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Abstract An analytical approach is proposed to study the postbuckling of circular
cylindrical shells subject to axial compression and lateral pressure made of functionally
graded graphene platelet-reinforced polymer composite (FG-GPL-RPC). The governing
equations are obtained in the context of the classical Donnell shell theory by the von
Kármán nonlinear relations. Then, based on the Ritz energy method, an analytical
solution approach is used to trace the nonlinear postbuckling path of the shell. The
effects of several parameters such as the weight fraction of the graphene platelet (GPL),
the geometrical properties, and distribution patterns of the GPL on the postbuckling
characteristics of the FG-GPL-RPC shell are analyzed.
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1 Introduction

Shell-type structures as load-carrying components have many applications in mechanical,
architectural, civil, marine, and aeronautical engineering fields. Therefore, studying their me-
chanical behaviors (vibration and buckling) is of great importance. In particular, the buckling
problem of shells and plates has been the subject of research works by numerous scientists and
engineers. In the following, some of the recent papers in this field are cited.
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Zhu et al.[1] analyzed the buckling of unstiffened cylindrical shells subject to external pres-
sure by experimental tests and the finite element method (FEM). Within the framework of
Reddy’s shear deformation shell theory and using von Kármán’s assumptions, Li et al.[2] ad-
dressed the postbuckling problem of anisotropic laminated cylindrical shells under combined
axial compression and external pressure. Also, the buckling and postbuckling characteristics
of aforementioned shells in the thermal environment were studied by Li and Qiao[3] using a
singular perturbation method. The buckling and postbuckling behaviors of heated cylindrical
shells made of functionally graded materials (FGMs) exposed to combined compressive axial
loading and radial pressure were analyzed by Huang and Han[4] with an analytical approach.
Based on the Donnell shell theory and using the Ritz energy method, Shakouri et al.[5] stud-
ied the torsional buckling of simply-supported laminated conical shells. Sofiyev[6] presented a
numerical analysis on the buckling of sandwich conical shells made of FGMs subject to hydro-
static pressure based on the first-order shear deformation shell theory. Based on the modified
couple stress theory, a three-dimensional solution was provided by Guo et al.[7] for anisotropic
multilayered composite plates. Also, Guo et al.[8] used the two-dimensional Fourier series to
examine the size-dependent behavior of functionally graded (FG) anisotropic composite plates.

In recent years, the reinforcement of composites with nanomaterials has attracted a lot of
attention from the researchers. Especially, the excellent mechanical properties of carbon nan-
otubes (CNTs)[9] have made them ideal candidates for the reinforcement of composite materials.
Carbon nanotube-reinforced composites (CNTRCs) are advanced materials with numerous po-
tential applications[10–15]. One can find numerous research works in the literature in which
synthesizing CNTRCs has been reported[16–21]. Also, graphene and its derivatives are used for
the reinforcement of polymer composites. High strength and stiffness, low production cost, low
density and abundance in nature can be mentioned as the advantages of using the graphene in
the aforementioned nanocomposites[22–23].

Graphene platelet-reinforced polymer composites (GPL-RPCs) belong to a new class of
functional materials with unique properties which make them excellent candidates for several
applications[24]. There are some investigations into the mechanical analysis of structural ele-
ments made of GPL-RPCs[25–30]. For example, Gholami and Ansari[31] proposed a numerical
approach to study the nonlinear bending of multilayer FG-GPL-RPC rectangular plates under
uniform and sinusoidal transverse loads. Wang et al.[32] addressed the buckling problem of
graphene platelet-reinforced composite (GPL-RC) cylindrical shells with the cutout. They also
investigated the eigenvalue buckling of FG-GPL-RC cylindrical shells with the FEM[33]. The
buckling and postbuckling responses of FG-GPL-RC beams embedded in an elastic foundation
were analyzed by Yang et al.[34].

In the current work, a Ritz-based analytical approach is used to address the nonlinear
buckling and postbuckling problems of FG-GPL-RPC cylindrical shells subject to combined
compressive axial and lateral pressure loads. The Halpin-Tsai model and the rule of mixture
are used to calculate the material properties of the nanocomposite. The geometrically nonlin-
ear governing equations are also derived based on the classical Donnell shell theory and the
von Kármán-type geometric nonlinearity. Selected numerical results are presented to study
the effects of graphene platelet (GPL) nanofillers and geometrical properties on the nonlinear
buckling and postbuckling characteristics of the FG-GPL-RPC shell.

2 Material properties

Figure 1 shows a cylindrical shell made of the FG-GPL-RPC. As indicated, four patterns
are considered for the distributions of the GPL across the thickness direction of the shell.

