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A b s t r a c t  

In this paper the crack problem .for two bonded inhomogeneous halJ:planes is 

considered. It is assumed that the dif.ferent materials have the same Poisson ratio 2, . but 

generally speaking, both Young ~ moduli vao' exponentialO, with the coordinate x in 

di/ferent Jorm. Using the single crack solution o f  the inhomogeneous plane problem attd 

Fourier trans/brm technique, the problem is reduced to a Cauchy-o,pe singular integral 

equation. Several mmTerical examples to calculate the stress intensity factors are carried 

OUt. 

Key words inhomogeneous plane, crack I~,roblem, singular integral equation 

I. I n t r o d u c t i o n  

The crack problem in inhomogeneous media has been of considerable interests from the 

practical points of view. In fact, it is often encountered in geophysics and essentially inhomogeneous 

solids. Recently, Delale and Erdogan t~l l~ave treated the crack problem for an inhomogeneous plane 

and a single crack solution is obtained. In this paper, using the crack solution and Fourier transform 

technique, the more complicated crack problem for two bonded inhomogeneous half-planes is 

further treated. In this case the stresses are obtained in terms of the unknown dislocation density 

defined on crack surface and then the problem is reduced to solve a Cauchy-type singular integral 

equation, from which we can prove that the stress state around the crack tips has the same square 

roote singularity as the case of homogeneous media. Finally several numerical examplesareworked 

out for the cases of  crack near the bonded line. 

I I .  T w o  B a s i c  S o l u t i o n s  

In order to utilize immediately the earlier results to study the crack problem for an 

inhomogeneous plane bonded by two different inhomogeneous half-plane, two basic solutions are 

given below 

IfPoisson ratio v is a constant and Young's modulus is an exponential function as E ( x )  = Eo 

exp[flx-] ,  where E 0 and B are constants, then the stress function F ( x , y )  of the plane problem of 

inhomogeneous elasticity satisfies the following equation which is a partial ,four-order differential 

equation 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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_/OSF OSF \ _,O~F -~ O~F 
v'F--~,P(-=02~-~, + 0-0~-~-U~)+/~ Ox ~ --vfl --~U~ = 0  (2 .1 )  

If the problem is symmetrical with respect to the axis Ox, equation (2.1) can be solved by use of 
the method of Fourier consine transform. Note that its general solution is given by 

where 

2 oo ~Bj(a)expCn~x]eosayda x~O 
o j - 1  

F(x ,  u) = '] (2.2) 

n~,s=n,,3(a,fl)=(fl-~ ~/ fl2+4aZ+4afl ~/-v--'i ) /2  (2 .3 )  

n2,,=n2,,(a.,fl)=(fl'~ ~/ f12+4a2_4a fl M'v-i ) /2  (2 .4 )  

and Bj(a) (j= 1,2,3,4) are unknown functions which can be determined from the boundary 
conditions of the problem. 

The result (2.2) is called Fourier cosine transform solution (i.e., the first basic solution). 
If the straight crack (a,b) lies on real axis Ox as shown in Fig. l, and the material parameters 

satisfy c]=fl ,  equation (2. l) can be solved by use of the Fourier transform and its general solution 
of the upper half-plane is given by 

o e  2 

F~,(x,y)= ^1 f 3--~Aj(p)exp~_m~y]exp~_ipx]d p 
~ f f  J - -  c o $ .  l 

( - ~ < x < ~ ,  t,,> 0) 

In the case of symmetry about axis Ox, the unknown function .4~(p) 

Eomlm~ 
A , ( p ) =  -- mt mz Az(p)= p2(rn]_m~)(~+ip) 

�9 Ib.g(t)expF(fl+ip)t]dt 

where g(t) is a following dislocation function of crack (a,b) 

g(t) =oo(t, +o)/ot a<t<b 

(2.5) 

can be expressed by 

(2.6) 

(2.7) 

and 

m~=rnl(p,fl)=(flJ~-+,~/ fl~v+ 4p2_4p~i )/2=m, (--p, f l)  (2 .8 )  

mz=mt(P,fl)=(--flM'--v+J~2v+4p2--4pfli)/2 =rn2( - -p , f l )  (2 .9 )  

The result (2.5) is called a single crack solution, the second basic solution, which is obtained firstly 
by F. Delale and F. Erdogan. 

III. Integral Equat ion 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Now we consider the crack problem for an 

inhomogeneous plane bonded by two different 

inhomogeneous half-planes as shown in Fig. 1. 

