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Abstract Transition prediction is of great importance for the design of long distance
flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances
trigger instability waves in the boundary layer. For super/hypersonic boundary layers,
the external disturbances first interact with the shock ahead of the flying vehicles before
entering the boundary layer. Since direct numerical simulation (DNS) is the only available
tool for its comprehensive and detailed investigation, an important problem arises whether
the numerical scheme, especially the shock-capturing method, can faithfully reproduce
the interaction of the external disturbances with the shock, which is so far unknown.
This paper is aimed to provide the answer. The interaction of weak disturbances with
an oblique shock is investigated, which has a known theoretical solution. Numerical
simulation using the shock-capturing method is conducted, and results are compared
with those given by theoretical analysis, which shows that the adopted numerical method
can faithfully reproduce the interaction of weak external disturbances with the shock.

Key words shock, high speed flow, free-stream disturbance, shock-capturing

Chinese Library Classification O354
2010 Mathematics Subject Classification 76J20, 76K05

Nomenclature

Ma, Mach number;
u, velocity normal to the shock;
v, velocity tangential to the shock;
ρ, density;
p, pressure;
ω, frequency;
k, wave vector with components (kx, ky);
λx, λy, wave lengths in x- and y-axes;
θ1, angle of incidence of wave relative to

x-axis;
θ2, angle of divergence of acoustic wave

relative to x-axis;
θ3, angle of divergence of entropy/vortical wave

relative to x-axis;
β, angle between flow velocity and shock;
c, sound speed;
vg, group velocity;
γ, ratio of the specific heat capacities;
(·), unperturbed flow quantities;
δ(·), flow fluctuations;
(·)1,2, quantities at upstream and downstream of

the shock.
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1 Introduction

The prediction of laminar-turbulent transition is of great importance for the design of long
distance flying vehicles[1], and it has been and still remains a subject of extensive
investigation[2–4].

In designing flying vehicles, usually, experiment plays a very important role. Therefore,
people expect that experiment can also be very helpful in the prediction of laminar-turbulent
transition. For this purpose, quiet wind tunnels were designed and are being used. Generally
speaking, to simulate the real flight, certain similarity rules have to be satisfied, as shown
in Ref. [5]. However, to simulate the laminar-turbulent transition of the boundary layer of
the super/hypersonic flying vehicles, more stringent requirements are necessary. For example,
first, transition location is sensitive to viscosity, which depends on temperature. Thus, the
temperature distribution of the flow fields must be the same for both the real flying vehicle and
the model. Second, transition location is also sensitive to the free-stream disturbances. Thus,
the disturbances in the free stream in their non-dimensional form must be the same for both
the experiment and the real flying vehicle. Obviously, these two requirements are impossible to
be realized in practice.

The other way to model the transition process is to do direct numerical simulation (DNS),
if computer resource allows. In this case, proper numerical scheme has to be used. One
criterion for its choice is how well it can treat the interaction of the disturbances with the shock,
because, for super/hypersonic flight, disturbances in the oncoming flow would certainly first
interact with the shock, and then disturbances behind the shock resulting from the interaction
would interact with the boundary layer to trigger instability waves in the boundary layer.
Therefore, whether the numerical scheme can faithfully reproduce the interaction is crucial
for its success. Usually, the shock-fitting method can produce reliable results[6–10], but it can
hardly be used for three-dimensional problems[11]. There have been people using the shock-
capturing scheme for this purpose[12–14]. However, they assumed implicitly that the shock-
capturing scheme can faithfully reproduce the disturbances behind the shock, but with no proof
or convincing discussion to confirm its reliability. Therefore, how well the shock-capturing
scheme can reproduce the interaction of small amplitude disturbances with the shock is a
problem worth being investigated, as pointed out in the latest review article “Two problems
in the transition and turbulence for the near space hypersonic flying vehicles” by Zhou and
Zhang[15].

