which not only provide
the demanded control torques, but also control the terminal gimbal angles of CMGs.

The spacecraft and the array of CMGs were usually studied independently in the recent
relevant literature. Firstly, the control torques needed by a spacecraft are designed, and then
steering laws are obtained by solving the gimbal rates and rotor spinning accelerations of CMGs
according to the reference control torques. The actual torques produced by CMGs are not
precisely equal to the demanded torques due to the possible singularity. It is pointed out here
that CMGs are treated as ideal actuators where the interaction between the array of CMGs and
spacecraft is ignored. By treating gimbal rates as input variables and considering the spacecraft
and the array of CMGs as a whole system, Bhat and Tiwari[13] built a mathematical model
which was used to avoid the effect of singularity, without considering the influence of external
disturbances on the system in their paper. By taking external disturbances into account, the
method of nonlinear model predictive control (NMPC) was used to implement the attitude
feedback control of the integrated system of spacecraft and the array of SGCMGs[14]. The
dynamics of the coupling system consisting of the array of VSCMGs and spacecraft has not
been considered in those studies above, where SGCMGs were only used as actuators.

Generally, CMGs are configured in a spacecraft redundantly to obtain torques along three
independent directions. However, some uncertainties, such as mechanical malfunctions, may
cause the onboard failures of CMGs. Therefore, CMGs with gimbal axes skewed to each other
seem to be the better choice serving as actuators[15]. Many researchers intensively investigated
the attitude control problem of those systems. For example, Crouch[16] discussed the control-
lability of a system which was driven by flywheels, and concluded that the system with less
than three flywheels can never become controllable. Hu and Ge[17] developed a control law for
spacecrafts driven by jets. Yang and Wu[18] considered the orientation control of a spacecraft
driven by arbitrary configurations of double SGCMGs. Bhat and Tiwari[13] showed that with
one or more CMGs, the combined dynamics of the spacecraft-CMG system was globally con-
trollable, despite the presence of singularity. Gui et al.[15] designed a controller by reducing
the kinematic and dynamic equations of a spacecraft driven by two SGCMGs with gimbal axes
skewed to each other. Flywheels, jets, and SGCMGs were mostly used as actuators in those
studies above.
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In this paper, the attitude maneuver control problem of a rigid spacecraft via the array of
VSCMGs is investigated. Firstly, the strategy is developed on how to drive the rigid spacecraft
into the desired attitude when unexpected failures of CMGs occur during the operation. Next,
the spacecraft and VSCMGs are taken as a whole system, and the coupling interaction between
the spacecraft and VSCMGs is considered. Different from the conventional methods where
steering laws are proposed to drive CMGs, the first-order derivative of gimbal rates and the
second-order derivative of the rotor spinning velocity are treated directly as input variables in
this paper, and the singularity problem will not be present any more. At last, the attitude
maneuver control law for the spacecraft is designed based on the NMPC. The remaining part
of this paper is organized as follows. In Section 2, the integrated system of spacecraft and the
array of VSCMG is built. In Section 3, the control task is formulated, and the controller based
on the NMPC method is designed. In Section 4, a simulation case is given, and the feasibility
of the proposed controller is verified by numerical simulation. As a comparison, a steering law
based on the conventional method is also discussed briefly.

2 Mathematical modeling

In this study, a rigid spacecraft driven by two VSCMGs is considered. The spacecraft and
the array of VSCMGs are studied as an entire system.

The total angular momentum of this entire system is

H = Jω + hCMG, (1)

where J represents the inertial matrix of spacecraft, Jω represents the angular momentum of
spacecraft, and hCMG represents the total angular momentum of VSCMGs. The time derivative
of Eq. (1) can be expressed as

Ḣ =
˜̇
H + ω × H , (2)

where
˜̇
H is the derivative of the angular momentum of system in the spacecraft-fixed frame. ω

represents the angular velocity of spacecraft.
According to the angular momentum theorem[19], one has

Ḣ = Text, (3)

where Text stands for the outer space disturbances. In general, the magnitude of Text is very
small, about 10−7 N · m[20].

According to Eqs. (1)–(3), the dynamic equation of spacecraft with CMGs is

Jω̇ + ω × Jω = −
˜̇
hCMG − ω × hCMG + Text, (4)

where ˜̇
hCMG stands for the derivative of the angular momentum of the array of CMGs in the

spacecraft-fixed frame.