It is assumed that the weight fraction of the GPL changes across the thickness in a layer-wise
manner. For each distribution pattern, the volume fraction of GPL of the kth layer is given by
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Fig. 1 FG-GPL-RPC cylindrical shell with different patterns of GPL distributions

U-GPLRC : V
(k)
GPL = V ∗

GPL, (1a)

X-GPLRC : V
(k)
GPL = 2V ∗

GPL |2k − NL − 1| /NL, (1b)

O-GPLRC : V
(k)
GPL = 2V ∗

GPL

(

1 − |2k − NL − 1|
NL

)

, (1c)

A-GPLRC : V
(k)
GPL = V ∗

GPL (2k − 1) /NL, (1d)

where k = 1, 2, · · · , NL, and

V ∗
GPL =

wGPL

wGPL + (1 − wGPL)
(ρGPL

ρm

) , (2)

in which ρGPL and ρm are used to show the mass densities of the GPL and matrix, respectively.
One can use the modified Halpin-Tsai model to calculate the material properties of GPL-

RPCs with a low content of GPLs. For GPL-RPCs with the low content of GPLs, the accuracy
of this model is validated by the experiments performed by Rafiee et al.[35]. Based on the model,
the effective elastic modulus is approximated as

Eeff =
3

8
EL +

5

8
ET, (3)

where EL and ET denote the longitudinal and transverse elastic moduli, respectively. They are
formulated as

EL =
1 + ξLηLVGPL

1 − ηLVGPL
Em, ET =

1 + ξTηTVGPL

1 − ηTVGPL
Em. (4)

In these relations, ηL and ηT are expressed as

ηL =

EGPL

Em
− 1

EGPL

Em
+ ξL

, ηT =

EGPL

Em
− 1

EGPL

Em
+ ξT

, (5)

in which Em and EGPL are the elastic moduli of the polymer matrix and GPL, respectively.
Also, for ξL and ξT, one has

ξL = 2

(

aGPL

hGPL

)

, ξT = 2

(

bGPL

hGPL

)

, (6)
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where aGPL, bGPL, and hGPL stand for the average length, width, and thickness of the GPL,
respectively.

Finally, to compute the effective mass density (ρeff) and effective Poisson’s ratio (νeff) using
the corresponding properties of the matrix and GPL, the following relations are used based on
the rule of mixture:

ρeff = ρmVm + ρGPLVGPL, (7a)

νeff = νmVm + νGPLVGPL. (7b)

where Vm and VGPL denote the volume fractions of the matrix and GPL, respectively.

3 Governing equations

The governing equations are derived based on the classical Donnell shell theory using an
energy approach. Moreover, the geometrical nonlinearity is taken into account by the von
Kármán hypothesis. The displacement field is written as























ux (x, y, z) = u (x, y) − z
∂w (x, y)

∂x
,

uy (x, y, z) = v (x, y) − z
∂w (x, y)

∂y
,

uz (x, y, z) = w (x, y) ,

(8)

where u (x, y), v (x, y), and w (x, y) symbolize the middle surface displacements. The nonlinear
strain-displacement relations are given by
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
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
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









. (9)

Furthermore, the stress-strain relations are expressed as





σxx

σyy

σxy





(k)

=





Q11 Q12 0
Q12 Q22 0
0 0 Q66





(k) 



εxx

εyy

γxy





(k)

, (10)

where Q
(k)
11 = Q

(k)
22 = Eeff

1−ν2
eff

, Q
(k)
12 = νeffEeff

1−ν2
eff

, and Q
(k)
66 = Eeff

2(1+νeff )
.

The total strain energy of the shell can be written as

Πs =
1

2

∫

A

∫ h

2

−h

2

σijεijdzdA =

NL
∑

l=1

∫

A

∫ zl+1

zl

σ
(l)
ij ε

(l)
ij dzdA

=
1

2

∫

A

(

Nxxε0
xx + Nyyε

0
yy + Nxyγ0

xy + Mxxκxx + Myyκyy + Mxyκxy

)

dA, (11)








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
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The resultant forces and moments are formulated as follows:
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


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


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, (13)

where

(Aij , Bij , Cij) =

NL
∑

l=1

∫ zl+1

zl

(

Q
(k)
ij , Q

(k)
ij z, Q

(k)
ij z2

)

dz, i = 1, 2, 6, j = 1, 2, 6.

Based on Eq. (9), the following compatibility equation is obtained:

∂2ε0
xx

∂y2
+

∂2ε0
yy

∂x2
−

∂2γ0
xy

∂x∂y
=

( ∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2
+

1

R

∂2w

∂x2
. (14)

Now, one can write

Nxx =
∂2ϕ

∂y2
, Nyy =

∂2ϕ

∂x2
, Nxy = − ∂2ϕ

∂x∂y
, (15)

in which ϕ(x, y) is the stress function. By inserting Eq. (15) into Eq. (13), one can arrive at



































ε0
xx = j0

(

A11
∂2ϕ

∂y2
− A12

∂2ϕ

∂x2
+ j1

∂2w

∂x2
+ j2

∂2w

∂y2

)

,

ε0
yy = j0

(

A11
∂2ϕ

∂x2
− A12

∂2ϕ

∂y2
+ j2

∂2w

∂x2
+ j1

∂2w

∂y2

)

,

γ0
xy =

(

2B66
∂2w

∂x∂y
− ∂2ϕ

∂x∂y

)

/A66,

(16)

where j0 = 1
A2

11−A2
12

, j1 = A11B11 − A12B12, j2 = A11B12 − A12B11, and j3 = A11 − A12.

