
Appl. Math. Mech. -Engl. Ed., 41(1), 83–104 (2020)

Applied Mathematics and Mechanics (English Edition)

https://doi.org/10.1007/s10483-020-2558-7

Modelling two-layer nanofluid flow in a micro-channel with
electro-osmotic effects by means of Buongiorno’s model∗

M. D. K. NIAZI, Hang XU†

State Key Lab of Ocean Engineering, Collaborative Innovation Center for Advanced Ship

and Deep-Sea Exploration (CISSE), School of Naval Architecture, Ocean and Civil

Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

(Received Jul. 14, 2019 / Revised Aug. 6, 2019)

Abstract A fully developed steady immiscible flow of nanofluid in a two-layer micro-

channel is studied in the presence of electro-kinetic effects. Buongiorno’s model is em-

ployed for describing the behavior of nanofluids. Different from the previous studies on

two-layer channel flow of a nanofluid, the present paper introduces the flux conservation

conditions for the nanoparticle volume fraction field, which makes this work new and

unique, and it is in coincidence with practical observations. The governing equations are

reduced into a group of ordinary differential equations via appropriate similarity transfor-

mations. The highly accurate analytical approximations are obtained. Important physical

quantities and total entropy generation are analyzed and discussed. A comparison is made

to determine the significance of electrical double layer (EDL) effects in the presence of

an external electric field. It is found that the Brownian diffusion, the thermophoresis

diffusion, and the viscosity have significant effects on altering the flow behaviors.
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Nomenclature

Br1, Br2, Brinkman numbers;
B0, magnetic field in z-direction;
C1, C2, nano-particle volume fractions;
C0, reference nano-particle volume frac-

tion;
Cw, nano-particle volume fraction on the

micro-channel walls;
Cf1, Cf2, local skin friction coefficients;

(cp)f , (cp)s,specific heat of fluid and nanoparticles;
DB1, DB2, Brownian diffusion coefficients;
Dt1, Dt2, thermophoretic diffusion coefficients;
e, charge of a proton;
E(m), error for homotopy analysis method

(HAM) computation order m;
Es, non-dimensional external electric field

parameter;
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Ex, Ey, electric field in x- and y-directions re-
spectively;

F1, F2, electrical body forces from uniform
electromagnetic field;

H , total distance between the boundaries
of the channel;

H1, H2, distances of two-layer fluid in Regions
�and �;

h1, h2, non-dimensional distances of Regions
�and �;

Ha1, Ha2, Hartman numbers;
k1, k2, Debye-Hückel parameters;
kB, Boltzmann constant;
kf1 , kf2 , thermal conductivities of the fluid;
kf , ratio of thermal conductivities of the

fluid;
L, length of the micro-channel;
MD, dimensionless mass diffusion parame-

ter;
n0, bulk ionic concentration;
NB1, NB2, Brownian motion parameters;
Nt1, Nt2, thermophoresis parameters;
Nu1, Nu2, local Nusselt numbers;
p, pressure;
P1, P2, non-dimensional pressure gradient pa-

rameters;

qw1, qw2, wall heat fluxes on the two wall of the
channel;

RD, universal gas constant;
Re1, Re2, Reynolds numbers;
s1, s2, non-dimensional nano-particle vol-

ume fractions;
Se1, Se2, strengths of lateral direction electric

field;
S1

G, S2
G, entropy generated in the respective

channels;
Stotal, total entropy generated in the chan-

nel;
Sr, ratio of entropy generated in Region I

and Region II;
T 1, T 2, temperatures;
T0, reference temperature;
Tw, temperature on the micro-channel

wall surface;bT , absolute temperature;
u1, u2, non-dimensional velocities of the

fluid;
Ua1, Ua2, average velocities of the fluid;
u1, u2, x-component of the fluid velocities;
W , width of the micro-channel;
x, y, z, Cartesian coordinates;bz, the valences of ions.

Greak letters

α1, α2, thermal diffusivities of the nanofluid;
ε, ratio of dielectric constants of the

medium;
ε1, ε2, dielectric constants of the medium;
ε0, permittivity of vacuum;
η, non-dimensional spatial variable;
Γ1, Γ2, non-dimensional pressure gradient

parameters;
κ1, κ2, electro-osmotic parameters;
Λ0, dimensionless reference nanoparticle

parameter;
λN , ratio of the respective quan-

tity N such that N ∈
{ε, kf , μ, σ, DB, Dt, α, τ, ρ};

μ1, μ2, dynamic viscosities of the fluid;
θ0, dimensionless reference temperature

parameter;
θ1, θ2, non-dimensional temperature distri-

butions;
(ρ1)f , (ρ2)s, densities of the fluids or nanoparti-

cles;
ρe1, ρe2, charge densities;
τw1, τw2, shear stresses on the wall of the

micro-channel;
φ1, φ2, electrostatic potentials;
φ1, φ2, non-dimensional electrostatic poten-

tials;
Ω1, Ω2, ratios of Joule heating to the applied

temperature differences between wall
and ambient fluid;

ζ1, ζ2, non-dimensional zeta potentials;
ζ1, ζ2, zeta potentials.

Subscripts list

1, 2, refer to quantities for Regions I and II;
f, s, refer to the fluid and solid particles;

w, physical quantities on the micro-channel
wall.

1 Introduction

For evaluation of the precise characteristics of a fluid flow in a channel or a tube of micro-
size, heat transfer has usually been a very important aspect to be considered. Flow transport



Modelling two-layer nanofluid flow in a micro-channel with electro-osmotic effects 85

mechanism of microfluidics is of great importance in the design of all kinds of micro-electro-
mechanical systems (MEMS) and has been investigated by some researchers[1–5]. In this context,
heat dissipation is also a significant factor to be considered for better efficiency of those systems.
That is to say, it is essential to develop efficient cooling systems that are compatible with
the micro scale of these small structures. One appropriate way to achieve this target is the
use of micro-channels or micro-tubes with high thermal conduction fluids passing through.
However, a more effective way is the addition of small solid particles into the fluid for heat
transfer enhancement. The latter approach was initiated by Maxwell[6] who utilized small
metallic particles to increase the heat conductivity of regular fluids. Choi and Eastman[7]

improved on heat transfer capability of fluids by adding nano-scale solid particles in the flow
and named the resulting fluids as nanofluids. Using Choi’s approach, the heat conductivity
of the nanofluids is significantly improved and as a consequence, many different materials and
their thermal properties, as well as other factors like shape and size were examined theoretically
or experimentally by different researchers[8–15].