Assume that the different materials have the same 

Poisson ratio v =const. ,  but Young's moduli take 

different exponential functions in regions ~Q~ and 

g2~ as follows 

E,(x) : E o e x p [ f l x ]  

-q :(X<O, Y>O} .~2 j ( x > O p  y>O) 
F.~(x)=Eo,:'" }~ F.~',x~= t':oe ~" \ \ {  2 J  

Fig. 1 

xED~ (3.1) 

Ez(x) : E 0 e x p [ ~ x ]  xEOz (3.2) 

The crack surfaces are loaded by symmetrical pressure p(x), and the displacements remain 

continuous across the bonded line. Note that this problem can be solved by use of the above two 

basic solutions. From symmetry, it is sufficient to consider upper half-plane. It can be shown that 

the stress functions F,(x,y) in region .Q~ and ~(x .  Y) in region ~2 can be expressed by the 

following forms 

F~(x ,y)= - - ~  S-~A~(p)exp.[-mjy]exp[--ipx]dp 
~ o 0 . t  " ! 

+ 2 [~ s B ~( a )expF njx ]eosctyda 
aO J - ' l  

( x ,  y)EE2, (3.3) 

2 
F2(x, y)=-~--J"~ (x ,y)EOz (3.4) 

0 J - 1  

where mj and % are given by equations (2.3,4) and (2.8,9), the parameter )l~ =).~.(a, dt) =n~+2(a,  

3) , the unknown functions B j ( a )  and C~(a) can be determined by the joining conditions of 

the bonded line. 
The stresses and displacements in region ,Q: can be calculated by use of the stress function 

Ft(x, ' y) as follows 

o o  2 

c r , , l ( x , y ) =  O~F'(x 'Y)-  1 ~ ~--',Aj(p)rn~exp[--mjyJexpC--ipx]dp 
8 y  2 2:~ ~ _ ~ j . l  

--2[ 
m~ JO I - I  

(3.5) 

t m  $ 

= _  i I 
e . d x , y ) =  - Ox~ 2~ _ ~  . 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
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2 , 2 + - - I  ~~Bj(a)nlexp[nxx]eosayda 
Jo j . l  

(3 .6)  

r . , , ( x , y ) =  O=F,(x,Y) _ 
OxOy 2~ ~ A~(p)pm~expE--msy]exp[--ipx]dp 

and 

+ - z f  = 

., (x, y)=- i~o 2 2 1 ~-, A~(p)(m i +vp2)exp[--m~v]expr--ipX]dp 
2~ _~.~'~ (fl+ ip )E , (  x) 

(3.7) 

2 .oo ~ B~(a)(a2+vn~)expCnjx3eosay da+Dl 
-Y-Jo J'" (nj-~)E~(x) 

(3.8)  

g g 
v rx ""~-- 1 f " v-~Aa(p)(p +vm~)expE-msy]expE-:px] . j_  

l k  ~ , , , , ~ , / - - 7 1  , 7 ,  -r~ , ,  x U p  
Z~ J_oot. l m~.tzt{,x ) 

+~___j~o z 2 f  ~ B~(a)(n i2 +vaZ)expLnsx]slnay" da 
o ~ "  aE~(x) (3 .9)  

The stresses and displacements in region ~Qz can be calculated by use of the stress function 
F2(x,V ) as follows 

o,.,(", v) o'y,(=,y) 2 -- = --__ ~ Cj(a)a2expE2~x]eosayda 8y 2 z Jo j-i (3.10) 

c o  2 

a .2(x ,  V) =02F2(X'ax y) --~r2 ( ~-] Cs(a)2~ expE2sx3eosayda 
__z aO j - 1  

(3.11) 

and 

r , , 2 ( x , y ) =  O'F2(x ,Y)  2 f~ 2-~ 
-- OxOy --z~ Jo ~.~' Cj(a)a2sexp[2bx]sinayda (3.12) 

u~(x, v) = _ ~ I  ? ~ C,(,~)(,~'+,,,t~)expE,bxj 
~-l (2~--c~)Ez(x) e~ (3.13) 

v,(=, v) - 2 ['= .~--, Cj(a) (,,R +va')expr-,bxl sinaVda 
-~-Jo J~" c,E~(x) (3.14) 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
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D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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The constants D~ and D, in equations (3.8) and (3.13) respectively are the rigid body displacements 
which can be removed by use of derivation. 