Substituting Eq. (16) into Eq. (14) leads to















∇4ϕ + C1∇4w + C2

( 1

R

∂2w

∂x2
−

( ∂2w

∂x∂y

)2

+
∂2w

∂x2

∂2w

∂y2

)

= 0,

C1 =
j2

A11
, C2 =

1

A11j0
.

(17)

Now, Eqs. (13) and (16) are inserted into Eq. (11) to obtain the strain energy as

Πs =

∫ 2πR

0

∫ L

0

(

k1

((∂2w

∂x2

)2

+
(∂2w

∂y2

)2)

+ k2
∂2w

∂x2

∂2w

∂y2
+ k3

( ∂2w

∂x∂y

)2

+ k4

((∂2ϕ

∂x2

)2

+
(∂2ϕ

∂y2

)2)

+ k5
∂2ϕ

∂x2

∂2ϕ

∂y2
+ k6

( ∂2ϕ

∂x∂y

)2)

dxdy, (18)
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where



















































k1 =
A11

(

B2
11 + B2

12

)

− A2
11B12 + A12 (A12B12 − 2B11B12)

2 (A2
12 − A2

11)
,

k2 =
A12

(

B2
11 + B2

12

)

− A2
12C12 + A11 (A11C12 − 2B11B12)

A2
11 − A2

12

,

k3 = B12 − C12 +
(B11 − B12)

2

A12 − A11
, k4 =

A11

2 (A2
11 − A2

12)
,

k5 =
A12

(A2
12 − A2

11)
, k6 =

1

(A11 − A12)
.

(19)

It is considered that the shell is under axial and lateral loads. With Eqs. (9) and (16), the
work done by external forces is given by

Πex =q

∫ 2πR

0

∫ L

0

wdxdy − σ0xh

∫ 2πR

0

∫ L

0

∂u

∂x
dxdy = q

∫ 2πR

0

∫ L

0

wdxdy

− σ0xh

∫ 2πR

0

∫ L

0

(

j0

(

A11
∂2ϕ

∂y2
− A12

∂2ϕ

∂x2
+ j1

∂2w

∂x2
+ j2

∂2w

∂y2

)

− 1

2

(∂w

∂x

)2)

dxdy, (20)

where σ0x denotes the average axial stress, which is positive when the shell is compressed. Also,
q stands for the uniform radial pressure.

Now, the total potential energy is obtained as

ΠTPE = Πs − Πex. (21)

With Eqs. (9) and (16), the circumferential closed condition can be satisfied according to
the following relation:

∫ 2πR

0

∫ L

0

∂v

∂y
dxdy

=

∫ 2πR

0

∫ L

0

(

j0

(

A11
∂2ϕ

∂x2
− A12

∂2ϕ

∂y2
+ j2

∂2w

∂x2
+ j1

∂2w

∂y2

)

+
w

R
− 1

2

(∂w

∂y

)2)

dxdy. (22)

The average end-shortening ratio of the cylindrical shell is written as

∆x = − 1

2πRL

∫ 2πR

0

∂u

∂x
dxdy

= − 1

2πRL

∫ 2πR

0

∫ L

0

(

j0

(

A11
∂2ϕ

∂y2
− A12

∂2ϕ

∂x2
+ j1

∂2w

∂x2
+ j2

∂2w

∂y2

)

− 1

2

(∂w

∂x

)2)

dxdy. (23)

4 Analytical solutions

The deflection of the shell under the combined axial and lateral loading condition can be
approximated as[36]

w (x, y) = f0 + f1 sin(αx) sin(βy) + f2 (sin(αx))
2
, (24)

in which α = mπ
L

and β = n
R

(m and n denote the axial half wave number along the x-axis
and the wave number along the y-axis, respectively). In addition, f0, f1, and f2 are unknown
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amplitudes corresponding to the pre-buckling, linear buckling, and nonlinear buckling states,
respectively.

Substitution of Eq. (24) into Eq. (17) leads to

∇4ϕ = b01 cos(2αx) + b02 sin(2βy) + b03 sin(αx) sin(βy) + b04 sin(3αx) sin(βy) , (25)

where

b01 =
(

16C1f2α
2 + C2f1β

2 − 4C2f2

R

)

α2/2,

b02 = C2f1α
2β2/2,

b03 = f1

(

C2
α2

R
+ C2f2α

2β2 − C1(α
2 + β2)2

)

,

b04 = C2f1f2α
2β2.

Then, the general solution to ϕ is given by

ϕ = b1 cos(2αx) + b2 sin(2βy) + b3 sin(αx) sin(βy)

+ b4 sin(3αx) sin(βy) − σ0xhy2

2
− σ0yhx2

2
, (26)

where σ0y denotes the average circumferential stress, which is positive for the circumferentially
compressed cylindrical shell. Also,



























b1 = a1f2 + a2f
2
1 , b2 = a3f

2
1 , b3 = a4f1f2 + a5f1, b4 = a6f1f2,

a1 =
1

8

(

4C1 −
C2

Rα2

)

, a2 =
C2β

2

32α2
, a3 =

C2α
2

32β2
,

a4 = − C2α
2β2

(α2 + β2)
2 , a5 =

C2α
2

R (α2 + β2)
2 − C1, a6 =

C2α
2β2

(9α2 + β2)
2 .