'

Fig. 1 Schematic configuration of two skew VSCMGs
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As shown in Fig. 1, the configuration of two VSCMGs with gimbal axes skewed to each other
is the focus of the present study. γ is an oblique angle held constant. Unit orthogonal bases
{b1, b2, b3} stand for the spacecraft-fixed frame, while gi and hi represent the gimbal axis
and the angular momentum of the ith VSCMG, respectively. In fact, hi is a function of the
gimbal angle δi and the rotor spinning velocity Ωi, i.e., hi = hi (δi, Ωi), where Ωi determines
the magnitude of hi, while δi represents the direction of hi. The total angular momentum of
the two VSCMGs is

hCMG = h1(δ1, Ω1) + h2(δ2, Ω2). (5)

Let JW denote the moment of inertia of rotor. Hence, the total angular momentum is
presented as follows:

hCMG = JW




−Ω1 sin δ1 cos γ
Ω1 sin δ1 sin γ
−Ω1 cos δ1


 + JW




Ω2 sin δ2 cos γ
Ω2 sin δ2 sinγ

Ω2 cos δ2




= JW




− sin δ1 cos γ sin δ2 cos γ
sin δ1 sin γ sin δ2 sinγ
− cos δ1 cos δ2




[
Ω1

Ω2

]
. (6)

The derivative of Eq. (6) in the spacecraft-fixed reference frame can be expressed as

˜̇
hCMG =JW




− cosγ sin δ1Ω̇1

sin γ sin δ1Ω̇1

−Ω̇1 cos δ1


 + JW




− cosγ cos δ1Ω1δ̇1

sin γ cos δ1Ω1δ̇1

Ω1 sin δ1δ̇1




+JW




cos γ sin δ2Ω̇2

sin γ sin δ2Ω̇2

Ω̇2 cos δ2


 + JW




cos γ cos δ2Ω2δ̇2

sinγ cos δ2Ω2δ̇2

−Ω2 sin δ2δ̇2


. (7)

For the sake of notational simplicity, Eq. (7) can be rewritten in the compact form of

˜̇
hCMG = JW [D0 D1] η̇, (8)

where

D0 =




− cosγ sin δ1 cos γ sin δ2

sinγ sin δ1 sin γ sin δ2

− cos δ1 cos δ2


 ,

D1 =




− cosγ cos δ1Ω1 cos γ cos δ2Ω2

sinγ cos δ1Ω1 sinγ cos δ2Ω2

sin δ1Ω1 −Ω2 sin δ2


 ,

η̇ =
[

Ω̇1 Ω̇2 δ̇1 δ̇2

]T
.

Hence, Eq. (6) can also be rewritten as

hCMG = JWD0Ω. (9)

Substituting Eqs. (8) and (9) into Eq. (4), the dynamic equation of system is derived in the
spacecraft-fixed reference frame,

Jω̇ + ω × Jω = −JW [D0 D1] η̇ − ω × JWD0Ω + Text. (10)
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In addition, from the perspective of physical significance, one has

Tctrl = −
˜̇
hCMG = −JW [D0 D1] η̇, (11)

where Tctrl stands for the output torques produced by the array of VSCMGs.

To describe the attitude of spacecraft in this paper, unit quaternions are used, which were
given by[21–22]

q0 = cos
θ

2
,




q1

q2

q3


 = ε sin

θ

2
(12)

subject to the constraint

q2
0 + q2

1 + q2
2 + q2

3 = 1. (13)

The rotational angle θ is about the Euler axis, which is determined by the unit vector ε.

The kinematic equation of spacecraft is




q̇0

q̇1

q̇2

q̇3


 =

1

2
QTω, (14)

where

QT =




−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


 . (15)

3 Controller design

The control task in this section is to drive the spacecraft to the target attitude with the
desired angular velocity. The desired attitude and angular velocity are denoted as qf and ωf .
The objective of the control problem can be formulated as follows:

lim
t→∞

q = qf , lim
t→∞

ω = ωf . (16)

The spacecraft and the array of CMGs are conventionally studied separately in the previous
work. Firstly, the demanded control torques needed by the spacecraft are calculated. Then, the
demanded control torques are considered as system input variables, and the steering laws are
formulated in order to solve for the gimbal rates and rotor spinning accelerations of CMGs[23].
To compare with the control strategy proposed below in this paper, a conventional method
based on the design of steering laws is briefly discussed here in advance.