Using following joining conditions of the bonded line Oy shown in Fig. 1. 

cr'"(+O,Y)=Cr,,2(--O,Y), r=,,(+O,y)=r,,z(--O,y) (3.15) 
ut ( +  0, Y) =u2( -- 0, y) ,  v, (--I- 0, y) = v z ( - - 0 ,  y) (3 .16)  

then the unknown functions Bs(ct) and C~(a) can be determined. Back substituting them into 
equations (3.5- 3.7) and (3.10-3.12), the useful stresses are obtained, where only an unknown 
dislocation function.q(t) is not yet determined. Further, let the stress o'~2(x,y ) in region 52~ 
satisfy the loading condition of the crack surface (a,b), i.e. 

lira a ~ t ( x ,  V) = - -p (x )  a < x < b  
V --1.+ 0 

Then the integral equation of the above mentioned crack problem is derived as follows 

(3.17) 

1 fb[- 1 +,.,~ x --=--joLt---x ~(x, O, t ) + ~ z (  , O, t ) ]  g( t ) expL f t ]d t=  l+x_~op(x (3.18) 

where •  for plane strain, •  for plane stress, #0 
the kernels are expressed by following bounded infinite integrals 

,/~'~(x, 0 , t ) = I o I 2 R e  m,m~exp[ip(t-x)](m~+mz)(fl+ip) - - s i n a ( t - x ) ] d p  

IT ~'~(x,  O, t)  = Kz(x,O,t;  a ,p)dpda 

is the shear modulus, 

(3.19) 

(3.20) 

and 
4 

Kz(x,0, /~ a . p ) =  ~--~,Kzs(x,t; a ,p)  (3.21)  
j = l  

where 

K v ( x , t ;  a, p )=  (n~_ +vaZ)n~ expl-nlx] - (n ~, +vaZ)n~ expEnzx3 
n~ - n  ~, 

m[ rn~ expE ipt] 
~rpZ(f+ ip) (mZ~ + o?) (m~ + a z) 

K~2(x t~ a , p ) =  (-n]expEntx]+n~expEn2x])aZ 
' n'. - n ' ,  

E ( rn z, + m~ )pZ + rn] rn~v+a2pZ]expE ipt ] 
arpZ(f+ip)(m] +a2)(rn~ +a 2) 

Kz3(x, t~ a, p)  = (n~--/3)(aZ+vng )n~ expl-n~x3- ( n = - f ) ( a Z + v n  ~, )n ~, expEn=x3 
( n t  - nz) E ( nl + n2)a z -  fla"+ nln=v,83 

rn] mZ, ex pUpt3 
~ i p ( f +  i p )  (m ~, + a 2 ) (m~ + a ~ ) 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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K~,(x,t; a, p)=E(n,-$)(n,-/3)](n2n]expEn~x]- n,n~exp[n~x3). 
(h i -  n2) E ( nl + nz )a z-/3a z+ nlnzv/33 

rn] m z, ( a 2 - - vp  z ) ex pl- ipt ] 
:rpZ(/3+ip)(m~ +ctZ)(mg + a  z) 

Note that, in the case of internal crack, the unknown dislocation function must satisfy the following 
condition of single-valuedness of the displacement. 

(a22) 

Obviously, equation (3.18) is a Cauchy-type singular integral equation about unknown dislocation 

function g(t), which can be solved by use of the numerical method[2] of  singular integral equation. 

Having found the function 9(0 from this equation (3.18), the original'crack problem is then solved. 

IV. S t r e s s  I n t e n s i t y  F a c t o r  

Solving the above integral equation (3.18), we can obtain the solution g(t) and substitute it in 

equation (3.6), then the stress ty r r t (x ,y )  in region ~ t  is found out. In the case of internal 
crack, the dominant part of this stress in neighbourhood of the crack tips is 

4/~0 f~.q(t)expE/3t3 
c r ' " ( x '  0) - - = ( l + x )  Ji ~ dt ( 4 . 1 )  

so that the stress intensity factors ofmooe I can be determined by the well-known method as follows 

4#0 lim~/2(x a) k(a)  - - - - l im~/2(a_x ) Cr, et(X , -k- 0) ---- 1---~=--,, -- 9 ( x ) e x p E / 3 x 3  

( 4 . 2 )  

4/~o l i m M 2 ( b - - x )  # ( x ) e x p F f l x ]  k(b) =~im?/z(~-b) ,,,,,(~, +0)= - 1 + ~ , . ~  ~ 

( 4 3 )  

V .  N u m e r i c a l  R e s u l t s  

In order to verify the method and illustrate its application, several numerical examples to 

calculate the stress intensity factors are carried out. Firstly, we consider the case where the crack half 

length c = ( b -  a)/2 and one of the material parameters (c~,/3) are constants, but the crack center 

coordinate d= (b + a)[2 and the another parameter are varied. Then the results of the stress intensity 
factors for uniform crack surface pressure P0 are listed in table 1. and table 2. 