Therefore, in this paper, our main concern is the accuracy of shock-capturing method in its
application to the interaction of small disturbance and the shock.

In a linear regime, a general small amplitude free-stream disturbance in a uniform flow can
be decomposed of three elementary types of components[16], namely, acoustic wave, vorticity
wave, and entropy wave. The acoustic wave propagates at the speed of sound relative to the
moving fluids, while the vorticity and entropy waves are convected passively by the mean flow.
Furthermore, the acoustic wave can also be distinguished as fast or slow acoustic wave according
to whether its group velocity is larger or smaller than the moving velocity of the flow. All types
of disturbances may be generated behind the shock no matter what type of disturbance wave
interacts with the shock[17].

However, in the high altitude atmosphere, the velocity and temperature are bound to be
non-uniform, which are the cause of entropy wave and vorticity wave, but there can hardly be
external object generating acoustic waves, while the generation of sound wave by the motion
of the fluid itself, is far less effective. Therefore, in this paper, we only pay attention to the
incidence of entropy and vorticity waves. Besides, for super/hypersonic flying vehicles, the free
stream disturbances can always be regarded as small amplitude disturbances.

Thus, the problem we are dealing with is, when small amplitude free-stream disturbances
meet a stationary oblique shock, what kind of disturbances would be induced downstream of the
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shock, and whether the numerical simulation using the shock-capturing scheme can obtain the
results with sufficient accuracy. For this purpose, we need reliable theoretical or experimental
results to compare with numerical results. Reference [17] can serve for this purpose. The
paper is organized as follows. In Section 2, we use the method of McKenzie and Westphal[17]

and the errata given by Anyiwo and Bushnell[18] to analyze the interaction of small amplitude
disturbances with an oblique shock. In Section 3, we perform numerical simulations using the
shock-capturing scheme with moderate order of accuracy for the same problem. In Section
4, numerical results are compared with the theoretical results to check if the shock-capturing
method can produce sufficiently accurate results. In Section 5, we conclude the paper with a
summary discussion.

2 Theoretical analysis

The method of McKenzie and Westphal[17] is adopted to formulate the problem. For the
readers’ convenience, we outline the main procedures. In addition to their work, in Subsection
2.2, we complement another physical condition to remove the nonphysical solution that may
arise for the solutions of wave vectors. Furthermore, we deduce the condition to determine
whether fast or slow acoustic wave can be generated behind the shock, which is also in Subsection
2.2.
2.1 Problem formulation

The coordinate system (x, y) is set up, as shown in Fig. 1, where x and y are normal to
and along with the shock, respectively. u1 and u2 denote the velocities of the uniform flows at
upstream and downstream of the shock, respectively. Their angles with respect to the shock
are denoted by β1 and β2, respectively. We assume that the free-stream disturbance, which can
be an acoustic, entropy, or vorticity wave, is of the form δAei(kxx+kyy−ωt), where kx and ky are
the components of wave vector k in (x, y), ω is the frequency, and δA represents the amplitude
of any perturbed quantity. k1, k2, and k3 represent the wave vectors of the incident wave, the
acoustic wave leaving the shock, and the diverging entropy-vorticity wave, respectively. Their
angles of wave vector with respect to the x-axis are θ1, θ2, and θ3, respectively.

Shock

y

x

θ1

θ2

θ3

β1

β2
1

1

2

2

3

Normal

O

Fig. 1 Schematic diagram of the disturbances and the shock

The total flow field can be written as the summation of steady base flow and a small
perturbed quantity as follows:

(ρ, u, v, p) = (ρ, u, v, p) + (δρ, δu, δv, δp)ei(kxx+kyy−ωt). (1)

Substitute (1) into the linearized Euler equations and solve the eigenvalue systems. We can
get the dispersion relations and the corresponding eigenvectors for three elementary types of
free-stream disturbances.