When a fluid flows due to external pressure, the static charge present in the solid channel
walls attracts free-moving ions in the fluid and as a result, the electrical double layer (EDL)[16]

on solid-fluid interface forms. In case of micro-channels and micro-tubes, the resistance is
increased due to the reduced radius of the channel. In the meantime, a current is generated
owing to the potential difference created from the rearrangement of these ions. This particular
feature was studied by Mala et al.[17], Mala and Li[18], and Ren et al.[19]. Similar trends were
highly observed in channels with tiny radius in many MEMS[20–23]. Ren and Li[24] proposed
a symmetric boundary condition for the electrical field to explain the transportal process of
EDL in a pressure driven system. Their work was followed by a study about the effects of EDL
on the velocity distribution in a laminar flow by You and Guo[25]. Further investigations were
done by Jing et al.[26], Srinivas[27], Qi and Ng[28], and Zheng and Jian[29], respectively. A good
example of such flows is the electro-osmotic pumps, consisting of two layers in which fluids with
different properties flow.

Many researchers have devoted themselves to studying convective heat transfer in a channel
or tube; some illustrative works were done by Tao[30], Aung and Worku[31] and so on. However,
rapid development of technology makes cooling system design more complicated. One layer
heat transfer studies are inadequate to meet the present demands. In many industrial processes,
multi-phase and multi-layer channels are expected to be used to replace single layer channels[32].
The two-layer fluids always generate a laminar fluid interface that behaves in a different way due
to the boundary conditions on the dividing boundary of the channels. Owing to this particular
behavior, those flows have vast applications in the fields related to bio-medical, bio-chemical,
and biological analysis. The importance of biological sample separation apparatus could not
be neglected in those applications. As a result, the fluid flowing through these micro-scale
devices[33–34] has to be controlled and monitored precisely. In this context, some non-polar
fluids are not completely driven by the electro-osmotic force. This was addressed by Brask
et al.[35] who suggested high conductivity electrolyte solutions to increase the drag on the
poorly conducting fluid. The electro-osmotic flow of two immiscible fluids was examined by
Gao et al.[36], but the Maxwell stress balance condition was ignored at the interface. Shankar
and Sharma[37] and Verma et al.[38] determined that a two-layer microfluid in the presence of
electro-osmotic effects could not be correctly modeled without using the Maxwell stress balance
condition. They used a Maxwell stress and shear stress balance condition on the interface
between the two-layer microfluid flow which was verified by many further studies[39–41]. In
particular, Xie and Jian[42] used this model to investigate an entropy analysis of a two-layer
flow through micro-parallel channels under electro-osmotic effects. In their study, they used
the model proposed in Refs. [37]–[38]. Zhao et al.[43] used a modified form of the Maxwell stress
balance condition and demonstrated that in an immiscible two-layer flow, with EDL effects,
the width of the EDL has a high influence on the flow but as the electro-osmotic parameters
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increase to a sufficiently large value, i.e., smaller EDL thickness, there is no more influence from
the EDL.

In order to preform a complete analysis, the entropy generation of the system needs to be
considered as well. In a device with physical movement, there must be some irreversible losses
of energy. In order to control and optimize these losses, this physical phenomenon has to be
analyzed. Heat loss and generation is a major cause for these losses so that it is considered
primarily in computation of the entropy generation of a system. This was first observed by
Bejan[44]. A series of analyses for irreversibility energy losses through entropy generation func-
tion were discussed in Refs. [45]–[47]. Heat generation is a major factor but it is not the only
factor responsible for the entropy generation. For example, Xu et al.[48] used six factors to
compute the entropy of a system. Those factors are the irreversibility generated from heat
transfer reversibility, Joule heating effect, viscous friction in the fluid, coupling electromagnetic
diffusion, magnetic field and the nano-particle concentration. Xie and Jian[42] conducted the
entropy generation analysis using the six mentioned factors for a two-layer flow.

This work aims to study a fully-developed steady immiscible two-layer flow in the presence of
electro-kinetic effects due to EDL and an external electric field. These effects are accumulated in
the momentum equations for the two layers. Buongiorno’s model[49] is to be used to describe the
nanoparticles and their behaviors in the fluid. The major difference between this work and the
previous investigations[43,50–51] is that the balance of the Brownian diffusion and thermophoresis
diffusion are considered in the boundary conditions at the fluid interface. Since the Brownian
diffusion and thermophoresis diffusion are dominant factors for slip mechanisms of nanofluids,
our model could be an appropriate one for description of two-layer flows of nanofluids. The
solutions are obtained by transforming the governing partial differential equations into a set
of ordinary differential equations by means of the HAM[52]. The focus is kept on the effects
of physical parameters such as the Brinkman number Br, Hartman number Ha, the constant
electric field parameter Se, the electro-osmotic parameter κ, the thermophoresis parameter Nt,
and the Brownian parameter NB on the solutions themselves and the entropy generated in the
system.

2 Mathematical modeling

We consider a steady, laminar, and fully developed flow of water based nanofluids in a two-
layer micro-channel with effects of EDL in the presence of both external electric and magnetic
fields. Figure 1 represents a three-dimensional (3D) physical sketch of the problem. The elon-
gated rectangular micro-channel is placed horizontally with its width W sufficiently larger than
its height H (W/H > 4, refer to Dauenhauer and Majdalani[53]). The length of the micro-
channel L is assumed to be long enough to avoid the influence of the openings at the end. The
heights of the lower and the upper layers are H1 and H2, respectively, satisfying H1 + H2 = H .
With those assumptions, the interface of these two immiscible fluids is planar. Also, the parallel
flow hypothesis can be applied so that the problem can be further reduced to a two-dimensional
(2D) one. The simplified physical sketch is illustrated in Fig. 2, in which the Cartesian co-
ordinate system (x, y, z) is employed with x along the streamwise direction and y parallel

-
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Fig. 1 3D physical sketch of the problem
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Fig. 2 2D physical sketch of the problem

to the surfaces and normal to x, whereas z is perpendicular to the paralleled plates. Al2O3

nanoparticles are used in the lower channel, while TiO2 nanoparticles are used in the upper
channel. The physical properties of the fluid and the nanoparticles[54] are shown in Table 1.
The zeta potentials, the temperature, and nanoparticle volumetric fractions on the lower and
upper walls are ζ1, Tw, Cw and ζ2, Tw, Cw, respectively. The external electric and magnetic
fields are imposed on the system with Ex and Ey the electric fields in the direction of positive
x-axis and y-axis, respectively, and B0 the magnetic field normal to the channel walls in the
direction of positive z-axis.

