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Abstract  

A non-incremental time-space algorithm is proposed for numerical, analysis of 

forming process with the inclusion of geometrical, material, contact-frictional non- 

linearities. Unlike the widely used Newton-Raphson counterpart, the present scheme 

features an iterative solution procedure on entire time and space domain. Validity and 

feasibility of the present scheme are further justified by the numerical investigation 

he'rewith presented. 
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I. Introduct ion  

The significant role played by the development in and investigations on numerical 

simulation procedure in forming process has increasingly more widely accepted by manufacture 

industries because of its remarkable Contribution in shortening the period required for 

determination of the forming technology and in bringing down the expenses. However, the 

multiplicity of non-linearities in h igh  degrees involved in the forming process immensely 

hinders it, theoretically and numerically, from being extended to practical applications. In 

dealing with time factors in problems regarding processes, incremental algorithms are usually 

employed. The fact that small increments are necessarily required in such practices 
unavoidably induces convergence difficultles in addition to disadvantageously low efficiency El, 2, 31 

This is especially worse for-engineering applications where .immense amount of 
computational effort is usually required. 

Contrast to the conventional approaches, the non-incremental algorithm features a 

concept that the whole loadingprocess is considered as a unique increment. In a series of 

publications~4. 5. 6j p. Ladeveze initiated the so-called ~large time increment method" for small 
deformation elasto-plastic problems, which was subsequently applied, in success, to several 
research projects/7" ~, 9, 10. H1 

The present study is mainly concerned with the implementation of, and development in, 

the concepts of the non-incremental algorithm r~2j, with specific emphasis on the description of 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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time-process add its solution procedures in connection with numerical simulations for finite- 

deformation forming process. As long as iterative manipulations are conducted on the whole 

time process, amount of global solution efforts is drastically brought down, while the expenses 

required by global solution efforts are in power series relations with the number, of degrees-of- 

freedom involved in a discrete model v~' 141. Solution variables, in the present study, are 

composed of  the products of time functions with space functions u31. 

II. S t a t e m e n t  of  the  Problem and t h e  Presenta t ion  of  the Method 

Let t I~e the time: tE [0 ,T] ,  V the initial configuration of the workpiece at t=0 ,  The 

boundary of the workpiece is divided into three disjoint parts: St is the part of boundary where 

d!sp!acement U is prescribed, $2 is the part of boundary where load F is prescribed, and & is 

the part of boundary where possibly contact friction with the tools takes place os' ~' ~71 The 

current position (at time t) of the initial, material-coordinate M is M, = M+u(M, t),-with u as 

the single-valued continuous displacement field. V, is the configuration at time t, resulted from 

V via displacement u, while the boundary is transformed correspondingly to its current 

component parts (Fig. 1). 

j F Tools r - Y ~  / 

Fig. 1 Mechanical model 

Global step 

/ \ N ~  N ~  Local step 

. I / 
Fig. 2 The iteration procedure 

Introduce new variables: 10ad q and displacement v on ~ '  ~91. Denote p as the first Piola- 

Kirchhoff stress tensor and F the deformation gradient tensor, Le. F=l+du/dM, with I as 

identity tensor, such that the space of  variables is S = (F, v, p, q). 
To discribe the virtual strain-rate field and the virtual stress-rate field, define the statically 

and kinematically admissible to zero set S~ and/CA: 

U = { u l u = u ( M , t ) ,  u l s , = 0 ,  u[,=0=0} (2.1)  

K~={ (P,~)I ~uEU, P=d-~' ~=~i[s~} (2.2) 

wherein superindex T implies transpose. 
Ignoring body force exertions, the mechanics prOblem is written as: 

• F = I + d - ~ ,  uls l -----~, o=u & (2.4) 

• (P,q) satisfies 

• R----A(P,, r<t )  (material constutive law ~2°'2u) (2.6) 
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• R(q,O) (contact friction law t22; 23]) (2 .7)  

Define Ae={SIS satisfies (2.4) (2.5) } (2.8) 

F={SIS satisfies (2.6) (2.7)} (2.9) 

where Aa is a global linear set, satisfying the statically and kinematically admissible condition, 

and F comprises all the local non-linear problems. 

Let each iteration be Split into two steps, the local step and the glpbal step, over P" x 

[0 ,T]  and SaX[O,T]. In the first local (local) step, starting with a statically and 

kinematically admissible solution S,EAa, solution ~'C/" is determined. In the second 

(global) step, from ~ ,  a new solution S,.tEAe is determined, which is superior to S , .  

