Applied Mathematics and Mechanics Published by SUT.
(English Edition, Vol. 12, No. 2, Feb. 1991) Shanghai. China

CRACK PROBLEM FOR AN INHOMOGENEOUS PLANE BONDED BY
TWO DIFFERENT INHOMOGENEOUS HALF-PLANES*

Tang Ren-ji (i#{EH)
YN iaotong University, Shanghai)

(Received March 21, 1990)

Abstract

In this paper the crack problem for two bonded inhomogeneous half-planes is
considered. It is assumed that the different materials have the same Poisson ratio v , but
generally speaking, both Young's moduli vary exponentially with the coordinate x in
different form. Using the single crack solution of the inhomogeneous plane problem and
Fourier transform technique, the problem is reduced to a Cauchy-type singular integral
equation. Several inumerical examples to calculate the siress intensity factors are carried
out.
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I. Introduction

The crack problem in inhomogeneous media has been of considerable interests from the
practical points of view. In fact, it is often encountered in geophysics and essentially inhomogeneous
solids. Recently, Delale and Erdogan!! have treated the crack problem for an inhomogeneous plane
and a single crack solution is obtained. In this paper, using the crack solution and Fourier transform
technique, the more complicated crack problem for two bonded inhomogeneous half-planes is
further treated. In this case the stresses are obtained in terms of the unknown dislocation density
defined on crack surface and then the problem is reduced to solve a Cauchy-type singular integral
equation, from which we can prove that the stress state around the crack tips has the same square
roote singularity as the case of homogeneous media. Finally several numerical examplesare worked
out for the cases of crack near the bonded line.

II. Two Basic Solutions

In order to utilize immediately the earlier results to study the crack problem for an
inhomogeneous plane bonded by two different inhomogeneous half-plane, two basic solutions are
given below

If Poisson ratio » isaconstant and Young's modulus is an exponential functionas E(x) =E
exp[fx], where E,and B are constants, then the stress function F(x,y) of the plane problem of
inhomogeneous elastiéity satisfies the following equation which is a partial four-order differential
equation
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If the problem is symmetrical with respect to the axis Ox, equation (2.1) can be solved by use of
the method of Fourier consine transform. Note that its general solution is given by

, " s
(}%[ S Bj(a)exp[n;x]cosayda x>0

Joo 4o
F(,9)= 2.2)
—J%J:O EBj(a)exp[n-jx]cosayda x<0
where
ny,s=n,3(a,B)=(BF ~ B4t +4aB /7 i )/2 (2_3)
Mo =03,(@, B)=(BF ~/ B+da’—4af ~/» i )/2 (2.4)

and By(a) (j=1,2,3,4) are unknown functions which can be determined from the boundary
conditions of the problem.

The result (2.2) is called Fourier cosine transform solution (i.e., the first basic solution).

If the straight crack (a,b) lies on real axis Ox as shown in Fig. 1, and the material parameters
satisfy =4 , equation (2.1) can be solved by use of the Fourier transform and its general solution
of the upper half-plane is given by

oc

F*(x,y) =2—,1rj > Ai(p)exp{ —mylexp[ —ipxldp

—00fm]

(—oo<lxleo, y>0) (2.5)
In the case of symmetry about axis Ox, the unknown function A;(0) can be expressed by

2
Emm}

my —
A(p)= —_"nl_Az(p) T p*(mi—m2)(B+ip)

. j:g(t)exp[(ﬂ%p)t]dt (2.6)
where g(?) is a following dislocation function of crack (a.b)
g(t) =du(t, +0)/8t  a<lt<b 2.7
and
my=m(p,B)=(B/v +~ Bt dpi—apfi )/2=m (—p,B) (2.8)
my=my(p,B)=(—BN v +~/ B+ dp'—1pfi)/2 =my(—p,B) (2.9)

The result (2.5) is called a single crack solution, the second basic solution, which is obtained firstly
by F. Delale and F. Erdogan.

III. Integral Equation
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Now we consider the crack problem for an
: £ (x<0. ¥>>0) $2:1€(x>0, y>0)

Sz

inhomogeneous plane bonded by two different ‘ . .
[x)=loc Fiixr= ke

inhomogeneous half-planes as shown in Fig. 1.
Assume that the different materials have the same
Poisson ratio ¥ =const., but Young’s moduli take

different exponential functions in regions £, and
0, as follows

E (x)=Eexp[fx] x€L, (3.1

E,(x)=Eexpldx] x€$D, (3.2)

The crack surfaces are loaded by symmetrical pressure p(x), and the displacements remain
continuous across the bonded line. Note that this problem can be solved by use of the above two
basic solutions. From symmetry, it is sufficient to consider upper half-plane. [t can be shown that
the stress functions F\(x,y) in region (Q, and F(x,Y) in region (, can be expressed by the
following forms

on 2
Fi(x,y)= —2—,1,—j 3 4;(p)expl —m;ylexpl —ipx]dp

~ocad=1
2 [
+”—L S” By(a)exp[n;x]cosayda (x,)ER, (3.3)
i=1
oo 2
Fy(x, =2 S2C,(a)expli,xlcosayda  (x,5)€Q, (3.4)
0 i=1 ,

where m;, and n, are given by equations (2.3,4) and (2.8,9), the parameter A;=4;(a,d) =n;,,(a,
d) , the unknown functions Bj;(@) and C;(a) can be determined by the joining conditions of
the bonded line.