(27)

By using Eqs. (24) and (26) and defining k5 + k6 = 2k4 and k2 + k3 = 2k1, Eqs. (18) and (20)
are rewritten as

Πs =
1

2
πRL

(

k1f
2
1

(

α2 + β2
)2

+ 4
(

2k1f
2
2 α4

)

+ k4

(

32b2
1α

4 + 32b2
2β

4 + b2
3

(

α2 + β2
)2

+ b2
4

(

9α2 + β2
)2

+ 4h2
(

k5σ0xσ0y + k4

(

σ2
0x + σ2

0y

)) ))

, (28a)

Πex =πRL
(

q (2f0 + f2) +
1

4
σ0xh((f2

1 + 2f2
2 )α2 + 8j0h(A11σ0x − A12σ0y))

)

. (28b)

Using Eqs. (28) and (21) and based on the Ritz method, one can write

∂ΠTPE

∂f0
=

∂ΠTPE

∂f1
=

∂ΠTPE

∂f2
= 0. (29)

With Eqs. (24) and (26), Eq. (22) becomes

σ0y =
1

A11h

(2f0 + f2

2j0R
− f2

1 β2

8j0
+ A12σ0xh

)

. (30)

By inserting Eq. (30) into Eq. (21) and using Eq. (29), one has

∂ΠTPE

∂f0
=

π

2A2
11j

2
0R

(

4k4 (2f0 + f2) + 4A11j0 (A12j0 + k5)σ0xh − 4A2
11j

2
0qR

− k4

(

f2
1 β2 − 8A12j0σ0xh

) )

. (31)
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Considering Eqs. (30) and (31) leads to

σ0y =
qR

h
. (32)

Considering Eq. (32), using Eq. (29), and noting that f1 6= 0, one arrives at

f2
1 = −H01 + H04f

2
2 + H05f2 − 1

2α2σ0xh

H03
, (33a)

q = H06f2 + H07f
2
1 + H08f

2
1 f2 − α2f2σ0xh, (33b)

where


























H01 =
(

k1 + k4a
2
5

) (

α2 + β2
)2

, H03 = 64k4

(

a2
2α

4 + a2
3β

4
)

,

H04 =k4

(

a2
4

(

α2+β2
)2

+a2
6

(

9α2 + β2
)2)

, H05 =2k4

(

32a1a2α
4 + a4a5

(

α2 + β2
)2)

,

H06 = 8α4
(

k1 + 4k4a
2
1

)

, H07 = k4

(

32a1a2α
4 + a4a5

(

α2 + β2
)2)

,

H08 = k4

(

a2
4

(

α2 + β2
)2

+ a2
6

(

9α2 + β2
)2)

.

(34)

From Eqs. (33) and (34), one obtains

σ0xh =
2

(

H01H07 + H03q + (H01H08 + H05H07 − H03H06) f2 + H04H08f
3
2

)

(H07 + (H08 − 2H03) f2)α2
, (35)

which is used to obtain the nonlinear critical condition. Considering f2 = 0, the previous
equation is rewritten as follows:

σ0xh =
2H01

α2
+

H03q

H07α2
. (36)

Equation (36) can be used to derive the interaction relation between axial and lateral linear
critical loads, through minimizing σ0x (or q) under a given value of q (or σ0x) for different
combinations of m and n. For q = 0, one has

σ0xh =
1

A11

(A2
11 − A2

12

R2

( α

α2 + β2

)2

+
(

A11C11 − B2
11

)

( α

α2 + β2

)2)

+
2 (A12B11 − A11B12)

R
. (37)

By minimizing σ0xh with respect to
(

α
α2+β2

)2
, the linear critical axial compression is ob-

tained as

σ0xcr =
2

A11Rh

(

√

(A2
11 − A2

12) (A11C11 − B2
11) + (A12B11 − A11B12)

)

. (38)

If σ0x = 0, the linear critical radial pressure is obtained as

q =
2β2

C2R3 (α4 + β4) (α2 + β2)
2

(

C2

(

9α4 + 2α2β2 + β4
)

− 12C1Rα2
(

α2 + β2
)2)

·
(

C2
2k4α

4 − 2C1C2k4Rα2
(

α2 + β2
)2

+
(

k1 + C2
1k4

)

R2
(

α4 + β4
))

. (39)

With Eq. (32), Eq. (39) is reduced into the linear critical load of the isotropic shell,

σ0ycr = E
( α4

R2β2 (α2 + β2)
2 +

h2
(

α2 + β2
)2

12β2 (1 − ν2
eff)

)

. (40)
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Based on Eq. (32), inserting Eqs. (24) and (26) into Eq. (23) results in the following relation
for the end-shortening ratio of the shell:

∆x =
α2

32
(4f2

1 + 3f2
2 ) + j0(A11σ0xh − A12σ0yh)

=
α2

32

(

3f2
2 − 4

H03
(H01 + H04f

2
2 + H05f2) −

1

2
σ0xα2h

)

+ j0(A11σ0xh − A12σ0yh). (41)