For acoustic waves, the dispersion relation is

ω − ukx − vky = ±c|k|, (2)
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and the corresponding eigenvector is

(δρ, δu, δv, δp) =
(

1,±
c cos θ

ρ
,±

c sin θ

ρ
, c2

)

, (3)

where c is the sound speed, |k| =
√

k2
x + k2

y, and θ is the angle between the wave vector and

the x-axis. Plus (minus) sign corresponds to fast (slow) acoustic waves.
For entropy and vorticity waves, the dispersion relations are both

ω − ukx − vky = 0, (4)

and the eigenvectors are, respectively,

(δρ, δu, δv, δp) = (1, 0, 0, 0), (5)

(δρ, δu, δv, δp) = (0,− sin θ, cos θ, 0). (6)

It is worth noting that the direction of k indicates the phase direction of the disturbance,
which is perpendicular to the wavefronts. It is different from the direction of group velocity vg,
i.e., ray. We depict the phase and the ray for the incident entropy/vorticity wave in Fig. 2. For
the entropy/vorticity wave, vg is the velocity of the moving fluid, i.e., u1, while for the acoustic
wave, the group velocity is given by

vg =
∂ω

∂k
= u ± c

k

|k|
, (7)

where plus (minus) corresponds to fast (slow) acoustic wave.

θ1

Phase

A

B

Ray

β1

y

xO

1

1

Fig. 2 Schematic diagram of the phase and ray for the entropy/vortical wave

2.2 Wave vectors

Three conditions need to be satisfied across the shock:
(i) The frequency is continuous on both sides of the shock.
(ii) The component of wave vector tangential to the shock, say, ky is continuous.
(iii) The component of group velocity normal to the shock should be larger than zero.
Condition (iii) is deduced from the assumption that all the disturbances behind the shock

should propagate downstream, which is true for the interaction taking place in the free space.
Since the waves are of small amplitude, these conditions can be applied to the unperturbed

shock in the linear approximation. For acoustic waves generated by the entropy/vorticity wave,
considering the dispersion relations given by (2) and (4), the application of Condition (i) gives

u1k1x + v1k1y = u2k2x + v2k2y ± c2|k2|, (8)
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where |k2| =
√

k2
2x + k2

2y, and subscripts 1 and 2 of the unperturbed quantities denote the

quantities at upstream and downstream of the shock, respectively. From the first-order of
continuity of unperturbed velocity tangential to the shock, we have v1 = v2. From Condition
(ii), we have k1y = k2y = ky, and then (8) reduces to

u1k1x = u2k2x ± c2

√

k2
2x + k2

y, (9)

where u2 and c2 can be computed by the Rankine-Hugoniot (R-H) conditions across the un-
perturbed shock. k2x can be solved from (9), and then the angle of the wave vector is given by
tan θ2 = ky/k2x.

Similarly, for the entropy/vorticity wave behind the shock, the wave vector can be solved by

u1k1x = u2k3x.

According to the existent condition of (9), we can deduce that the incident angle θ1 should
satisfy (details are referred to Appendix A)

tan2 θ1 6
Ma2

1n

(1 − Ma2
2n)R2

, R =
c2

c1
, (10)

where the subscript n represents components normal to the shock. Considering that the physical
frequency should be larger than zero, by rewriting the dispersion relation of (4), the incident
angle θ1 for the entropy/vorticity wave should also satisfy

cos
(π

2
− β1 − θ1

)

=
ω

|u1||k1|
> 0,

and thus
−β1 < θ1 < π − β1. (11)

Combining (10) and (11), we depict the range of incident angle for entropy/vorticity wave to
generate acoustic wave in Fig. 3. In Region ., only fast acoustic wave can be generated behind
the shock. In Region /, only a slow acoustic wave can be generated. Outside Regions .and /,
no acoustic wave can be generated.