Table 1 Physical properties of the fluid and nanoparticles

Physical property Fluid (water) Al2O3 TiO2

cp/(J·kg−1·K−1) 4 179.0 765.0 686.2
ρ/(kg·m−3) 997.1 3 970.0 4 250.0
k/(W·m−1·K−1) 0.613 0 40.000 0 8.953 8
α × 10−7/(m2·s−1) 1.47 131.70 30.70
β × 10−5/(K−1) 21.00 0.85 0.90

It shall be noted that the EDL forms owing to the presence of static ions on the walls of
the micro-channel. The ions form a diffuse layer which is not or less affected by the EDL. The
ions present in the diffuse layer generate a current due to potential formed as a result of the
redistribution of the ions. The fluid near this fixed layer has higher concentration of ions than
ambient fluid. The electrostatic potential at any point is assumed to be satisfied by the Poisson
equation.

The vector forms of the governing equations describing the distribution of the electric po-
tential, total mass, momentum, energy, and nanoparticle volumetric fraction[42,49] are given
as

∇2φi = − ρei

ε0 εi
, (1)

∇ · Vi = 0, (2)

ρi(Vi · ∇)Vi = −∇p + μi∇2Vi + Fi, (3)

(ρicpi)f(Vi · ∇)Ti

= kfi∇2T i + (ρicpi)s
(
DBi∇T i∇Ci +

(Dti

T0

)
∇T i∇T i

)
+

JiJi

σi
+ μiΦi, (4)

(Vi · ∇)Ci = DBi∇2Ci +
(Dti

T0

)
∇2T i, (5)

where the subscript i (i = 1, 2) denotes the lower and the upper fluid layers, respectively, φi

is the electric potential induced by EDL effects, ρei is the charge density, ε0 is the dielectric
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constant, εi is the vacuum permittivity, Vi is the velocity vector, ρi is the density, cpi is the
specific heat and the subscripts “f” and “s” represent the quantities for fluid and solid particles,
respectively. p is the pressure, μi is the viscosity, Fi = ρeiE + Ji × B is the body force due
to the electroosmosis and the electromagnetic forces in which E is the vector of the electric
field, B is the imposed magnetic field, and Ji = σi(E + Vi × B) is the ion current density
with σi the electrical conductivity, T i is the fluid temperatures, kfi is the thermal conductivity,
DBi is the Brownian diffusion coefficient, Ci is the nanoparticle volumetric fraction, Dti is
the thermophoretic diffusion coefficient, T0 is the reference temperature, and Φi is the viscous
dissipation term, defined by

Φi =2
((∂ui

∂x

)2

+
(∂vi

∂y

)2

+
(∂wi

∂z

)2)
+

(∂vi

∂x
+

∂ui

∂y

)2

+
(∂wi

∂y
+

∂vi

∂z

)2

+
(∂ui

∂z
+

∂wi

∂x

)2

− 2
3

(∂ui

∂x
+

∂vi

∂y
+

∂wi

∂z

)2

, (6)

in which ui, vi, and wi are velocity components in the x-, y-, and z-directions, respectively.

Based on the parallel flow hypothesis, since the length of the micro-channel L is far greater
than its height H , the flow velocity in the z- direction is negligibly small, i.e., wi ≈ 0. On the
other hand, it has been known that the lateral electric field plays a more significant role than
the magnetic field for the generation of the fluid motion, implying that v in the y-direction
can be neglected. As a result, only flow velocity along the x-direction is taken into account.
Hence, the continuity equation (2) is automatically satisfied. The Brownian diffusion term, the
thermophoretic diffusion term, and the electromagnetic interaction term are considered in the
energy equation. The former two terms are relevant in studying the flow in the micro-channels,
while the fourth term is added to accumulate the Joule dissipation due to a magnetic field.

In light of the above assumptions, Eq. (2) is automatically satisfied, and Eq. (1) and Eqs. (3)–
(5) are written as follows:

In Region I (−H1 � z � 0),

∂2φ1

∂z2 = −ρe1(z)
ε0ε1

, (7)

μ1
∂2u1

∂z2 − ∂p

∂x
+ Exρe1 + σ1B0(Ey − B0u1) = 0, (8)

u1
∂T 1

∂x
+ w1

∂T 1

∂z
= α1

∂2T 1

∂z2 + τ1

(
DB1

∂T 1

∂z

∂C1

∂z
+

Dt1

T0

(∂T 1

∂z

)2)
+

σ1

(ρ1cp1)f
(E2

x + E2
y − 2EyB0u1 + B2

0u2
1) +

μ1

(ρ1cp1)f
Φ1, (9)

u1
∂C1

∂x
+ w1

∂C1

∂z
= DB1

∂2C1

∂z2 +
Dt1

T0

∂2T 1

∂z2 . (10)

In Region II (0 � η � H2),

∂2φ2

∂z2 = −ρe2(z)
ε0ε2

, (11)

μ2
∂2u2

∂z2 − ∂p

∂x
+ Exρe2 + σ2B0(Ey − B0u2) = 0, (12)
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u2
∂T 2

∂x
+ w2

∂T 2

∂z
= α2

∂2T 2

∂z2 + τ2

(
DB2

∂T 2

∂z

∂C2

∂z
+

Dt2

T0

(∂T 2

∂z

)2)
+

σ2

(ρ2cp2)f
(E2

x + E2
y − 2EyB0u2 + B2

0u2
2) +

μ2

(ρ2cp2)f
Φ2, (13)

u2
∂C2

∂x
+ w2

∂C2

∂z
= DB2

∂2C2

∂z2 +
Dt2

T0

∂2T 2

∂z2 . (14)

Here, Ex and Ey are the strength of the electrical fields along the x- and y-directions, respec-
tively, B0 is the strength of the magnetic field along the z-direction, αi = kfi/(ρicpi)f is the
thermal diffusivity, and τi = (ρicpi)s/(ρicpi)f is the heat capacity ratio with i = 1, 2 represent-
ing the lower and upper fluid layers. The values for (ρicpi)f , (ρicpi)s, kfi, and αi are given in
Table 1.

The electric potentials, flow velocities, temperatures, nano-particle volumetric concentra-
tions, and flux are assumed to be continuous at the interface. Velocities on the boundaries satisfy
the no-slip condition, and the temperature and nano-particle concentration on the boundaries
are constant distributions. Hence, the boundary conditions for Eqs. (8)–(14) are given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

z = −H1 : φ1 = ζ1, u1 = 0, T 1 = Tw, C1 = Cw,

z = 0:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ1 = φ2, u1 = u2, T 1 = T 2, C1 = C2,

ε1
∂φ1

∂z
= ε2

∂φ2

∂z
, μ1

∂u1

∂z
= μ2

∂u2

∂z
, kf1

∂T 1

∂z
= kf2

∂T 2

∂z
,

Dt1

T0

∂T 1

∂z
+ DB1

∂C1

∂z
=

Dt2

T0

∂T 2

∂z
+ DB2

∂C2

∂z
,

z = H2 : φ2 = ζ2, u2 = 0, T 2 = Tw, C2 = Cw.