5 Results and discussion

First of all, to check the accuracy of the solution method and presented results, for a special

case, the critical buckling load parameters (N
0

xx = σ0x×hL2/(π2Dm); Dm = Emh3/(12(1−ν2)))
of the simply-supported circular cylindrical shell made of FGMs based on the present analysis
are compared with those provided by Bagherizadeh et al.[37] in Table 1. The parameters are
considered to be Em = 70 GPa, Ec = 380 GPa, ν = νc = νm = 0.3, κ = 2, and Z =
L2

√
1 − ν2/(Rh), where Z is the geometrical parameter. Good agreement can be observed

between the results given in Table 1. Furthermore, for a special case, the postbuckling path
of the axially-compressed isotropic cylindrical shell is compared with the analytical solution
provided by Shen[38], as shown in Fig. 2. Reasonable agreement can be found in the pre-
buckling equilibrium response and initial postbuckling path. It is remarked that the difference
in the rest of the postbuckling response might be due to mode jump phenomena considered in
the present study which were not considered in Ref. [38].

Table 1 Critical buckling load parameters of FGM cylindrical shells under the axial compressive
loading

Z

h/R

0.01 0.025 0.05

Present Ref. [37] Present Ref. [37] Present Ref. [37]

50 79.898 5 79.929 6 80.582 5 79.486 84 78.483 6 78.798 42
300 48.022 5 479.506 6 476.033 8 476.383 40 471.771 3 470.877 50
900 1 438.225 4 1 438.157 0 1 431.366 5 1 428.611 00 1 413.647 5 1 412.380 00

∆

ν

Fig. 2 Comparisons of the postbuckling equilibrium path of axially-compressed isotropic cylindrical
shells

To generate numerical results, it is considered that Em = 3 GPa, νm = 0.34, and ρm =
2 100 kg/m3[39]. Moreover, unless otherwise stated, it is assumed that EGPL = 10.1 TPa,
νGPL = 0.186, ρGPL = 1.062 × 103 kg/m3, aGPL = 2.5 µm, bGPL = 1.5 µm, and hGPL =
1.5 nm[35,40]. Furthermore, unless otherwise stated, h = 0.045 m and NL = 10 are considered.



1010 S. BLOORIYAN, R. ANSARI, A. DARVIZEH, R. GHOLAMI, and H. ROUHI

In Tables 2–4, the effects of properties of the GPL on the critical axial stress are studied.
In these tables, σcr is tabulated for three distribution patterns of the GPL, i.e., U-GPLRC,
X-GPLRC, and O-GPLRC. In Table 2, the results are obtained for various weight fractions of
the GPL ranging from 0% to 1.0%. For all distribution patterns, it is clearly observed that the
critical axial stress increases with increasing the weight fraction of the GPL. Moreover, it is
seen that the critical stress calculated for O-GPLRC is smaller than that for U-GPLRC, and
the latter one is also smaller than that for X-GPLRC. Thus, to strength the GPL-RPC shell,
GPL fillers should be dispersed near the top and bottom surfaces. In Tables 3 and 4, the effects
of length-to-width and length-to-thickness ratios of the GPL on the buckling response of the
shell can be studied. One can find that σcr increases as these parameters increase.

Table 2 Critical axial stresses of FG-GPL-RPC cylindrical shells for different distribution patterns
and weight fractions of the GPL (NL = 10, R = 40h, and L = 2R)

wGPL/%
σcr/MPa

U-GPLRC X-GPLRC O-GPLRC

0.0 21.58 21.58 21.58
0.1 39.22 44.82 31.99
0.2 56.83 67.59 41.42
0.3 74.41 90.23 50.42
0.5 109.48 135.30 67.76
0.8 161.87 202.59 93.01
1.0 196.65 247.27 109.56

Table 3 Critical axial stresses of FG-GPL-RPC cylindrical shells for different length-to-width ratios
of the GPL (NL = 10, R = 40h, L = 2R, wGPL = 0.3%, bGPL = 1.5 µm, and hGPL = 1.5 nm)

aGPL
bGPL

σcr/MPa

U-GPLRC X-GPLRC O-GPLRC

0.5 45.10 52.45 35.21
1.0 58.28 69.48 42.18
1.5 70.44 85.12 48.41
2.0 82.28 100.34 54.36
2.5 93.97 115.37 60.16
3.0 105.60 130.29 65.87

Table 4 Critical axial stresses of FG-GPL-RPC cylindrical shells for different length-to-thickness
ratios of the GPL (NL = 10, R = 40h, L = 2R, wGPL = 0.3%, bGPL = 1.5 µm, and
aGPL = 2.5 µm)

aGPL
hGPL

σcr/MPa

U-GPLRC X-GPLRC O-GPLRC

500 41.65 47.99 33.34
1 000 51.40 60.60 38.58
1 500 60.12 71.84 43.13
2 000 68.52 82.65 47.44
2 500 76.78 93.27 51.61
3 000 84.96 103.79 55.70

Figure 3 indicates the relation between the nonlinear critical stress and the buckling mode
of shells with four patterns considering wGPL = 0.3%. In this figure, for various combinations
of mode numbers, σ0x is plotted versus f2/h. The lowest point of the envelope curve can be
regarded as the nonlinear critical axial stress corresponding to the nonlinear buckling mode.
Figure 3 reveals that the maximum and minimum values of the critical stress correspond to
X-GPLRC and O-GPLRC patterns, respectively.