β1

β1

θcri

θcriθcri

y

x

Shock Shock

Normal

y

x

Normal

(a) Ma2＜1 (b) Ma2＞1

O
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1

1

Fig. 3 Range of incident angle to generate acoustic waves

For Ma2 < 1,

Region I: − θcri 6 θ1 6 θcri, θcri = arctan
Ma1n

√

(1 − Ma2
2n)R

.
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For Ma2 > 1,

Region I : −β1 < θ1 6 θcri.

Region II : π − θcri < θ1 < π − β1.

2.3 Wave amplitude

Small perturbations are introduced in the R-H jump conditions on either side of the shock,
and the linearized jump relations for small perturbations across the shock obtained are

ρ1δu1n + u1nδρ1 = ρ2δu2n + u2nδρ2, (12a)

δp1 + 2ρ1u1nδu1n + u2
1nδρ1 = δp2 + 2ρ2u2nδu2n + u2

2nδρ2, (12b)

δu1T = δu2T, (12c)

δh1 + u1nδu1n = δh2 + u2nδu2n, (12d)

where subscripts n and T denote the components normal and tangential to the shock, respec-
tively. h is enthalpy.

Assume that the state equation is in the form of ρ = ρ(p, s), where s is entropy. Small
fluctuations in density are related to pressure and entropy fluctuations by

δρ =
(∂ρ

∂p

)

s
δp +

(∂ρ

∂s

)

p
δs =

δp

c2
+ rδs, (13)

where r = − ρ
cp

for a perfect gas, and cp is the heat capacity at the constant pressure.

Combine the shock adiabatic, which is in the form of ρ2 = ρ2(p2, ρ1, p1), and the relation of
small-perturbation of pressure, entropy, and density can be obtained to replace (12d),

δp2(c
−2
2 − Q) + r2δs2 = Pδp1 + Wr1δs1, (14)

where

Q =
1

c2
2Ma2

1nMa2
2n

, P =
γ − 1

γ + 1

(Ma2
1n − 1)2

c2
2Ma2

1nMa2
2n

, W =
ρ2

ρ1

.

The deformation of the shock can be assumed to be in the same form of the incident distur-
bance,

x = f(y, t) = η exp(i(kyy − ωt)), (15)

where η is the amplitude of the shock distortion and obviously η ≪ 1. The velocity of the shock
us is

us =
(∂f

∂t
+

∂f

∂y

∂y

∂t
,
∂y

∂t

)

. (16)

Let δd = ∂f
∂t

, and thus ∂f
∂y

=
kyδd

ω
. The velocity of the fluid relative to the shock is u+δu−us.

Substitute its normal and tangential components into (12a)–(12c), and the term ∂y
∂t

can be
eliminated. Combining with (13) and (14), a system of four linear equations with four unknowns,
i.e., δd, δp2, δs2, and δu2, is obtained, which can be solved.

3 Numerical simulation

Numerical simulation is performed to get the same result for the interaction of the small
disturbance with the shock. The governing equations are the two-dimensional unsteady com-
pressible Euler equations in the conservation form,

∂U

∂t
+

∂E

∂x
+

∂F

∂y
= 0, (17)
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where U is the flow quantities, and E and F are the nonlinear terms, including the pressure gra-
dient. The Cartesian coordinate (x, y) is set as shown in Fig. 1. The unperturbed flow quantities
before the shock, i.e., u1, ρ1, and ρ1u

2
1, are used to non-dimensionalize the velocity, density, and

pressure, respectively. We choose a common and moderate accuracy shock-capturing scheme,
i.e., a third-order weighted essentially nonoscillatory (WENO) scheme, to test its accuracy to
simulate the fluctuations behind the shock. A third-order total-variation-diminishing (TVD)
Runge-Kutta scheme is used for time advancement. As for the boundary conditions, the pe-
riodic condition is used for the upper and lower boundaries, and a sponge region is used as
outflow boundary condition.