The array of CMGs usually responds to the demanded torques through certain steering
laws. Define the matrix L as L = [D0 D1]. Then, a steering law for the array of VSCMGs
introduced in Ref. [9] is adopted here,

η̇ =

[
Ω̇

δ̇

]
=

1

JW
WLT(LWLT)−1 ˜̇

hCMG, (17)
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where

W = diag [Ws1
, Ws2

, Wg1
, Wg2

] ,

Wsi
= W 0

si
e(−µδ), Wgi

= const.,

d = det
(
D1D

T
1

)
.

In fact, the minimum solution for η̇ can be figured out through the Moore-Penrose inverse,
as the matrix L is never rank deficient. Nevertheless, in order to make VSCMGs act like
classical SGCMGs away from singular configurations, a weighted pseudo-inverse is available
instead. Wsi

and Wgi
are the weights relevant to how nearly VSCMGs are to operate like the

regular modes of RWs or SGCMGs. To fulfill the desired performance of VSCMGs, the weights
are made dependent on the proximity to the singularity of SGCMGs. Besides, for the sake of
evaluating the proximity, the scalar d is defined. Wsi

and µ are positive scalars chosen by the
controller, whereas Wgi

simply remains constant.
Different from the conventional method mentioned above, the first-order derivative of gimbal

rates and the second-order derivative of rotor spinning velocity can be adopted directly as
input variables, and the singularity problem will not be present anymore. Finally, the attitude
maneuver control law for the spacecraft can be obtained based on the NMPC method[24–30].

Based on the strategy above, Eq. (4) can be rewritten to obtain the state equations of system
as follows:





q̇ =
1

2
QTω,

Jω̇ = Text −
˜̇
hCMG − ω × hCMG − ω × Jω,

δ̈ = u,

Ω̈ = v.

(18)

It is worth noting that though the dynamics of the spacecraft has been added in Eq. (18), the
output torques produced by the array of CMGs are not treated as input vectors of the system
here. Otherwise, the coupling interaction between the array of CMGs and spacecraft will be
ignored, and the actual torques will not be equal to the demanded torques precisely under the
circumstance of singularity. Through taking δ̇ and Ω̇ as state variables and δ̈ and Ω̈ as system
input variables directly, the singularity problem can be converted into an optimal problem with
constraints of state and input variables. Hence, the singularity problem is avoided. Accordingly,
there is no need to find the inverse mapping from demanded control torques to state variables
of CMGs any more. The actual torques will always be equal to the demanded torques precisely.

To ensure the consistency between the model and the real system, the state constraints and
input constraints of the system must be taken into consideration. The initial conditions and
constraints are mentioned below.

The initial conditions of state variables are
{

q = q0, δ = δ0, Ω = Ω0,

ω = ω0, δ̇0 = δ̇0, Ω̇ = Ω̇0.

The terminal constraints of output variables are

{
q = qf , δ̇ = 0,

ω = ωf , Ω̇ = 0.
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The input constraints caused by the limit of actuators are
{
|δ̇i| < δ̇i max, |ui| < ui max,

|Ω̇i| < Ω̇i max, |vi| < vi max,

where i = 1, 2.
In fact, Eq. (18) can be generalized as the form below

ẋ(t) = fc(x(t), u(t), v(t), Text), (19)

where x = (q, ω, δ, δ̇,Ω, Ω̇) stands for state variables. This equation describes the relationship
among state variables, disturbances, and system input variables.

The idea of NMPC is exploited in this work for controller design, with the purpose of
realizing the process of attitude maneuver fast and accurately. At each sampling instant, the
NMPC scheme requires to solve an open-loop optimal control problem using the current system
state as the initial value[24–30]. The optimal control problem at the k th sampling instant is
formulated as





min J =

∫ tk+T

tk

(‖x(t) − x(t)ref‖2
M

+ ‖u(t)‖2
R

+ ‖v(t)‖2
S
) dt

+ ‖x(tk + T ) − x(tk + T )ref‖2
P

s.t. x(tk) = x0,

ẋ(t) = fc(x(t), u(t), v(t), Text),

r̄ > r(x(t), u(t)),

rf > rf(x(t0 + T )),

∀t ∈ [tk, tk + T ],

(20)

where P , M , R, and S are the weighting matrices of appropriate dimension, T is the length of
the predictive horizon, x̄0 is the measurement of the system state at the sampling instant, u (t)
and v (t) stand for control input vectors, rc and rf denote the path and terminal constraints,

respectively, and x (t) and x (t)ref are the state at the time instant t and its reference value,
respectively. The integrant in the cost function J is taken to be the sum of the squares of
the control inputs and the state errors with respect to the reference values, with the purpose
of minimizing tracking errors and control efforts. Besides, the cost function also includes a
terminal term to penalize the state errors at the ending time.