Postbuckling analysis of FG-GPL-RPC cylindrical shells 1011

σ σ

σ σ

-

- -

-

Fig. 3 Diagrammatic sketches of the axial stress and the buckling mode for different distribution
patterns of the GPL when R = 40h, L = 2R, m = 1, n = 2, · · · , 6, and wGPL = 0.3% (color
online)

In Fig. 4, the variation of q for the X-GPLRC shell versus f2/h is shown for various values
of wGPL. The results for pure epoxy are also given in this figure. As expected, with increasing
the weight fraction of the GPL, the critical buckling pressure gets larger.

Fig. 4 Relations between the nonlinear critical lateral pressure and the buckling mode for the X-
GPLRC shell when R = 40h, L = 2R, m = 1, n = 3, · · · , 6, and σ0x = 0.5 MPa (color
online)

Figure 5 shows the postbuckling paths of X-GPLRC shells. In this figure, solid lines represent
the postbuckling path. It is observed that the shell follows a prebuckling path before reaching
the linear bifurcation point at which the axial stress takes its maximum value. Thereafter, the
shell follows the postbuckling path, and the axial stress considerably decreases to the minimum
value which is associated with the lowest critical load. Then, the stress slightly gets larger. The
continuous mode jumps are also seen in the postbuckling regions.
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Fig. 5 Postbuckling responses for X-GPLRC shells corresponding to various buckling modes when
R = 40h, L = 2R, m = 1, n = 2, · · · , 6, and wGPL = 0.3% (color online)

Figure 6 indicates the postbuckling paths of shells with various distribution patterns of the
GPL. The results indicate that the postbuckling path of the X-GPLRC shell is above all. The
postbuckling path of shells made of pure epoxy is also shown in the figure for the comparison
purpose.

∆

-

-

-

Fig. 6 Postbuckling responses of shells with various distribution patterns of the GPL when R = 40h,
L = 2R, m = 1, n = 2, · · · , 6, wGPL = 1%, and q = 0

The effects of the GPL weight fraction, length-to-width ratio, and length-to-thickness ratio
on the postbuckling path for X-GPLRC shells are highlighted in Figs. 7–9, respectively. Figure
7 shows that, as the weight fraction of the GPL increases, the critical stress and critical load get
larger, and the gradient of linear part of plot increases. From Fig. 8, one can find that the slope
of linear part is independent of the length-to-width ratio of the GPL. However, as this ratio
goes higher, the critical buckling load increases, and in the postbuckling area, increasing this
ratio leads to an increase in the value of the critical postbuckling stress. Furthermore, Fig. 9
indicates that the slope of linear part is independent of the length-to-thickness ratio of the
GPL. However, the critical buckling load increases with increasing aGPL/hGPL. Furthermore,
the critical stress increases as this ratio increases in the postbuckling regime.

∆

Fig. 7 Effects of the GPL weight fraction on the nonlinear postbuckling response for X-GPLRC shells
when R = 40h, L = 2R, m = 1, n = 2, · · · , 5, and q = 0 kPa
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∆

Fig. 8 Effects of the GPL length-to-width ratio on the postbuckling response for X-GPLRC shells
when R = 40h, L = 2R, m = 1, n = 2, · · · , 5, and q = 50 kPa

∆

Fig. 9 Effects of the GPL length-to-thickness ratio on the nonlinear postbuckling behavior for X-
GPLRC shells when R = 40h, L = 2R, m = 1, n = 2, · · · , 5, and q = 50 kPa

Figure 10 shows the postbuckling responses of X-GPLRC shells for various values of the
lateral pressure. It is seen that the critical stress decreases as the pressure gets larger.

∆

Fig. 10 Postbuckling responses of X-GPLRC shells for various values of the lateral pressure when
R = 40h, L = 2R, m = 1, n = 2, · · · , 5, and wGPL = 0.3%

In Fig. 11, the critical axial stresses of shells with various distribution patterns of the GPL
are plotted versus the length-to-radius ratio. The mode switching phenomenon can be observed
in this figure. It means that, by increasing the length-to-thickness ratio, the critical axial stress
may be increased or decreased. Furthermore, it can be seen that, the highest critical axial
stress belongs to the X-GPLRC distribution which is followed by U-GPLRC and O-GPLRC
distributions and pure epoxy, respectively. Finally, the influence of radius-to-thickness ratio
can be investigated in Fig. 12. It is seen that increasing this ratio results in the decrease in the
critical stress.

6 Conclusions

In this article, the nonlinear buckling and postbuckling of cylindrical shells reinforced by the
GPL under axial compression and lateral pressure are studied by using an analytical approach.
The effects of geometrical parameters of the shell, the distribution pattern, geometry, and the
weight fraction of the GPL are analyzed. The findings can be summarized as follows.
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- -

-

-

-

Fig. 11 Variations of critical axial stresses for shells with various distribution patterns of the GPL
versus the length-to-radius ratio when R = 40h, m = 1, wGPL = 0.1%, and NL = 10

- -

Fig. 12 Variations of critical axial stresses for X-GPLRC shells with various radius-to-thickness ratios
versus the length-to-radius ratio when R = 40h, m = 1, wGPL = 0.3%, and NL = 10

(i) For all distribution patterns, the critical stress and bucking load increase with increasing
the weight fraction of the GPL.