For our problem, since the wave number keeps unchanging in the y-direction, the computa-
tion can actually be reduced to a one-dimensional problem by performing the Fourier transform
in y. However, in this paper, we still perform a two-dimensional computation with only consid-
ering one wave length in the y-direction so that the total computational work is well acceptable.
Figure 4 shows the distribution of the unperturbed shock which locates at x = 0.3. The Mach
number of the oncoming flow is taken as 8, and the angle between the flow and the shock β1 is
35◦.
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(b)  Density ρ

ρ

Fig. 4 The unperturbed shock

4 Results and discussion

The computation is performed first without imposing any disturbance. When the flow filed
is completely steady, the small amplitude disturbance is introduced at the inlet. The flow
quantities at the inlet are given by

entropy wave:









ρ
u
v
p









=









ρ
u
v
p









+









δA
0
0
0









ei(kyy−ωt), (18)

vorticity wave:









ρ
u
v
p









=









ρ
u
v
p









+









0
−δA sin θ1

δA cos θ1

0









ei(kyy−ωt), (19)

where δA = 10−5, ky = 16π, θ1 = 45◦, and ω can be computed from the dispersion relation, i.e.,
ω = (u1/ tan θ1 + v1)ky = 66.4. Note that there is no length scale in our problem. Therefore,
the value of ky is taken arbitrarily. The flow parameters and quantities are given in Table 1.
Case 1 and Case 2 correspond to the cases where the flow behind the shock is subsonic and
supersonic, respectively.
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Table 1 The flow parameters (γ = 5/3)

Case β1 Ma1 u1 v1 β2 Ma2 u2

Case 1 65.89◦ 8.00 0.913 0.408 30.54b 0.906 0.241

Case 2 35.09◦ 8.00 0.575 0.818 11.34b 2.442 0.164

4.1 Case 1 where Ma2 < 1

Figures 5(a)–5(c) show the instantaneous perturbations along x at a specific y location. At
this time, the generated fast acoustic wave has already passed through the outlet boundary of
the computational domain, while the entropy and vorticity waves still remain in the computa-
tional domain. As shown in Figs. 5(a) and 5(b), the density and streamwise velocity fluctuations
show a pattern of a wave packet in the range of x = 0.30–0.70, where the transmitted entropy
wave, the generated vorticity wave, and the fast acoustic wave are mixed. The pressure per-
turbation shown in Fig. 5(c) has a sine-wave pattern because only the generated acoustic wave
has the component of pressure fluctuation.

x x
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4
2

2

2

2

4
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4
2

2
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（a）δ ρ （b）δu

（c）δp

0.2 0.4 0.6 0.8
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u
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Fig. 5 Flow fluctuations for the incidence of entropy wave

Since there is no nonlinear interaction between disturbances, we can separate the different
types of disturbance from the flow perturbation field. Figures 6(a) and 6(b) show δρ for the
entropy wave and δu for the vorticity wave, respectively.

x
0.2 0.4 0.6 0.8
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4
2
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0

6

6

4
2

2
4

0

0.00.0 1.01.0

10 510 5

Fig. 6 Flow fluctuations of different types of disturbances

From the numerical results above, we can get the wave length of generated/transmitted wave
along the x- and y-axes, respectively, i.e., λx, and λy. Then, the wave angle θ can be computed
from

tan θ =
λx

λy

. (20)
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The wave length λ of transmitted/generated wave is given by

λ =
λxλy

√

λ2
x + λ2

y

. (21)

Since we are especially interested in the acoustic wave generated behind the shock, to eval-
uate the efficiency of generation of the acoustic wave, a coefficient of generation is defined as,
for the entropy incidence,

C =
δp2

p1δAE/ρ1
,

and for the vortical incidence,

C = −
δp2

p1δAV/|u1|
,

where subscripts E and V denote the fluctuations of entropy and vorticity, respectively.
According to Section 2, the wave length of the disturbances behind the shock given by the

theoretical analysis is

acoustic wave: λ2 = (u2 cos θ2 + v2 sin θ2 ± c2)
2π

ω
, (22)

entropy/vorticity wave: λ3 = (u2 cos θ3 + v2 sin θ3)
2π

ω
, (23)

where sign plus (minus) corresponds to fast (slow) acoustic wave.
We compare the numerical results with the theoretical results in Table 2. δpA denotes the

pressure fluctuation of acoustic wave. The negative value of δAV means that its phase has a
lag of π compared with the incident wave. We can see very good agreement between the results
from the two methods. Furthermore, note that the pressure fluctuations, indicated as well as
in the generation coefficient C, which represent the acoustic wave of more importance in the
receptivity problem, are in perfect agreement.