Table I Variation with parameters d and ,B of the stress intensity factors; d= (a+b)]2, c= (b-a)/2= 1, 
c3=0 

1 3 5 -*oo[ 1 ] 

kCa)/p,, j~ kCb)/po,,./~c kCa)/po,,/71 kCb)lPo,,r k(a)/po~/ff ] k(b)/poa/'~- kCa)/po,,,/~-c kCb)/Pta/-~c 

d 

pc 

1.0  

0 . 5  

0 . 0  

- - 0 . 5  

- - 1 . 0  

I 
0.703 i 1.172 

0.817 1.089 

1.000 , 1.000 

1.182 J 0.899 

1.412 i 0.788 

0 . 7 3 5  

0 . 8 5 6  

1 .000  

1 ,133  " 

1 ,223  

! 
1.194 

1.107 

1.000 

0.871 

I 0.743 

0.737 

0 . 8 5 9  

1 .000  

1.118 

1.200 

1. 196 J 
1. 109 

1.000 

I O. 864 
i 

i ~ i 

0.740 

0.861 

1.000 

I~I13 

I. 197 

1.209 

1.118 

1.00C 

0.881 

0 .738  
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Variation with parameters d and 6 of" the stress intensity factors; d= (a + b)/2, c = ( b - a ) / 2  = 1, 

3 5 .-*oo[ 1 ] 

Table 2 

8 = 0  

d 1 

1,0 l . t l O  1.062 

0 .5  1.048 1.035 

0.0 1.000 1.000 

- - 0 . 5  0.913  0.967 

- -  l.O 0.868 0 .948  

h(o)/po~'Sc 

1.017 

1.011 

1.000 

0 .988  

0 .983 

/~( b )/ po~-d 

1.013 

1.009 

1.000 

0.991 

0.987 

h(a)/po~/-Sc 

1.007 

1.0.05 

1.000 

0.995 

0.993 

1.006 

1.005 

1.000 

0 .996  

0 .994  

h(a)/po,,/-~ 

1.000 

1.000 

1.000 

1.0O0 

1.000 

h(b)/po~%-c 

1.000 

1.000 

1.000 

1.000 

1.000 

Secondly, we consider the cases where thecrack coordinates a and b keep constants, but d~ and 

fl are varied. The results of  the stress intensity factors for uniform crack surface pressure P0 are 

listed in table 3. 

Table 3 Variation with material parameters (8. fl ) of the stress intensity factors; a=  2, b= 4 

r tic k ( a ) / p , J c  k(b)/po,,/-c-c c3c tic k(a)/po.,,/r k(b)/p,~/c--  

1.00 1.00 0 .7354  1 . i947  - - 1 . 0 0  1.00 0 .7334 1 . 1 g I 8  

0.75 0.75 0.7934 1.1537 --0.75 0.75 0.7899 I.i493 

0.50 0.50 0.8585 1.1088 - -0 .50  0.50 0.8831 1.1028 

0.25 0.25 0.9269 1.0584 - -0 .25  0.25 0.9224 1.0522 

0. I0 0.10 0.9717 1.0244 --0.i0 O.IO 0.9671 1.0204 

0 .00  0 .00  1.0000 1.0000 0 .00  0 .00  1.0O00 1 .0000  

- - 0 . 1 0  - - 0 . 1 0  1.0239 0.9722 0 .10  - - 0 . 1 0  1.0305 0 .9760 

- - 0 . 2 5  - -0 .25  1.0581 0.9296 0.25 4 0 . 2 5  1.0521 0.9156 

- - 0 .50  - -0 .50  1.1093 0.6596 0.50 - -0 .50  1.0367 0.8016 

- - 0 . 7 5  - -0 .75  1.1551 0.7953 0.75 - -0 .75  1.0199 0.7250 

- - 1 .00  - -1 .00  1.1970 0.7377 1.00 - - 1 .00  1.0283 0.8786 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 