For numerically solving the optimal control problem defined by Eq. (20), the multiple shoot-
ing method in Ref. [29] is used to transform and solve the continuous optimal control problem.
Detailed information about the multiple shooting method can be found in Ref. [29]. Notably,
the continuous-time differential equation, i.e., Eq. (19), is discretized using the following 4-stage
explicit Runge Kutta (ERK) method such that





K1 = fc(tn, xn, un, vn),

K2 = fc

(
tn +

δs

2
, xn +

δs

2
K1, un, vn

)
,

K3 = fc

(
tn +

δs

2
, xn +

δs

2
K2, un, vn

)
,

K4 = fc(tn + δs, xn + δsK3, un, vn),

xn+1 = xn +
δs

6
(K1 + 2K2 + 2K3 + K4),

(21)



1558 Pengcheng WU, Hao WEN, Ti CHEN, and Dongping JIN

where the incremental step δs is equal to the sampling period. Thus, Eq. (19) can be reformu-
lated as the following discrete form:

xn+1 = xn + fd(xn, un, vn), (22)

where

fd(xn, un, vn) =
δs

6
(K1 + 2K2 + 2K3 + K4). (23)

The state variables at the next time instant can be evaluated recursively with respect to the
last time instant.

By choosing Np discrete points over the predictive horizon [tk, tk + T ], the optimal control
problem can be converted into the following nonlinear programming problem:





min Jk =
∥∥∥xk+Np

− xref
k+Np

∥∥∥
2

P

+

Np−1∑

i=0

∥∥xk+i − xref
k+i

∥∥2

M
+

Np−1∑

i=0

‖uk+i‖
2
R

+

Np−1∑

i=0

‖vk+i‖
2
S

s.t. 0 = xk − x0,

0 = xk+i+1 − fd (xk+i, uk+i, vk+i) − xk+i,

0 > r (xk+i, uk+i) − r̄,

0 > rf

(
xk+Np

)
− r̄f ,

i = 0, 1, · · · , Np − 1,

(24)

where Np is the total number of the time intervals of the predictive horizon, x̄0 is the mea-
surement of the system state at the sampling instant, xk+i and xref

k+i are the states at the
time instant k + i and its reference value, and uk+i and vk+i stand for control input vectors,
respectively. The integral part of the objective function J in Eq. (20) is approximated as the
sum of the discrete values of the integrand at the nodes for i = 0, 1, · · · , Np. In the NMPC
scheme, the predictive horizon keeps moving forward during the process of online control by
increasing k by 1 at the end of each sampling interval. The generalized Gauss Newton method
is used for solving the NLP problem described by Eq. (23). No fundamentals of this algorithm
is discussed here, since it has been widely discussed and well developed[29].

4 Simulation cases

Cite a small agile spacecraft as an example. Its inertial matrix is presented as[30]

J =




103.9 −1.85 −0.2
−1.85 106.38 −1.55
−0.2 −1.55 146.82


 kg · m2.

The initial values of angular velocity, the initial quaternion, and the desired quaternion are
provided as follows:





ω0 = [0 0 0]T rad/s,

q0 = [0.173 6 − 0.526 4 0.263 2 0.789 6]T,

qf = [1 0 0 0]T.
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The parameters and the physical constraints are shown below,





δ̇0 = δ̇f = [0 0]
T

rad/s,

δ̇i max = 2 rad/s, δ̈i max = 2 rad/s2,

Ω̇i max = 2 rad/s2, Ω̈i max = 2 rad/s3,

where i = 1, 2.

Disturbances are chosen as





Tx = 10−5 (3 cos(ω0t) + 1) N · m,

Ty = 10−5 (1.5 sin(ω0t) + 3 cos(ω0t)) N · m,

Tz = 10−5 (3 sin(ω0t) + 1) N · m.