Table 2 Comparison of results for the incidence of entropy wave

Method θ2 λ2 θ3 λ3 δAE δAV δpA C

Numerical 48.47◦ 0.094 14.79◦ 0.032 3.3 × 10−5
−2.1 × 10−6 2.9 × 10−6 0.29

Theoretical 48.59◦ 0.094 14.82◦ 0.032 2.8 × 10−5
−2.3 × 10−6 2.9 × 10−6 0.29

We also use the vorticity wave as the inlet disturbance to perform the same computation.
The comparison of results given by two methods is shown in Table 3. Also, very good agreement
can be found.

Table 3 Comparison of results for the incidence of vorticity wave

Method θ2 λ2 θ3 λ3 δAE δAV δpA C

Numerical 48.47◦ 0.094 14.79◦ 0.032 1.0 × 10−5 1.2 × 10−5
−4.5 × 10−6 0.75

Theoretical 48.59◦ 0.094 14.82◦ 0.032 1.5 × 10−5 1.2 × 10−5
−4.5 × 10−6 0.75

4.2 Case 2 where Ma2 > 1

For the case that the flow is supersonic behind the shock, both slow and fast acoustic waves
can be generated behind the shock. Two angles are chosen for the incident entropy wave, say,
45◦ and 135◦. Table 4 shows the parameters used in two cases. Note that θ1 = 45◦, which lies in
Regions I of Fig. 3(b), while θ1 = 135◦ lies in Region II. Therefore, Cases 2a and 2b correspond
to the cases that fast and slow acoustic waves are generated behind the shock, respectively.
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Table 4 Parameters of incident entropy wave

Case θ1 kx ky ω

Case 2a 45◦ 50.27 50.27 70.02

Case 2b 135◦ −287.71 287.71 70.02

Figures 7(a)–7(d) show the instantaneous contour of flow fluctuations for Cases 2a and 2b
at a specific time when the wave with higher group velocity has passed through the computa-
tional domain, while the other waves still remain in the domain. We compare the results with
those given by theoretical analysis in Table 5. As before, very good agreement can be found.
Especially, for the acoustic waves, the shock-capturing method gives very accurate results.
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0.0
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0.000 00

0.061 25

(a) Case 2a: contour of δρ
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(d) Case 2b: contour of δu
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Fig. 7 Instantaneous contours of flow fluctuations

Table 5 Comparison between numerical and theoretical methods

Case Method θ2 λ2 θ3 λ3 δAE δAV δpA C

Case 2a
Numerical 50.82◦ 0.097 15.94◦ 0.034 3.2×10−5

−1.8 × 10−6 1.1×10−6 0.106

Theoretical 50.80◦ 0.097 15.93◦ 0.034 2.8×10−5
−1.6 × 10−6 1.1×10−6 0.106

Case 2b
Numerical 129.18◦ 0.017 164.07◦ 0.006 3.2×10−5 1.8×10−6 1.1×10−6 0.106

Theoretical 129.20◦ 0.017 164.07◦ 0.006 2.8×10−5 1.6×10−6 1.1×10−6 0.106

It should be noticed that for Case 2b, the generated slow acoustic wave still propagates
faster than the entropy/vorticity wave, whose group velocity is u2, so that it goes out of the
computational domain first. This can be explained by recalling the group velocity of the acoustic
wave in (7). For Case 2b, since cos θ2 < 0, the x-component of group velocity is vgx = u2 −
c2 cos θ2 > u2. Therefore, we see that the slow acoustic wave goes out of the computational
domain first.