Keeping going ahead, the procedure is to successively converge to the vicinity of exact solution 

S~=.Aa n 1-' (Fig. 2). 
Search directions for these two steps are: 

~3-p.=-Ko(ff-P,)  E Vx [0,T] 
Local Step ~ (2.10) 

q - q . =  - k ( ~ - , ~ . )  E S~x [0,r]  
~--~.+,=i'(o(P--l~'.+1) E VX [o,-T] " i  

Global Step ~ (2.11) 
) 

where K0 is the linear elastic material constant and k the surface stiffness parameter u21. The n- 
th iterative modifiers are: 

AS.=(A~.,  At'., AO., A~.) (2.12) 

Taking account of equations (2.10), (2.11), (2.4) and (2.5), the global variational statement 
is: 

Find /kS. which satisfies 

Ap.-KoAP.=2Ko(Ie.-P) E Y x  [o ,T]  

Aq.-kA~.=zk(v , -  ~) 15 S~x [ 0 , r ]  
(2. la) 

• d A u .  - -  " 1 ( 3u.EU), AF.=--~--~-~, Ae.--Au. ls~ 

(u'EKa), ~;(fvTr[/X~oT.F']dV-bisA~lr.v'dS}dt=oJ ~ (2.14) 

Having the static variables Ap~ and Aq. eliminated, the solution unknowns AP,~ and 
Av. are available as solutions of displacement Variational problem: 

Find (&~'., Av.) ,  which satisfies ( A P . ,  AO.)EK~,  V(F*,v*)EK~ 

IvI~Tr[F*'KoAP.] dtdV+ lX, l;v"kAo.dtdS 

- -  ~,*'(q.-q)dtaS (2. ~5) 

Alternatively, when kinematical variables (AaO,, A0.) be eliminated, (Ap. ,  Aq,) will 
be available as solution of stress variational problem, i. e. 

Find (Ap, ,  Aq.) ,  which satisfies (Ap, ,  Aq.)ESA, V(p*,q~)ESa 
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Finally, solutions to be obtained by use of the non-incremental method are represented as 

mE[1 ,3 ] ,  Aa.= ~ g,(t)~,,(M), AP,= ~g, ( t )a , (M)  
/ = 1  i f f i l  

NT, ~'L 

A o . = ~ g , ( t ) t , , ( M ) ,  A p . =  S-~,h,(t)fl,(M) 
i ff i l  I = I  

A q . =  ~ h, (t) 3,(M), = _dco, I 

(2.17) 

III. Local  Step - P r e - D e t e r m i n a t i o n  of  the Time Funct ion  

In local step, increments of kinematic variables are 

s 

A/~(M, t)----l~-le,~S-~,O,(t)~,(M ), A~(M,t)=~-'v,=~"y-~.O,(t)~,(M) (3.1). 
/ = I  l f - I  

1" In order that definite solutions can be obtained, O~(t)is normalized via . O~(t)O~ ( t )d t  

=1. 

1. Firs t  order approx imat ion  (m = 1) 
To ensure that the right-hand-sides converge to the left-hand-sides of Eq. (3.1), the 

difference A~--  0 (t) d (M) and the difference A ~ -- # (t) ~ (M)  are required to be minimal. 

Accordingly, 

should assume extrema. Note that in the above equation, 

!t( II f, X ~-~.X~KoXdV, X X~kXdV (3.3)  
(1) ~ v  2) ~ • V 

As such, the problem turns to: find g, a ,  9, 

V3a, Vd?, V3g, ~L(O, a, ~,)----o 

In fact, by use of the normalization conditior~, one obtains the Euler equations 

(3.4) 

(3.5) 

Substituting (3.5) into (3.2) will have the L-minima problem converted to 

SupMi=l{~O(t)A~dt ,2 ,,iT ..~- 
,t,o I[,,,+ i (3.6) 
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Moreover, introduction of the normalization condition, via the use of Lagrangian multi- 

plifier 2, converts the problem to 

{#%" II = tic it = EIE c~ # ( I )A~d t  "F #(f)A~df Jr), ~ D d r - 1  ])----0 (3.7) 
o (') (~) 

o 

which will be further posed as an eigen-pair problem regarding operator A: 

where A is a symmetric positive-definite operator. Maxima of M, is available via the eigen 
vector #1 associated with the maximum eigen value }h. 
2. Second-order approximation 

On the basis of the first-order approximations ~1&: and ~1~1, second-order modi- 

fication terms ~ and ~,.~ are added. 

Define 

X=A~-~(t')~,(M), ~ = A ~ -  #,(t) 7~(M) (,3.9) 

Following the same procedure as what has been done with the first, order approximation 

terms, except the re.placement of A~" and A~ with .~ and ~ respectively, one has 

Taking into account the two components of O, one in the known direction O, to which 

the other component g is orthogonal, it is apparent that 

#( f )=cO,+g( t )  where lo#'(t)g(t)dt=0 (3. I1) 

and the normalization condition 

2 f T 

c +)o g(t)~(Odt---- ! 