(15)

When the dielectric constant is assumed to be uniform, the equilibrium Boltzmann distri-
bution can be given by

ρei = −2n0ẑe sinh
( ẑeφi(z)

kBT̂

)
, i = 1, 2, (16)

where n0, ẑ, e, kB, and T̂ are, respectively, the bulk ionic concentration, the valence of ions,
the fundamental charge, the Boltzmann constant, and the absolute temperature. In this way,
the Poisson-Boltzmann equation is simplified to (see Ref. [43])

∂2φi

∂z2 =
2n0ẑe

ε0εi
sinh

( ẑeφi(z)

kBT̂

)
, i = 1, 2. (17)

If the electrical potential is significantly smaller than the thermal energy of the ions, i.e.,
|kBT̂ | � |zieφi(z)|, the Debye-Hückel linear approximation can be used, hence Eq. (17) is
reduced to

∂2φi

∂z2 −
( 2n0ẑ

2e2

ε0εikBT̂

)
φi = 0, i = 1, 2. (18)

3 Non-dimensional reduction

To eliminate the dimensional influence, we define the following similarity variables:

η =
z

H
, φi =

ẑeφi

kBT̂
, ui =

ui

Uai
, θi =

T i − T0

Tw − T0
, si =

Ci − C0

Cw − C0
. (19)

Note that after utility of the above-mentioned similarity transformations, the fluid flow region
is changed to [−h1, h2] with h1 = H1/H and h2 = H2/H .
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Substituting Eq. (19) into the set of governing equations (7)–(14) and (18), we obtain the
following equations.

In Region I (−h1 � η � 0),

φ′′
1 − κ2

1φ1 = 0, (20)

u′′
1 − Ha2

1u1 + Se1Ha1 + Γ1 + κ2
1φ1 = 0, (21)

θ′′1 + NB1θ
′
1s

′
1 + Nt1θ

′2
1 + Br1(u′2

1 + Ha2
1u

2
1 − 2Se1Ha1u1) + Ω1 = 0, (22)

s′′1 +
Nt1

NB1
θ′′1 = 0. (23)

In Region II (0 � η � h2),

φ′′
2 − κ2

2φ2 = 0, (24)

u′′
2 − Ha2

2u2 + Se2Ha2 + Γ2 + κ2
2φ2 = 0, (25)

θ′′2 + NB2θ
′
2s

′
2 + Nt2θ

′2
2 + Br2(u′2

2 + Ha2
2u

2
2 − 2Se2Ha2u2) + Ω2 = 0, (26)

s′′2 +
Nt2

NB2
θ′′2 = 0. (27)

Correspondingly, their boundary conditions are reduced to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η = −h1 : φ1 = ζ1, u1 = 0, θ1 = 1, s1 = 1,

η = 0 :

⎧⎪⎪⎨⎪⎪⎩
φ1 = φ2 φ′

1 = λεφ
′
2, u1 =

λε

λμ
u2, u′

1 = λεu
′
2,

θ1 = θ2, s1 = s2, θ′1 = λkf θ
′
2,

NB1(s′1 − λDBs′2) + Nt1(θ′1 − λDtθ
′
2) = 0,

η = h2 : φ2 = ζ2, u2 = 0, θ2 = 1, s2 = 1,

(28)

where ζi = ẑe0ζi/(kBT̂ ) is the zeta potential, and κi, Hai, Sei, Γi, Uai, NBi, Nti, Bri, and Ωi

are, respectively, the electro-osmotic parameters, the Hartman numbers, the electric field pa-
rameters, the constant pressure gradient parameters, the electro-osmotic velocity, the Brownian
motion parameters, the thermophoresis parameters, the Brinkman numbers, and ratio of Joule
heating to the applied temperature difference between the wall and the ambient fluid, which
are defined as follows:

κi = ẑeH

√
2n0

ε0εikBT̂
, Hai = B0H

√
σi

μi
, Sei =

EyH

Uai

√
σi

μi
,

Γi = − H2

μiUai

dp

dx
, Uai =

εiExkBT̂

μiẑe
, NBi =

τiDBi(Cw − C0)
αi

,

Nti =
τi(Tw − T0)

αi

(Dti

T0

)
, Bri =

μiU
2
ai

kfi(Tw − T0)
, Ωi =

σi(E2
x + E2

y)H2

kfi(Tw − T0)
.

To measure the difference of physical properties of two layer nanofluids, the following ratios are
defined:

λε =
ε2

ε1
, λkf =

kf2

kf1

, λμ =
μ2

μ1
, λσ =

σ2

σ1
,

λDB =
DB2

DB1
, λDt =

Dt2

Dt1
, λα =

α2

α1
, λτ =

τ2

τ1
,
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which give the connections between two-layer physical parameters as follows:

Ua2 =
λε

λμ
Ua1, Ha2 =

√
λσ

λμ
Ha1, Se2 =

√
λμλσ

λε
Se1,

Br2 =
λ2

ε

λkf λμ
Br1, Γ2 =

1
λε

Γ1, κ2 =
1√
λε

κ1, Ω2 =
λσ

λkf

Ω1,

NB2 =
λτλDB

λα
NB1, Nt2 =

λτλDt

λα
Nt1.

In this analysis, some ratios are chosen based on Table 1 as λkf = 1, λμ = 1, λα = 1, and
λτ = 0.96, and other ratios are chosen as λσ = 1.2, λε = 1.2, λDB = 1.2, λDt = 1.2, and λρ = 1.

4 Entropy analysis and other physical quantities

Since the two-layer velocity, temperature and nano-particle concentration distributions can
be determined by solving Eqs. (20)–(23) and Eqs. (24)–(27), the entropy generation distribution
through the two-layer micro-channel can be computed correspondingly. The rate of two-layer
fluid entropy generation Si

GG is given as[45]

Si
GG = Si

GH + Si
GJ + Si

GF + Si
GE + Si

GM + Si
GC, (29)

where Si
GH, Si

GJ, Si
GF, Si

GE, Si
GM, and Si

GC represent the local volumetric entropy generation
rate due to heat transfer reversibility, Joule heating effect, viscous friction in the fluid, coupling
electromagnetic diffusion, magnetic field and the nanoparticle concentration, respectively, which
are defined as⎧⎪⎪⎨⎪⎪⎩

Si
GH =

kfi

T
2

i

(∂T i

∂z

)2

, Si
GJ =

σi(E2
x + E2

y)

T i

, Si
GF =

μi

Ti

(∂ui

∂z

)2

,

Si
GE =

σi(2EyB0ui)
T i

, Si
GM =

σi(B0u
2
i )