Taking the vorticity wave as the inlet disturbance, no essential difference can be found.
Therefore, we omit the results here.

5 Summary and conclusions

In this paper, the interaction of small amplitude free-stream disturbances with an oblique
shock is investigated. Considering the real situation in high altitude environment that flying
vehicles may encounter, only the incidence of entropy/vorticity wave is considered. The numer-
ical simulation is performed, using a common and moderate order accuracy shock-capturing
method, say, the third-order WENO. The results are compared with those given by theoretical
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analysis. Satisfactory agreement is achieved, confirming that the shock-capturing method can
faithfully reproduce the interaction of weak external disturbances with the shock.
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Appendix A

In this appendix, first, we prove that if θ1 ∈ (−π

2
, π

2
), no slow acoustic wave can be generated

behind the shock, while if θ1 ∈ (π

2
, 3π

2
), no fast acoustic wave can be generated. Second, the existent

condition of (9) is deduced.
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If θ1 ∈ (−π

2
, π

2
), k1x = |k1| cos θ1 > 0. Assume that the slow acoustic wave can be generated behind

the shock, by using (9), we have
u1k1x = u2k2x − c2|k2| > 0.

Then,
k2x

|k2|
>

c2

u2

=
1

Ma2n

> 1. (A1)

Since cos θ2 = k2x

|k2|
6 1, there is no solution to (A1), which means that when θ1 ∈ (−π

2
, π

2
), no slow

acoustic wave can be generated.
Similarly, if θ1 ∈ (π

2
, 3π

2
), k1x = |k1| cos θ1 < 0. Assume that the fast acoustic wave can be generated

behind the shock. By using (9), we have

u1k1x = u2k2x + c2|k2| < 0.

Then, we have

cos θ2 =
k2x

|k2|
< −

c2

u2

= −
1

Ma2n

< −1. (A2)

Again, (A2) has no solution, which means that when θ1 ∈ (π

2
, 3π

2
), no fast acoustic can be generated

behind the shock.
Consider two situations, i.e., ky = 0 and ky 6= 0. If ky = 0, i.e., the incident wave vector is

perpendicular to the shock. θ1 can be 0 or π. When θ1 = 0, the plus sign is taken in (9), which means
that the fast acoustic wave is generated behind the shock, and its wave angle and wave vector are

θ2 = 0, k2 = k2x =
u1

u2 + c2

k1x.

Similarly, when θ1 = π, the minus sign is taken in (9). A slow acoustic wave is generated. Then,

θ2 = π, k2 = k2x =
u1

u2 − c2

k1x.

If ky 6= 0, since |k2| > 0, dividing |k2| on both sides of (9), and making use of

k2x

|k2|
= cos θ2,

k1x

|k2|
=

k1x

ky

ky

|k2|
=

sin θ2

tan θ1

,

(9) can be written as follows:

u1
sin θ2

tan θ1

= u1 cos θ2 ± c2. (A3)

Square both sides of (A3) and rearrange the terms. Then, we have a quadratic equation of cos θ2,

“

u2
2 +

u2
1

tan2 θ1

”

cos2 θ2 ± 2u2c2 cos θ2 + c2
2 −

u2
1

tan2 θ1

= 0. (A4)

From the existent condition of (A4), i.e., the discriminant is positive, we have

∆ = 4u2
2c

2
2 − 4

“

u2
2 +

u2
1

tan2 θ2

”“

c2
2 −

u2
1

tan2 θ1

”

> 0.

By simplifying the above equation, we can get

tan2θ1 6
Ma2

1n

R2(1 − Ma2
2n)

,

where R = c2/c1.
There are four solutions of θ2 to (A4) no matter the plus or minus sign is taken. However, only one

is physical, which can be found out by checking the conditions as listed in Subsection 2.2.