On such basis, the use of equation (3.5) gives rise to 

which yield /1,[= (# =) --~ M] (g..). Further, the introduction of normalization condition via the 

use of Lagrangian multiplier 2 will have the problem under consideration converted to the 
solution of the following variational problem: 

l >cER, g ( t ) l ~ , ( f ) ,  ]',ER 
the Euler equation thereof comprises 
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I 
T - +  

A(~)+220----o, ~+ oO(~)g.,t,dt-l=o, 2ca--o (~.14) 

from which arises c=0.  Consequently, the solution to this system is orthogonal to ~,. 

Actually, this is an eigenvalue problem; the eigen-value is 2~, to. which related the eigen-vector 

IV.  S o l u t i o n  o f  t h e  S p a c e  F u n c t i o n  

Based on (2.17), the procedure of solving the variational problem (2.15) can be stated as: 

Find 6)~EKA, 7"E[1,rn], such that 

' v ' iE [1 ,m] ,  Vco'~EKa, ~-~,fvTr a*," ' " O~(a)Kog~(t) dta~ dV 

y=l  

where 

~b,(M)=l[ O~( t ) (~-~)d t ,  q~i(M)=lTO~(t)(q-(t~)dt (4.27 

By use of the ortho-normal condition, the following m independent variational equations 

emerge, namely 

V i E [ 1 , r n ] ,  V co ~EK,4 

i t  &,,dS- - -_  tvTr[a*~q~,]dV-2~& y~rq~,dS (4.3) jvTr[ce~lKoa, jdV..]_ s ,y,i~r -. 9 

Substituting the pre-determined value [h (t), which are known from the local steps, into 

(4.3), the kinematica!ly admissible to zero variables aq, a, and }'~ can be resulted, which it 
is desirable to know in expressing A ~ ,  and A?&. 

Alternatively, Eq. (4.3) can be written as 

ViE[1,m], V ( a ~ , 3 t ~ ) E K ~  

t T~{~,*~ [K~,~,+~,? }dV.+ ~.s', v*,'[kv,+2~,-jdS=o (4.4) 

In the above equation, square bracket denotes the kinematically admissible to zero 
variables. 

Hence, the (fl,,(}~), iE [ 1 .m] variables, totaling m sets, are available via 

fl, (M) =Kom + ~_cp~, c3, (M) = kv~ + 2 ¢ ,  (4.5) 

Note that A ~ ,  and A0, are expressed in terms of N and 6, respectively [see Eq. (2.17)]. 

V. D e t e r m i n a t i o n  o f  T i m e  V a r i a b l e s  

On the basis of (2.16) and (2.17), with (fl~,6~) already known, the time function h~ (t) is 

available via (2.16), on the following defined numerical space. In fact, letting H be a real space 
defined on [0, 7], the present problem can be written as 

(h',,'",h,~)EH m, V (h*:, ...,h2)E[] '~ 
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where 

r,7. . ~, lq, 
~5.1) 

iv  T r C f l ' r K ~  ' i H i j=  f l j ]aV+ S[ C'fl'k-~(~c/S 

is an m ×  m symmetric constant matrix, and 

(5:2) 

i. e. 

"'  V ~ " S~ " ' ' 

Namely, at each discrete time point, an m-dimensional linear problem should be solved, 

~.  H,:h, (t) =b, (t) (5.4) 
d - 1  

In like manner, with (a~,'W) known, the time function ,q , ( t )  can be obtained via 

displacement variational solution (2.15). In fact, 

where 

wl 

~2 G~nj(t ~ =c,(t) (5.5) 
3 " . 1  

c , ( t ) = 2  ! 7"r[aTKo(df', - R , ) ] _  d:U+21 p,k(vr ~ , _ v , ) d S  (5 .7 )  
V "-~3 " 

Starting with the g~(t) thus obtaine& repeat the solution procedures 4 and 5, results with 

improved accuracy can be obtained. However, for iterative approach, strickly accurate 

calculations in a single step is practically not necessary. 

VI.  N u m e r i c a l  E x a m p l e s  

The present algorithm is implemented by use of the finite element analysis software 

OPTIFORM p4I in conjunction with the pre-processing package A U T M E S H  and a post- 

processing package specifically developed by means of  a graphic tool_ 

Table 1 Material harding property 

0.30 0.40 

500_0 600.0 

er plastic strain 0.00 0.10 

a stress (MPa) 200.0 400.0 

To examine the validity and feasibility of  the present 

algorithm, a plane strain elasto-plastic problem is analyzed, 

in which a rigid circular 'cylinder, 25mm in radius, is 

indented into an 80ram x 50mm rectangular structure, with 

elastic modulus E = 2 x  10'MPa, Poisson's ratio v=0.3 and 

piece-wise l inear harding material (Table 1), obeying 

Prandlt-Reuss elasto-plastic constitive, Von Mises criteria 

and Coulomb contact friction law. Fig. 3 gives the 
Fig. 3 Deformat ion  at indenta-  

tion depth equal to I5mm 
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trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
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configuration and deformed mesh at indentation depth equal to 15mm. 

computational results of half structure are provided. 
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The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
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plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 
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trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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