The stresses and displacements in region 2, can be calculated by use of the stress function
F(x, y) as follows

9*F 1 (<
Guer () = S — LA y(0)m}expl —mylexpl —ipxldp
2 (* o
_;t_.j S " Bj(a@)a*explnx]cosayda (3.5)
o =1
9*F SRR B
Oy (%,y)= ‘é;;y) =— 2::[ 2. A;(p)p*expl~myylexpl —ipxldp

—°°j-l
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oo 2
+ﬂ-&-j Y Bj(a)n%exp[n;x]cosayda (3.6)

0 J=1

2
8:F (%, i [© _ .
Ten(%,y) =— a‘iay’y) = j’_wz;fh(p)pm:exp[ m;ylexpl —ipx]dp

oo 2
+1j ZB,(a)an,-exp[n,x]sinayda (3.1
n

0 J=!

and

1 - A,(p)(m] +vp*)expl —msylexpl—ipx],,
Fj_x,,‘: (B+ip)E (%)

w (%, y)=—

_2f >, Bj(a)(a*+vn?)exp[n;x]cosay da+D (3.8)
zrj L. (n;—B)E (%) l

o J=!

(p)(p*+vm?%)expl —myyJexp[ —ipx]
v(%,y) =—— j_m,.z, : s dp

B (a)(n?+va*)exp[n;xIsinay
+ 2752 oF da (3.9)

g 7=}

The stresses and displacements in region £, can be calculated by use of the stress function
Fy(x,y ) as follows

Oze(%, y)—-—-—-— i j\T Cy(a)a*exp[d,x]cosayda (3.10)

Ty, y) % L ]}:Cj(a)/l,ﬁexp[/l,-x]wsayda (3.11)

Tapa(X, y)_—‘”ai\;‘yy)_n jo % Cy(@)aksexplAxIsinayda (3.12)
and

uy(%, y) = jo ,.Zl C’(“)(azaj’f g;g‘:([j;"] 5% da+D, (3.13)

o, y)=”_jo j-—\C,(a)(/12+va;)E?;c(;;[)/1,x] sinay ,_ (3.14)
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The constants D, and D, in equations (3.8) and (3.13) respectively are the rigid body displacements
which can be removed by use of derivation.
Using following joining conditions of the bonded line Oy shown in Fig. 1.

Oesi(F0,4) =0.00(—0,1), Ten(+0,4) =t2pa(—0,9) (3.15)
u1(+0,y)=u2<—‘0,y), Ul(b+01y)=vz(—'01y) (3.16)
then the unknown functions B;(a) and C,(a) can be determined. Back substituting them into
equations (3.5—3.7) and (3.10 — 3.12), the useful stresses are obtained, where only an unknown

dislocation function g(¢) is not yet determined. Further, let the stress o,,,(%,y) inregion £,
satisfy the loading condition of the crack surface (a,b), i.e.

vl_i)aloo'nl(x,y)=—'f7(x) alx<b (3.17)
‘Then the integral equation of the above mentioned crack problem is derived as follows
1

?J:E_—lx+é¥’x(x, 0,0)+#,(x, O,t)} g(Hexp(Ptldt= —14.;:p(x) (3,18)

where ¥=3—4v forplanestrain, x=(3—v)/(14v) forplanestress, y, istheshear modulus,
the kernels are expressed by following bounded infinite integrals

. _(T,p. mumexplio(t—x)] . ) ld 31
I l(x,O,t)—J0 [,_Re (mmEm,) (BFip) sina(t x)} fel (3.19)
#:(%,0,0)="[" Ki(x,0,t; a,p)doda (3.20)
0¥ ~00
and
4
Kz(xaovt§ a'p)= ZKZJ(th; avp) (3‘21)
=1
where
K, (%t a, p)= (n§+va2)nfexp[:%x_]r—‘—21(nf+va3)n§exp[n2x]
. mimiexp[ipt]
np*(B+ip)(mi+a*)(m;+a®)
Ky(x,t; a,p)= (—niexp[mx]+niexp[n,x])a*

n:—nt

 L(mi4mi)p*+mimiv+a’p*Jexplipt]
xp*(B+ip)(m}+a*)(mi+a?)