T i

, Si
GC =

RD

Ci

(∂Ci

∂z

)2

+
RD

T i

∂Ci

∂z

∂T i

∂z
,

(30)

where RD is the universal gas constant, and i = 1, 2 represent layer I and layer II, respectively.
The non-dimensional form of Eq. (29) can be obtained by using variables (19) in the above

definitions. Therefore, the characteristic entropy transfer rate, Si
G = h2Si

GG/kf1 , for the ith
layer is given by

S1
G =

1
θ1 + θ0

( 1
θ1 + θ0

θ′21 + Ω1 + Br1u
′2
1 + 2Ha1Se1Br1u1 + Ha2

1Br1u
2
1

)
+

MD

s1 + Λ0
s′21 +

MD

θ1 + θ0
s′1θ

′
1, (31)

S2
G =

λkf

θ2 + θ0

( 1
θ2 + θ0

θ′22 + Ω2 + Br2u
′2
2 + 2Ha2Se2Br2u2 + Ha2

2Br2u
2
2

)
+

MD

s2 + Λ0
s′22 +

MD

θ2 + θ0
s′2θ

′
2, (32)

where MD, θ0, and Λ0 are, respectively, the dimensionless mass diffusion parameter, the refer-
ence temperature to wall-ambient temperature difference ratio, and the reference nanoparticle
volume fraction to the wall-ambient nanoparticle volume fraction difference ratio, which are
given as

MD =
RD(Cw − C0)

kf1

, θ0 =
T0

Tw − T0
, Λ0 =

C0

Cw − C0
.
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In this way, the total entropy generated in the two layers is given as

Stotal =
∫ 0

−h1

S1
Gdη +

∫ h2

0

S2
Gdη. (33)

The physical quantities of practical interest for this problem are the skin friction coefficient
and the Nusselt number, which are defined by

Cfi =
τwi

1
2
ρiU2

ai

, Nui =
Hiqwi

kfi(Tw − T0)
, (34)

where i (i = 1, 2) represents the respective layer, τwi is the shear stress, and qwi is the heat flux
on the walls, which are given by

τwi = μi
∂ui

∂z

∣∣∣
z=(−1)iHi

, qwi = −kfi
∂T i

∂z

∣∣∣
z=(−1)iHi

. (35)

Substituting Eqs. (19) and (35) into Eq. (34), we obtain

Cfi =
2

Rei
u′

i((−1)ihi), Nui = −hi

H
θ′i((−1)ihi), (36)

where Rei is the Reynolds number, defined by

Rei =
HρiUai

μi
.

The relation of the Reynolds number between two layers is

Re2 =
λρλε

λ2
μ

Re1,

where λρ = ρ2/ρ1,

5 Results and discussion

The HAM[52] is used to obtain the accurate solutions for the system of equations (20)–(27).
The solution process is listed in Appendix A. The precision of those solutions is checked using
the error evaluation function, which is defined, based on the maximum total average squared
error, by

E(m) = max{Eφi(m), Eui(m), Eθi(m), Esi (m)|i = 1, 2}, (37)

where m is the HAM computational order, and Eφi(m), Eui(m), Eθi(m), Esi(m) are error eval-
uation functions defined based on Eqs. (20)–(27) and are listed in Appendix B.

The mth order error is obtained by substituting the corresponding solutions into Eq. (37).
When all HAM auxiliary parameters and physical parameters are properly given, the errors are
computed, as shown in Table 2. It is found from the table that the error decreases rapidly as
the computational order of HAM increases, which guarantees the solutions’ convergence. The
range for the Hartman number is from 1 to 10[55]. This range can vary and depend on the
values of other parameters, such as the Brinkman number. In this study, the Brinkman number
is varied between 0 and 1 to keep the system stable. For the assumption of a unidirectional
flow, the value of the non-dimensional electric field parameter Se1 cannot be considered too
large[56]. Hence, it is kept at 1 for all the analyses. The value for this parameter is varied
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and is mentioned accordingly when special statements are made or a trend is observed for this
parameter. Similarly, the value for the thermophoretic diffusion parameter is kept low, in the
range of 0 to 1. Other parameters are chosen as ζ1 = ζ2 = 1, H1 = 1, H2 = 2, Ω1 = 1 and
Nt1 = NB1 = 0.1. Note also that the Homotopy-Padé technique[52] is used to improve the
precision, which indicates that the convergence control parameters are insignificant and can be
prescribed to any fixed nonzero value.

Table 2 The maximum error E(m)

Order κ1 = 1 κ1 = 3 κ1 = 5 κ1 = 10

10 19.864 20.850 5 883.7 8 257.1
20 2.74 × 10−4 3.02 × 10−4 1.8 × 10−4 0.014
30 2.92 × 10−9 2.09 × 10−9 2.32 × 10−10 1.37 × 10−4

40 8.96 × 10−14 7.46 × 10−14 1.78 × 10−15 5.51 × 10−6

50 7.05 × 10−18 1.04 × 10−17 1.26 × 10−20 5.023 × 10−15

We then discuss the effect of various parameters on different physical fields. It is known
that the governing equations (20) and (24) admit analytical solutions of the form,

φ1(η) = C1 cosh(κ1η) + C2 sinh(κ1η), (38)

φ2(η) = C1 cosh(κ2η) +
κ1

λεκ2
C2 sinh(κ2η), (39)

where

C1 =
λεκ2ζ2 sinh(h1κ1) − κ1ζ1 sinh(h2κ2)

λεκ2 cosh(h2κ2) sinh(h1κ1) + κ1 cosh(h1κ1) sinh(h2κ2)
, (40)

C2 =
λεκ2(κ1ζ2 cosh(h1κ1) − κ1ζ1 cosh(h2κ2))

κ1(λεκ2 cosh(h2κ2) sinh(h1κ1) + κ1 cosh(h1κ1) sinh(h2κ2))
. (41)

These analytical solutions can be used to verify the accuracy of the HAM results. As shown in
Fig. 3, solutions given by two different approaches match each other in the whole domain. This
again confirms the validity of the proposed technique. It is seen that the electrical potential
φ(η) decreases monotonously as the electro-osmotic parameter κ1 enlarges. Physically, the
increase in κi indicates the increase in the height of the channel, and the effect of the EDL on
the inner part of the channel is therefore weakened. We then consider the influence of the ratio
of the electro-osmotic parameter λε on the electrical potential φ(η). As shown, the electrostatic
potential field reduces as the dielectric ratio λε grows. Note that the smaller value of λε implies
a thinner EDL on the upper wall as compared with the lower wall. Figure 4 presents the
variation of the velocity profile u(η) with the electro-osmotic parameter κ1. It is seen from the
figure that the increase in κ1 causes an enhancement of the velocity profile. This is due to the
electrical force due to the joint effects of the external electric field and magnetic field has an
opposite direction to the fluid motion caused by the pressure, so the resistance due to the EDL
becomes smaller and smaller as κ1 continuously grows.