(ii) The distribution pattern X-GPLRC has the largest critical buckling stress and load.

(iii) For small shortening ratios, the difference between the results of various distribution
patterns of the GPL is relatively considerable, and for the higher end-shortening ratios, the
difference decreases.

(iv) The length-to-width and length-to-thickness ratios of the GPL do not affect the linear
part of the load-shortening ratio response curve. On the other hand, increasing these ratios
leads to the increase of the critical buckling load in the shell buckling zone and the critical
stress of postbuckling.

References

[1] ZHU, Y., DAI, Y., MA, Q., and TANG, W. Buckling of externally pressurized cylindrical shell: a
comparison of theoretical and experimental data. Thin-Walled Structures, 129, 309–316 (2018)

[2] LI, Z. M., LIU, T., and YANG, D. Q. Postbuckling behavior of shear deformable anisotropic
laminated cylindrical shell under combined external pressure and axial compression. Composite

Structures, 198, 84–108 (2018)

[3] LI, Z. M. and QIAO, P. Buckling and postbuckling of anisotropic laminated cylindrical shells
under combined external pressure and axial compression in thermal environments. Composite

Structures, 119, 709–726 (2015)



Postbuckling analysis of FG-GPL-RPC cylindrical shells 1015

[4] HUANG, H. and HAN, Q. Nonlinear buckling and postbuckling of heated functionally graded
cylindrical shells under combined axial compression and radial pressure. International Journal of

Non-Linear Mechanics, 44(2), 209–218 (2009)

[5] SHAKOURI, M., SHARGHI, H., and KOUCHAKZADEH, M. Torsional buckling of generally
laminated conical shell. Meccanica, 52(4/5), 1051–1061 (2017)

[6] SOFIYEV, A. Application of the FOSDT to the solution of buckling problem of FGM sandwich
conical shells under hydrostatic pressure. Composites Part B : Engineering, 144, 88–98 (2018)

[7] GUO, J., CHEN, J., and PAN, E. Analytical three-dimensional solutions of anisotropic multi-
layered composite plates with modified couple-stress effect. Composite Structures, 153, 321–331
(2016)

[8] GUO, J., CHEN, J., and PAN, E. Size-dependent behavior of functionally graded anisotropic
composite plates. International Journal of Engineering Science, 106, 110–124 (2016)

[9] SHOKRIEH, M. and RAFIEE, R. A review of the mechanical properties of isolated carbon
nanotubes and carbon nanotube composites. Mechanics of Composite Materials, 46(2), 155–172
(2010)

[10] ASHRAFI, B., HUBERT, P., and VENGALLATORE, S. Carbon nanotube-reinforced composites
as structural materials for microactuators in microelectromechanical systems. Nanotechnology,
17(19), 4895–4903 (2006)

[11] ESAWI, A. M. and FARAG, M. M. Carbon nanotube reinforced composites: potential and current
challenges. Materials and Design, 28(9), 2394–2401 (2007)

[12] TJONG, S. C. Carbon Nanotube Reinforced Composites: Metal and Ceramic Matrices, John Wiley
& Sons, Weinheim (2009)

[13] BAKSHI, S., LAHIRI, D., and AGARWAL, A. Carbon nanotube reinforced metal matrix com-
posites: a review. International Materials Reviews, 55(1), 41–64 (2010)

[14] EBRAHIMI, F. and FARAZMANDNIA, N. Thermo-mechanical vibration analysis of sandwich
beams with functionally graded carbon nanotube-reinforced composite face sheets based on a
higher-order shear deformation beam theory. Mechanics of Advanced Materials and Structures,
24(10), 820–829 (2017)

[15] FU, Y., ZHONG, J., SHAO, X., and TAO, C. Analysis of nonlinear dynamic stability for car-
bon nanotube-reinforced composite plates resting on elastic foundations. Mechanics of Advanced

Materials and Structures, 23(11), 1284–1289 (2016)

[16] THOSTENSON, E. T., REN, Z., and CHOU, T. W. Advances in the science and technology of
carbon nanotubes and their composites: a review. Composites Science and Technology, 61(13),
1899–1912 (2001)

[17] LAU, K. T., GU, C., GAO, G. H., LING, H. Y., and REID, S. R. Stretching process of single- and
multi-walled carbon nanotubes for nanocomposite applications. Carbon, 42(2), 426–428 (2004)

[18] VEEDU, V. P., CAO, A., LI, X., MA, K., SOLDANO, C., KAR, S., AJAYAN, P. M., and
GHASEMI-NEJHAD, M. N. Multifunctional composites using reinforced laminae with carbon-
nanotube forests. Nature Materials, 5(6), 457–462 (2006)

[19] KIM, M., PARK, Y. B., OKOLI, O. I., and ZHANG, C. Processing, characterization, and modeling
of carbon nanotube-reinforced multiscale composites. Composites Science and Technology, 69(3),
335–342 (2009)