(m—=p)(a*+vni)ntexplnx]—(n,—B)(a*+vn})nZexp[n,x)
(ny—n,)[(ny+n,)a*—fa*+nn,v6]

KZS(x1 t? a, p)=

. mimiexplipt]
mip(B+ip)(mi+a*)(m;+a?)
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) LM =) (1, =) Y(nont explmx) = mntexplnyxd)

Ki(x,t; a, p (n,—n,)[(n,+n,)a*—Ba*+nnf]

. mim}(a*—vp*)explipt]
7o (B+10)(mi + @) (mI+a?y

Note that, in the case of internal crack, the unknown dislocation function must satisfy the following
condition. of single-valuedness of the displacement.

j:g(t)dt=0 (3.22)

Obviously, equation (3.18) is a Cauchy-type singular integral equation about unknown dislocation
function g(r), which can be solved by use of the numerical method™ of singular integral equation.
Having found the function g(¢) from this equation (3.18), the original'crack problem is then solved.

IV. Stress Intensity Factor

Solving the above integral equation (3.18), we can obtain the solution g(t) and substitute it in
equation (3.6), then the stress o,,,(%,y) inregion £, is found out. In the case of internal
crack, the dominant part of this stress in neighbourhood of the crack tips is

dpo  (°g(t)explpt]
x(1+x)L —x O (4.1

U"l(xv 0) =

so that the stress intensity factors of moae I can be determined by the well-known method as follows
k(a)=limn/2(a—x) oyn(x,+0) =14%'1§)m/~/2(x—a) g(x)exp[Bx]
(4.2)
k(b) =1i_131b~/ 2(x—b) oyn(x,+0)=— 14:‘-(;«?_’?,,“/ 2(6—x) 9(x)exp[Bx]
(4.3)

V. Numerical Results

In order to verify the method and illustrate its application, several numerical examples to
calculate the stress intensity factors are carried out. Firstly, we consider the case where the crack half
length ¢ =(h—a)/2 and one of the material parameters (d,8) are constants, but the crack center
coordinate d=(b +a)/2 and the another parameter are varied. Then the results of the stress intensity
factors for uniform crack surface pressure p, are listed in table 1. and table 2.

Table I Variation with parameters d and f of the stress intensity factors; d= a@+h/2, c=(b-a)2=1,

d=0
d 1 3 [ —oo[ 1]
I —
Be | k(a)/ pon/c™) k() pon/cT| k()] Pon/cT| k(B)/ pon/c | k(a)/ bon/c | k(b)/ pon/c| k(a)/ pon/c™ | k(D)) tonsc
Lo| o703 | 1 0.735 ' 1.194 0.737 1.196 0.740 1.209
N ]
0.5 0.817 ' 1.089 i 0.8 . 1.107 0.859 | 1.109 0.861 1.113
0.0 1.000 | 1000 | 1.000 ’ 1.000 1.000 | 1.000 1.000 1.00¢
—o.5| 1182 | o | g3’ 0.871 1.118 1 0.864 1.113 0.881
—1.0| 1.412 | o0.788 ? 1223 | o0.143 1.200 | 0.738 1.1907 0.738
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Table 2 Variation with parameters d and & of the stress intensity factors; d=(a+5b)/2, c=(b—a)[2=1.

B=0
d 1 3 5 —oof 1]
N 1 o @ T e
3¢ | k(a)/ pon/ et R(B)/ Pan/C| R(a)/ Pon/c| R(B)/ pon/c| k(a)/ pon/ ¢ k(b)Y pon/c| k(o) pan/c| R(D)]bon/C
1.0 1.110 1.082 1.017 | 1.013 1.007 1,008 1.000 1.000
0.5| 1.048 1.035 1.011 1.009 1.005 1.005 1.000 1.000
0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
—0.5| o0.913 0.967 0.988 0.991 0.995 0.996 1.000 1.000
~1.0| o0.868 0.948 0.983 ! 0.987 0.993 0.904 1.000 1.000

Secondly, we consider the cases where thecrack coordinates a and b keep constants, but § and

B are varied. The results of the stress intensity factors for uniform crack surface pressure p, are
histed in table 3.

Table 3 Variation with material parameters (8, B ) of the stress intensity factors; a=2, b=4

8 B k@b kB)/pwE O e Ry RO e
1.00 1.00 0.7364 1.1947 —1.00 1.00 0.7334 | 1om8
0.76 0.76 0.7934 1.1537 —0.75 0.75 0.7880 1. 1483
0.50 0.60 0.8685 1.1088 —0.50 0.50 0.8531 1.1028
0.25 0.25 0.9289 1.0584 —0.25 0.25 0. 9224 0522
0.10 0.10 0.9717 1.0244 —0.10 0.10 0.9871 1.0204
0.00 0.00 1.0000 1.0000 0.00 0.00 {0000 1. 0000
~0.10 —0.10 1.0239% 0.9722 0.10 —~0.10 1.0305 0.9760
—0.25  —0.25 1.0581 0.9296 0.25 ~0.25 10521 o.9156
~0.50 —0,50 1.1003 0.8588 0.50 —0.50 1.0367 0.8016
-0.75 —0.75 1.155¢ 0.7963 0.75 ~0.75 1.0199 0.7250
-1.00 —1.00 1.1970 0.7377 1.00 —1.00 1.0283 0.6786
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