It is known that viscosity has distinct influence in the boundary layer region in the vicinity
of the channel walls. When the channel is thin enough, this effect could affect the whole
channel flow, especially for the temperature distribution. It is known that the Brinkman number
represents the ratio of viscous heat generation to external heating and plays an important
role in the temperature distribution. Therefore, it is essential to investigate its influence on
temperature profile. Figure 5 shows the variation in the temperature distribution θ(η) with
evolution in Br1. It can be seen that as Bri increases, the temperature increases near both
walls of the channel but drops in the middle part. This implies higher viscous dissipation near
the channel walls and higher molecular conduction in the middle part of the channel with an
increase in the Brinkman number.
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Fig. 3 Comparison of the solutions for φ(η) obtained by different approaches with variation in the
electro-osmotic properties of the flow. Line: HAM results, symbols: analytical solutions given
by Eqs. (38) and (39) in the case of ζ1 = ζ2 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Ω1 = 1,
Br1 = 0.1, and Nt1 = NB1 = 0.1 and κ1=1 for the right side

Fig. 4 The velocity profile u(η) against η for various values of the electro-osmotic parameter κ1 in the
case of ζ1 = ζ2 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Ω1 = 1, Br1 = 0.1, and Nt1 = NB1 = 0.1

Fig. 5 The temperature profile θ(η) against η for various values of the Brinkman number Br1 in the
case of ζ1 = ζ2 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Ω1 = κ1 = 1, and Nt1 = NB1 = 0.1

Figure 6 illustrates the change in temperature distribution θ(η) due to variation in the
thermophoresis diffusion ratio λDt . It is found that the maximum amplitude of the temperature



Modelling two-layer nanofluid flow in a micro-channel with electro-osmotic effects 95

shifts towards the upper channel wall as λDt increases. Simultaneously, the temperature profile
decreases near the lower wall but increases near the upper wall. This is because the increase
in the thermophoresis diffusion coefficient in the upper channel results in an increase in the
acceleration of the particles in the region. Heat transfer is therefore enhanced accordingly.
Figure 7 depicts the variation of nanoparticle volume fraction profile s(η) with the increase in
the thermophoresis parameter Nt1 and the thermophoresis diffusion ratio λDt . It is known that
there is a temperature difference between the channel walls and the inner fluid, which results
in the thermophoresis diffusion represented by Nti. As shown in the figure, the nanoparticle
volume fraction decreases rapidly as Nti increases. This shows that the thermophoresis diffusion
variation is highly important for the distribution of nanoparticles. Similarly, the fluid thermal
properties could affect the distribution of nanoparticles as well. It is observed that an increase
in λDt speeds up the movement of nanoparticles towards the upper wall. As a result, the
nanoparticle volume fraction decreases accordingly.

Fig. 6 The temperature profile θ(η) against η for various values of the thermophoresis diffusion ratio
λDt in the case of ζ1 = ζ2 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Ω1 = κ1 = 1, Br1 = 0.1 and
Nt1 = NB1 = 0.1 (color online)

Fig. 7 The nanoparticle volume fraction profile s(η) against η for some thermophoresis diffusion
related parameters in the case of ζ1 = ζ2 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Ω1 = κ1 = 1,
Br1 = 0.1, NB1 = 0.1, and Nt1=0.1 for the right side (color online)

The impacts of physical ratios on the flow characteristics are illustrated in Figs. 8 and 9.
Here, the trends for velocity and temperature fields are observed with respect to change in the
ratios for viscosity, electrical conductivity and thermal conductivity. It can be seen in Fig. 8
that with increase in the viscosity ratio λμ, the peak flow velocity shifts towards Region I and
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the flow velocity decreases throughout the channel. This is due to the fact that the average
velocity in Region II depends on this ratio and with increase in λμ, there is a decrease in Region
II average velocity. Physically, this means that for a higher value of λμ, the viscosity in Region
II is greater as compared with Region I and hence, a decrease in Region II velocity is observed.
On the other hand, the flow velocity increases throughout the channel with increase in λε. This
is due to the fact that the average velocity in Region II is directly proportional to this ratio.
Physically, it implies that due to increase in the electrical conductivity in Region II, the flow
velocity in this part of the channel increases and as a result the velocity in the whole channel
increases.

Fig. 8 Variation in velocity with change in the physical ratios λμ and λε in case of ζ1 = ζ2 = 1,
H1 = 1, H2 = 2, Ha1 = 3, Se1 = Ω1 = 1, Br1 = 0.1, and Nt1 = NB1 = 1 (color online)

A similar analysis is carried out for the temperature field in Fig. 9, where the trend in the
temperature field is observed with respect to the viscosity and thermal conductivity ratios. It
can be seen that with the increase in the viscosity ratio λμ, there is a slight increase in the
temperature field throughout the domain. This is due to the fact that the temperature increases
as the viscous force increases in the channel. With an increase in λμ, an increase in Region
II viscosity is anticipated which results in an increase in the temperature of the flow. Finally,
the temperature field with variation in the thermal conductivity ratio is observed. It can be
seen that the temperature throughout the channel decreases as λkf increases. This is due to
the fact that as λkf increases, the molecular conduction in Region II increases. This results
in a decrease in Region II temperature and as a consequence, the temperature throughout the
channel drops.

Fig. 9 Variation in temperature field with change in the physical ratios λμ and λkf in case of ζ1 =
ζ2 = 1, H1 = 1, H2 = 2, Ha1 = 3, Se1 = Ω1 = 1, Br1 = 0.1, and Nt1 = NB1 = 1 (color
online)
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The variations of the skin friction coefficient Cfi and the Nusselt number Nui with κ1 and
Hartman number are presented in Fig. 10 and Fig. 11, respectively. It is known that the flow
velocity is a key factor to determine the skin friction so that its variation has distinct effects
on Cfi as well. It has been already known from Fig. 4 that the flow rate increases near both
channel walls as κ1 evolves. This trend is also found for the variation of Cfi, but the direction
on the upper wall is opposite to that on the lower wall. It can also be seen that the trend
in the change of local skin friction coefficient with respect to the Hartman number changes at
Ha1 = 1. When Ha1 < 1, the local skin friction increases for smaller values of κ1, but as
κ1 increases, this change becomes negligible. On the other hand, for Ha1 > 1, the local skin
friction has a negligible increase with increase in Ha1 but as κ1 increases, this trend reverses
and the local skin friction has a decreasing trend. This is due to the fact that the lateral electric
field considered in this study is small. Hence, the opposing force from the electric field is greater
as compared with the aiding force in case of Ha1 > 1.