[20] SUN, K., YU, J., ZHANG, C., and ZHOU, X. In situ growth carbon nanotube reinforced SiCf/SiC
composite. Materials Letters, 66(1), 92–95 (2012)

[21] AHMADI, M., ANSARI, R., and HASSANZADEH-AGHDAM, M. Low velocity impact anal-
ysis of beams made of short carbon fiber/carbon nanotube-polymer composite: a hier-
archical finite element approach. Mechanics of Advanced Materials and Structures (2018)
https://doi.org/10.1080/15376494.2018.1430276

[22] JI, X. Y., CAO, Y. P., and FENG, X. Q. Micromechanics prediction of the effective elastic moduli
of graphene sheet-reinforced polymer nanocomposites. Modelling and Simulation in Materials

Science and Engineering, 18(4), 045005 (2010)



1016 S. BLOORIYAN, R. ANSARI, A. DARVIZEH, R. GHOLAMI, and H. ROUHI

[23] TERRONES, M. and TERRONES, H. The carbon nanocosmos: novel materials for the twenty-
first century. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, 361(1813), 2789–2806 (2003)

[24] SHI, G., ARABY, S., GIBSON, C. T., MENG, Q., ZHU, S., and MA, J. Graphene platelets and
their polymer composites: fabrication, structure, properties, and applications. Advanced Func-

tional Materials, 28(19), 1706705 (2018)

[25] GHOLAMI, R. and ANSARI, R. Nonlinear harmonically excited vibration of third-order shear
deformable functionally graded graphene platelet-reinforced composite rectangular plates. Engi-

neering Structures, 156, 197–209 (2018)

[26] RAFIEE, M., NITZSCHE, F., and LABROSSE, M. Modeling and mechanical analysis of multi-
scale fiber-reinforced graphene composites: nonlinear bending, thermal post-buckling and large
amplitude vibration. International Journal of Non-Linear Mechanics, 103, 104–112 (2018)

[27] LIU, D., KITIPORNCHAI, S., CHEN, W., and YANG, J. Three-dimensional buckling and free vi-
bration analyses of initially stressed functionally graded graphene reinforced composite cylindrical
shell. Composite Structures, 189, 560–569 (2018)

[28] GHOLAMI, R. and ANSARI, R. On the nonlinear vibrations of polymer nanocomposite rect-
angular plates reinforced by graphene nanoplatelets: a unified higher-order shear deformable
model. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2018)
https://doi.org/10.1007/s40997-018-0182-9

[29] KITIPORNCHAI, S., CHEN, D., and YANG, J. Free vibration and elastic buckling of functionally
graded porous beams reinforced by graphene platelets. Materials and Design, 116, 656–665 (2017)

[30] SONG, M., YANG, J., and KITIPORNCHAI, S. Bending and buckling analyses of functionally
graded polymer composite plates reinforced with graphene nanoplatelets. Composites Part B :
Engineering, 134, 106–113 (2018)

[31] GHOLAMI, R. and ANSARI, R. Large deflection geometrically nonlinear analysis of functionally
graded multilayer graphene platelet-reinforced polymer composite rectangular plates. Composite

Structures, 180, 760–771 (2017)

[32] WANG, Y., FENG, C., ZHAO, Z., and YANG, J. Buckling of graphene platelet reinforced com-
posite cylindrical shell with cutout. International Journal of Structural Stability and Dynamics,
18(3), 1850040 (2018)

[33] WANG, Y., FENG, C., ZHAO, Z., LU, F., and YANG, J. Torsional buckling of graphene platelets
(GPLs) reinforced functionally graded cylindrical shell with cutout. Composite Structures, 197,
72–79 (2018)

[34] YANG, J., WU, H., and KITIPORNCHAI, S. Buckling and postbuckling of functionally graded
multilayer graphene platelet-reinforced composite beams. Composite Structures, 161, 111–118
(2017)

[35] RAFIEE, M. A., RAFIEE, J., WANG, Z., SONG, H., YU, Z. Z., and KORATKAR, N. Enhanced
mechanical properties of nanocomposites at low graphene content. ACS Nano, 3(12), 3884–3890
(2009)

[36] VOL’MIR, A. D. S. Stability of Elastic Systems, Foreign Technology Division, Wright-Patterson
Air Force Base, Ohio (1965)

[37] BAGHERIZADEH, E., KIANI, Y., and ESLAMI, M. Mechanical buckling of functionally graded
material cylindrical shells surrounded by Pasternak elastic foundation. Composite Structures,
93(11), 3063–3071 (2011)

[38] SHEN, H. S. Postbuckling analysis of axially-loaded functionally graded cylindrical shells in ther-
mal environments. Composites Science and Technology, 62(7/8), 977–987 (2002)

[39] YASMIN, A. and DANIEL, I. M. Mechanical and thermal properties of graphite platelet/epoxy
composites. Polymer, 45(24), 8211–8219 (2004)

[40] LIU, F., MING, P., and LI, J. Ab initio calculation of ideal strength and phonon instability of
graphene under tension. Physical Review B, 76(6), 064120 (2007)