The weight matrices introduced in Eq. (20) are given as follows:

P =

[
3 000I7 07×8

08×7 30I8

]
, M =

[
3 000I7 07×8

08×7 30I8

]
, R = I2, S = I2,

where IN denotes an N×N identity matrix, and 0m×n denotes an m×n matrix whose elements
are all zero.

The numerical simulation is performed for a period of 40 s. The control horizon is taken as
4 s, and 10 intervals are used for discretization over the control horizon. The simulation results
are summarized in Figs. 2–11.

Figures 2 and 3 show the time responses of the attitude and angular velocity under the
controller based on the NMPC. The spacecraft is stabilized to the desired attitude within
40 s. The magnitudes of angular velocity are smaller than 0.4 rad/s during the total process of
maneuver.

Fig. 2 Time histories of attitude quaternions

x

y

z.

Fig. 3 Time histories of angular velocity

Figures 4–7 show that, VSCMGs can adjust gimbal angles and rotor spinning rates along
with system input variables and produce output torques, to make the spacecraft achieve the
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Fig. 4 Time histories of gimbal angles of
VSCMGs

.

Fig. 5 Time histories of gimbal rates of
VSCMGs

.

1

2

Fig. 6 Time histories of rotor spinning rates
of VSCMGs

.

1

2

Fig. 7 Time histories of rotor spinning accel-
erations of VSCMGs

desired attitude and angular velocity. The gimbal rates δ̇ and rotor spinning accelerations Ω̇

will converge to zero without exceeding the amplitudes caused by physical constraints.
Figures 8 and 9 show input variables δ̈ and Ω̈ of the system planned by the NMPC method,

i.e., u and v. δ̈ and Ω̈ can achieve the required terminal state in the end without exceeding
the amplitudes caused by physical constraints.

Figures 10 and 11 show the total angular momentum and output torques produced by
VSCMGs during the spacecraft maneuver. The magnitudes of output torques are kept within
the range of 12N·m. Since the spacecraft and the array of VSCMGs are treated as a whole
system, there is no error between output torques of the array of VSCMGs and the demanded
torques. After 20 s, the total angular momentum keeps constant, while output torques converge
to zero.

To compare with the simulation results obtained by using the proposed strategy, the results
of the conventional control strategy are illustrated next in Figs. 12–16. As shown in Figs. 13–16,
the RW mode is employed, while the gimbal angles of VSCMGs remain constant. Figures 12–16
illustrate that the whole process of the attitude maneuver based on the conventional steering
law can be accomplished within 30 s, a little shorter than that based on the proposed strategy.
However, the magnitudes of demanded control torques and state variables such as δ, δ̇,Ω, and Ω̇

are significantly higher than those obtained by using the proposed strategy. Furthermore, those
state variables drastically change at the beginning of the control process of the conventional
method, which may bring great difficulties to the physical realization of VSCMGs.
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.

Fig. 8 Time histories of control inputs δ̈1 and

δ̈2

.

1

2

Fig. 9 Time histories of control inputs Ω̈1 and

Ω̈2

.
.

Fig. 10 Total angular momentum of array of
VSCMGs

.

Fig. 11 Output torques produced by array of
VSCMGs

.

Fig. 12 Demanded control torques based on
steering laws

Fig. 13 Gimbal angles of VSCMGs based on
steering laws
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.

Fig. 14 Gimbal rates of VSCMGs based on
steering laws

.

1

2

Fig. 15 Rotor spinning rates of VSCMGs
based on steering laws

.

1

2

Fig. 16 Rotor spinning accelerations of VSCMGs based on steering laws

5 Conclusions

This paper focuses on the problem of attitude control regarding the rigid spacecraft where the
VSCMGs are used as actuators. Firstly, a mathematical model is built by treating the spacecraft
and the array of VSCMGs as an entire system and taking the coupling interaction between the
spacecraft and VSCMGs into account. Then, the first-order derivative of gimbal rates and
the second-order derivative of rotor spinning velocity are treated directly as input variables.
Consequently, the explicit treatment of the singularity of CMGs becomes not necessary any
more. With the existence of disturbances, the attitude maneuver controller for the spacecraft
is designed based on the NMPC method. Compared with the conventional method based on
the steering law, simulation results of the proposed strategy demonstrate that, the spacecraft
can achieve the desired attitude and angular velocity under the physical restrictions within
40 s smoothly, keeping in view the high precision and stability of orientation. Meanwhile, the
system input variables prepared by the controller always satisfy the physical restrictions.
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