κ κ

Fig. 10 Variation of local skin friction coefficient with change in the electro-osmotic parameter κ1

and Hartman number in case of ζ1 = ζ2 = 1, H1 = 1, H2 = 2, Se1 = Ω1 = 1, Br1 = 0.1, and
Nt1 = NB1 = 0.1 (color online)

In Fig. 11, the Nusselt number decreases on the upper wall but increases on the lower wall
with increase in κ1. This is because the coordinates are set at the interface of the two layers so
that the signs on the upper and lower walls are just opposite. Physically, this ratio decreases
as κ1 increases since the EDL effect is weakened and the fluid motion accelerates. Therefore,
the heat conduction increases more quickly than the heat convection owing to this change.
On the other hand, the Nusselt number increases with increase in the Hartman number. This
increase is due to the increase of thermal convection owing to a decrease in the viscous force as
a consequence of higher values of Ha1.

κ κ

Fig. 11 Variation of Nusselt number with change in the electro-osmotic parameter κ1 and Hartman
number in case of ζ1 = ζ2 = 1, H1 = 1, H2 =2, Se1 =Ω1 = 1, Br1 = 0.1, and Nt1 = NB1 = 0.1
(color online)
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The evolution of the entropy analysis is presented in Figs. 12–14 for different scenarios.
The total entropy Stotal in the channel is associated with different parameters including the

Fig. 12 Variation of the total entropy Stotal with the Brinkman number Br1 while changing the
thermophoretic diffusion parameter Nt1 and ratio λDt in case of ζ1 = ζ2 = 1, H1 = 1,
H2 = 2, Ha1 = Se1 = Ω1 = κ1 = 1, NB1 = 0.1, and Nt1 = 0.1 for the right side (color
online)

Fig. 13 Variation of the total entropy Stotal with the Hartman number Ha1 while changing the
thermophoretic diffusion parameter Nt1 and ratio λDt in case of ζ1 = ζ2 = 1, H1 = 1,
H2 = 2, Se1 = Ω1 = κ1 = 1, Br1 = 0.1, NB1 = 0.1, and Nt1 = 0.1 for the right side (color
online)

Fig. 14 Variation of the total entropy Stotal with the electric field parameter Se1 while changing
the thermophoretic diffusion parameter Nt1 and ratio λDt in case of ζ1 = ζ2 = 1, H1 = 1,
H2 = 2, Ha1 = Ω1 = κ1 = 1, Br1 = 0.1, NB1 = 0.1, and Nt1 = 0.1 for the right side (color
online)
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thermophoresis parameter Nt1, the thermophoresis diffusion ratio λDt , the Brinkman number
Br1, the Hartman number Ha1 and the electric field strength parameter Se1. It is seen in
Fig. 12 that Stotal enhances with increase in Br1 for a specific value of Nt1 (or λDt). Similarly,
Stotal increases with increase in Nt1 (or λDt) when Br1 is kept at a constant value. In the latter
case, this increasing trend becomes more evident. Figure 13 shows the changing trend of Stotal

with Ha1, Stotal increases rapidly at first, after a significant increase in Ha1, the growing of
Stotal becomes insignificant. While as Ha1 is kept constant, Stotal increases with increase in
Nt1 (or λDt) as well. As shown in Fig. 14, Se1 has a similar effect on Stotal which increases as
Se1 increases for a specific value of Nt1 (or λDt) or vice versa.

6 Conclusions

The fully developed steady immiscible two-layer flow of nanofluids in a micro-channel in
the presence of electro-kinetic effects has been studied. Buongiorno’s model[49] has been ap-
plied for modelling the behavior of nanofluids. The conservation equations embodying the total
mass, momentum, thermal energy and nanoparticle volume fraction have been reduced into a
group of ordinary differential equations via appropriate similarity transformations. The conse-
quent system of those coupled equations has been solved analytically by means of the HAM.
Highly accurate analytical approximations for the electric potential, velocity, temperature and
nanoparticle volume fraction have been obtained. Important physical quantities and entropy
generation have been analyzed and discussed. A comparison has been made to determine the
significance of EDL effects in the presence of an external electric field. The major findings of
this work are summarized as follows:

(i) Buongiorno’s model[49] is extended to describe two-layer nanofluids’ flow in a micro-
channel with EDL effects.

(ii) Analytical solution is obtained for the electrostatic potential.
(iii) Effects of various physical parameters on distributions of electrostatic potential, velocity

field, temperature distribution and nanoparticle volume fraction are graphically presented and
physically explained.

(iv) Although EDL effects are negligibly small in the presence of an external electric field,
these effects decrease with increase in the electro-osmotic parameter. This analysis supports
the findings by Zhao et al.[43].

(v) Thermophoresis diffusion has significant effects on behaviors of two-layer nanofluids’ flow
in a micro-channel.

(vi) Viscosity in a micro-channel is a significant factor that is needed to be considered.
(vii) Evolution of total entropy analysis in a two-layer micro-channel is performed. The

changes in total entropy generation of the system with respect to the Hartman number and
Brinkman number follow the trends highlighted by Xie and Jian[42]. Whereas, the total en-
tropy increases when either of the thermophoretic diffusion parameter or electric field strength
parameter is increased.
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Appendix A
In the framework of the HAM, it is of importance to construct the HAM deformation equation,

(1 − q)LΨ(Ψ(η; q) − ϕ0(η)) = q�ΨNΨ(Ψ(η; q)), (A1)

where LΨ is the linear operator, NΨ is the nonlinear operator, Ψ(η; q) is the mapping function of ϕ(η),
q ∈ [0, 1] is an embedding parameter, and �Ψ is the convergence-control parameter.

The mth-order deformation equation is obtained, by differentiating Eq. (A1) m times with respect
to q, then dividing by m!, finally setting q = 0, as

LΨ(ϕm(η) − χmϕ0(η)) = �ΨRm(η), (A2)

where

ϕm(η) =
1

m!

∂mφ̂(η; q)

∂qm

˛̨̨
q=0

, Rm(η) =
1

m!

∂m−1N [Ψ(ηq)]

∂qm−1

˛̨̨
q=0

, (A3)

and

χm =

j
0, m � 1,
1, m > 1.

(A4)

In application of the HAM technique into our problem, the linear operators for Eqs. (20)–(27) are
chosen as

L =
∂2

∂η2
. (A5)

The initial guesses for the computations are given as8>>>>>>><>>>>>>>:

φ1,0(η) =
λεη(ζ2 − ζ1)

λεh1 + h2
+

h2ζ1 + λεh1ζ2

λεh1 + h2
,

φ2,0(η) =
η(ζ2 − ζ1)

λεh1 + h2
+

h2ζ1 + λεh1ζ2

λεh1 + h2
,

u1,0(η) = u2,0(η) = 0,

θ1,0(η) = θ2,0(η) = s1,0(η) = s2,0(η) = 1.

(A6)
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Solutions to φi(η), ui(η), θi(η), and si(η) are expanded in the following forms:

8>>>><>>>>:
φi = φi,0 +

∞X
j=1

φi,j , ui = ui,0 +
∞X

j=1

ui,j ,

si = si,0 +

∞X
j=1

si,j , θi = θi,0 +

∞X
j=1

θi,j .

(A7)

The mth order HAM deformation equations can be written as

(
φ′′

i,m − χmφ′′
i,m−1 = �φiRφi,m , u′′

i,m − χmu′′
i,m−1 = �uiRui,m ,

θ′′
i,m − χmθ′′

i,m−1 = �θiRθi,m , s′′i,m − χms′′i,m−1 = �siRsi,m

(A8)

subject to the boundary conditions

8>>>>>>>><>>>>>>>>:

η = −h1 : φ1,m = u1,m = θ1,m = s1,m = 0,

η = 0 :

8>>><>>>:
φ1,m = φ2,m, u1,m =

λε

λμ
u2,m, θ1,m = θ2,m,

s1,m = s2,m, φ′
1,m = λεφ

′
2,m, u′

1,m = λεu
′
2,m,

NB1(s
′
1,m − λDBs′2,m) + Nt1(θ

′
1,m − λDtθ

′
2,m) = 0,

θ′
1,m = λkf θ

′
2,m,

η = h2 : φ2,m = u2,m = θ2,m = s2,m = 0,

(A9)

where �φi , �ui , �θi , and �si (i = 1, 2) are the respective convergence control parameters and Rφi,m ,
Rui,m , Rθi,m , and Rsi,m, for i = 1, 2, are defined as

Rφ1,m =φ′′
1,m−1 − κ2

1φ1,m−1, (A10)

RΦ2,m =φ′′
2,m−1 − κ2

2φ2,m−1, (A11)

Ru1,m =u′′
1,m−1 − Ha2

1u1,m−1 + κ2
1φ1,m−1 + (1 − χm)(Se1Ha1 + Γ1), (A12)

Ru2,m =u′′
2,m−1 − Ha2

2u2,m−1 + κ2
2φ2,m−1 + (1 − χm)(Se2Ha2 + Γ2), (A13)

Rθ1,m =θ′′
1,m−1 +

m−1X
j=0

(NB1θ
′
1,js

′
1,m−1−j + Nt1θ

′
1,jθ

′
1,m−1−j)

+
m−1X
j=0

(Br1u
′
1,ju

′
1,m−1−j + Br1Ha2

1u1,ju1,m−1−j)

+ (1 − χm)Ω1 − 2Se1Br1Ha1u1,m−1, (A14)

Rθ2,m =θ′′
2,m−1 +

m−1X
j=0

(NB2θ
′
2,js

′
2,m−1−j + Nt2θ

′
2,jθ

′
2,m−1−j)

+
m−1X
j=0

(Br2u
′
2,ju

′
2,m−1−j + Br2Ha2

2u2,ju2,m−1−j)

+ (1 − χm)Ω2 − 2Se2Br2Ha2u2,m−1, (A15)

Rs1,m =s′′1,m−1 +
Nt1

NB1
θ′′
1,m−1, (A16)

Rs2,m =s′′2,m−1 +
Nt2

NB2
θ′′
2,m−1. (A17)
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The solutions to Eq. (A8) are expressed as follows:

φ1,m(η) = φ∗
1(η) + χmφ1,m−1(η) + C1,m + C2,mη, (A18)

φ2,m(η) = φ∗
2(η) + χmφ2,m−1(η) + C3,m + C4,mη, (A19)

u1,m(η) = u∗
1(η) + χmu1,m−1(η) + C5,m + C6,mη, (A20)

u2,m(η) = u∗
2(η) + χmu2,m−1(η) + C7,m + C8,mη, (A21)

θ1,m(η) = θ∗
1(η) + χmθ1,m−1(η) + C9,m + C10,mη, (A22)

θ2,m(η) = θ∗
2(η) + χmθ2,m−1(η) + C11,m + C12,mη, (A23)

s1,m(η) = s∗1 + χms1,m−1(η) + C13,m + C14,mη, (A24)

s2,m(η) = s∗2 + χms2,m−1(η) + C15,m + C16,mη, (A25)

where φ∗
i,m(η), u∗

i,m(η), θ∗
i,m(η), and s∗i,m(η) are particular solutions, defined byj

φ∗
i = L−1[�φiRφi,m ], u∗

i = L−1[�uiRui,m ],

θ∗
i = L−1[�θiRθi,m ], s∗i = L−1[�siRsi,m ],

(A26)

where L−1 is the inverse linear operator, which holds the following properties:

L−1[c0η
m] =

c0η
m

(m + 2)(m + 1)
, L−1[a0(η) + b0(η)] = L−1[a0(η)] + L−1[b0(η)]. (A27)

The constants Ci,m, i = 1, 2, · · · , 16 defined in Eqs. (A18) to (A25) can be obtained using the
boundary conditions (A9).
Appendix B

Eφ1(m) =

Z 0

−h1

(φ′′
1 − κ2

1φ1)
2dη, (A28)

Eφ2(m) =

Z h2

0

(φ′′
2 − κ2

2φ2)
2dη, (A29)

Eu1(m) =

Z 0

−h1

(u′′
1 − Ha2

1u1 + Se1Ha1 + Γ1 + κ2
1φ1)

2dη, (A30)

Eu2(m) =

Z h2

0

(u′′
2 − Ha2

2u2 + Se2Ha2 + Γ2 + κ2
2φ2)

2dη, (A31)

Eθ1(m) =

Z 0

−h1

(θ′′
1 + NB1θ

′
1s

′
1 + Nt1θ

′2
1 + Br1(u

′2
1 + Ha2

1u
2
1 − 2Se1Ha1u1) + Ω1)

2dη, (A32)

Eθ2(m) =

Z h2

0

(θ′′
2 + NB2θ

′
2s

′
2 + Nt2θ

′2
2 + Br2(u

′2
2 + Ha2

2u
2
2 − 2Se2Ha2u2) + Ω2)

2dη, (A33)

Es1(m) =

Z 0

−h1

“
s′′1 +

Nt1

NB1
θ′′
1

”2

dη, (A34)

Es2(m) =

Z h2

0

“
s′′2 +

Nt2

NB2
θ′′
2

”2

dη. (A35)


